

Thermal-aware Phase-based Tuning of Embedded
Systems

Tosiron Adegbija and Ann Gordon-Ross*
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA

tosironkbd@ufl.edu & ann@ece.ufl.edu
*Also affiliated with the NSF Center for High-Performance Reconfigurable Computing (CHREC) at UF

ABSTRACT
Due to embedded systems’ stringent design constraints, much prior
work focused on optimizing energy consumption and/or
performance. However, since embedded systems have fewer
cooling options, rising temperature, and thus temperature
optimization, is an emergent concern. We present thermal-aware
phase-based tuning—TaPT—that determines Pareto optimal
configurations for fine-grained execution time, energy, and
temperature tradeoffs. Results show that TaPT reduces execution
time, energy, and temperature by as much as 5%, 30%, and 25%,
respectively, while adhering to designer-specified design
constraints.

Categories and Subject Descriptors
B.3.2 [Hardware]: Memory Structures: Design Styles – cache
memories.

Keywords
Dynamic thermal management, phase-based tuning, thermal-aware
tuning, energy savings, configurable caches, dynamic optimization.

1. INTRODUCTION AND MOTIVATION
Embedded systems have been the focus of much optimization
research due to these systems’ pervasiveness and intrinsic design
constraints. Since most embedded systems are battery operated,
reducing energy consumption without significantly degrading
system performance is a key design optimization. However,
temperature is also a growing issue in embedded systems
optimization research since most embedded systems have fewer
cooling options as compared to general purpose computers due to
area/size, cost, and energy constraints. Most embedded systems only
dissipate heat by passive convection, thus necessitating efficient
thermal management methodologies.

Increased chip temperature in an embedded system can result in
increased cooling costs, reduced mean time to failure (MTTF),
reduced reliability, etc. Increased temperature can also lead to
thermal emergencies, which can result in an exponential increase in
leakage power and compounding temperature increases (i.e., thermal
runaway), leading to permanent chip damage. To address these
issues, several dynamic thermal management (DTM) techniques
have been proposed for managing chip temperature, most of which
leverage clock gating [5], dynamic voltage scaling (DVS), dynamic

frequency scaling (DFS), dynamic voltage and frequency scaling
(DVFS) [19], and task migration [11].

DTM techniques have been successful in reducing chip temperature,
however, some DTM techniques consider temperature in isolation
[16], which may adversely affect other design objectives, such as
execution time and/or energy consumption. Furthermore, the
applications’ execution characteristics (e.g., cache misses,
instructions per cycle (IPC), branch mispredictions, etc.) can affect
the temperature [21], and even though some DTM techniques
consider inter-application characteristic variations [12], these
techniques do not consider intra-application characteristic variations,
which can significantly limit optimization potential [7].

To increase optimization potential using fine-grained system tuning
(i.e., specialization) to varying application characteristics without
incurring significant tuning overhead in terms of energy, area,
and/or performance, previous work has proposed phase-based tuning
[6]. A phase is a length of execution where an application’s
characteristics remain relatively stable, and therefore the best system
configuration, or specific parameter values (e.g., cache size,
associativity, line size, clock frequency, etc.), that adhere to the
design constraints also remain relatively stable. Phase-based tuning
requires configurable hardware with tunable parameters where the
parameter’s values can be specified/changed during runtime. Phase-
based tuning also requires a mechanism to evaluate the application’s
characteristics to determine the best system configuration for each
phase of execution to best satisfy design objectives (e.g., minimize
energy, execution time, etc.) and design constraints (e.g.,
temperature thresholds). Previous work showed that phase-based
tuning significantly reduced energy consumption in embedded
systems [6]. For example, Gordon-Ross et al. [8] showed that phase-
based cache tuning saved as much as 62% of the memory access
energy. However, little work studied the combination of phase
based-tuning and DTM.

Since prior work showed that phase-based cache tuning significantly
impacts energy consumption and execution time, and DTM
techniques can significantly impact temperature, energy
consumption, and execution time, we combine phase-based cache
tuning and DFS for fine-grained and efficient temperature, energy,
and execution time optimization. However, since optimizing one
design objective may adversely impact the other design objectives,
combining these techniques presents a multi-objective optimization
problem. The solution to a multi-objective optimization problem is
the Pareto optimal configuration set, which enables designers to
choose the system configuration that best meets the design
constraints.

We present thermal-aware phase-based tuning (TaPT), which
dynamically determines the Pareto optimal system configurations
trading off execution time, energy, and temperature design
objectives. TaPT is based on the strength Pareto evolutionary
algorithm II (SPEA2) [23], which is a well-known and effective
evolutionary algorithm for solving multi-objective optimization
problems. We modify SPEA2 to implement phase-based tuning and
consider designer-selected priority settings. These priority settings

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from

permissions@acm.org.
GLSVLSI '14, May 21 - 23 2014, Houston, TX, USA
Copyright 2014 ACM 978-1-4503-2816-6/14/05�$15.00.

http://dx.doi.org/10.1145/2591513.2591586

allow designers to prioritize a design objective, thus trading
off/degrading non-prioritized design objectives to increase the
prioritized design objective based on design constraints. TaPT’s
runtime automation aids designers in adhering to design constraints
with no design time effort. TaPT leverages previously
proposed/existing configurable hardware, thus minimizing the
additional hardware overhead with respect to these prior techniques.
Experimental results show that compared to using the same system
configuration throughout an application’s execution, TaPT reduces
execution time, energy consumption, and temperature by as much as
5%, 30%, and 25%, while adhering to designer-specified design
constraints.

2. BACKGROUND AND RELATED WORK
Since much previous work focuses on phase-based tuning [1][6][8]
and DTM [5][11][19] separately, and to the best of our knowledge,
our work is the first to combine phase-based tuning and DTM, we
present related work and background in these two areas. We also
present background and key concepts for SPEA2, which serves as
the basis for TaPT.

2.1 Phase-based Tuning and DTM
To facilitate phase-based tuning, hardware- or software-based phase
classification partitions an application’s execution into intervals,
measured by the number of instructions executed. Intervals showing
similar characteristics can be clustered into phases.
Balasubramonian et al. [3] used cache miss rates, cycles per
instruction (CPI), and branch frequency characteristics to detect
changes in application characteristics for cache tuning, and found
that these characteristics were effective for phase classification.
Since we utilize cache tuning in this work, for brevity, we limit our
review to phase-based cache tuning.

Phase-based tuning can leverage any configurable cache architecture
(e.g., [7]) and tuning method to search the configuration design
space, which consists of all the different system
configurations/combinations of tunable parameter values. Zhang et
al. [22] proposed a low energy and area overhead configurable cache
architecture that provided runtime-configurable total cache size,
associativity, and line size using a small, hardware-settable bit-width
configuration register. Motorola’s M*CORE processor [14]
provided per-way configuration using way management, which
allowed ways to be shut down or designated as instruction only, data
only, or unified.

A major challenge of phase-based tuning is tuning the configurable
hardware to the best configuration for each phase without incurring
significant tuning overhead. Gordon-Ross et al. [6] presented cache
design space exploration heuristics that when used for phased-based
tuning, realized as much as 39% energy savings on average as
compared to non-phase-based tuning (i.e., using a single
configuration for the entire application). Hajimir et al. [10]
presented a dynamic programming-based algorithm to find the best
cache configuration for each phase. However, these methods only
focused on energy savings and did not consider thermal issues.

To reduce chip temperature dissipation, several DTM techniques
have been proposed. Brooks et al. [5] investigated clock gating,
which turns off the clock signals during thermal emergencies. Heo et
al. [11] proposed task migration, which migrated tasks from a hot
core to a cooler core to avoid a thermal emergency. However, these
works did not explicitly consider the tradeoffs between energy,
temperature, and execution time, thus increasing the possibility of
significantly degrading one design objective while optimizing other

design objectives. Furthermore, these methods were not phase-based
and did not consider intra-application variations.

Our work differs from previous works by combining phase-based
cache tuning and DFS to achieve Pareto optimal configurations that
trade off execution time, energy, and temperature, thus achieving
fine-grained multi-objective optimization.

2.2 SPEA2 Algorithm
Evolutionary algorithms leverage biological evolutionary concepts,
such as population, reproduction, mutation, selection, etc., for
efficiently determining Pareto optimal solutions to multi-objective
optimization problems. The solution space consists of all of the
possible solutions to the optimization problem, the population is a
subset of the solution space, and the population’s solutions are
referred to as individuals. A solution’s fitness dictates the solution’s
quality and represents how well the solution adheres to design
constraints. Evolution iterates over successive generations of
populations, where each evolution considers the population’s
individuals’ finesses and replaces the least fit individuals with new
solutions from the solution space, and interjects random solution
mutations to create the successive generation.

Prior work shows that SPEA2 outperforms most other evolutionary
algorithms for solving multi-objective optimization problems [23].
SPEA2 uses elitism, which maintains an external set of non-
dominated solutions, called an archive. A solution is non-dominated
(or Pareto optimal) if none of the design objectives can be improved
without degrading another design objective. For example, given two
configurations Cx and Cy, Cx dominates Cy (written as Cx ≻ Cy) if
and only if:

∀i � {1, 2, …, k} : fi(Cx) ≥ fi(Cy) ∃j � {1, 2, …, k} : fj(Cx) > fj(Cy)
(1)

where k is the number of objectives and fk represents the design
objectives’ objective functions, and fk(Cx) characterizes how well Cx
achieves the design objectives.

For brevity, we present an overview of SPEA2, and refer the reader
to [23] for additional details. SPEA2 takes the solution space as
input and outputs the Pareto optimal solution set. SPEA2 generates

Phase
characteristics

New phase?
Get config, CPi from
phase history table

Search phase history
table for Pi

No

Yes

TaPT
Algorithm

Pi configuration,
CPi

Add Pi to phase history
table

Execute phase Pi with
CPi

Phase Pi encountered

Phase
classification

Figure 1. TaPT overview

an initial population and creates an empty archive and populates the
first generation’s archive with the population’s non-dominated
individuals. For subsequent generations, SPEA2 calculates the
population’s and archive’s individuals’ finesses, and populates the
next generation’s archive with the population’s and archive’s non-
dominated individuals. When the maximum number of generations
has been reached and/or number of solutions that satisfy the design
objectives have been determined, the current archive contains the
Pareto optimal set.

3. THERMAL-AWARE PHASE-BASED
TUNING (TAPT)

TaPT leverages several fundamental assumptions based on
mechanisms that have been widely studied and implemented in
embedded systems [15][22]. Since our work is independent from the
specific phase classification technique leveraged and prior work
presents many phase classification techniques, we assume phase
classification has already been performed and the applications’
phases and the phases’ instruction and data cache miss rates and IPC
characteristics are input into phase-based tuning. We also assume
that DFS is enabled, and the system has a temperature sensor, a
hardware tuner [7] to orchestrate phase classification and implement
TaPT, and a hardware-tunable cache with tunable size, associativity,
and line size. In this section, we present an overview of TaPT and
details of the TaPT algorithm.

3.1 Overview of TaPT
Figure 1 depicts an overview of TaPT. TaPT takes as input the
classified phases’ characteristics, which are output from phase
classification. To minimize tuning overhead, a phase history table
stores information about previously executed phases and the phases’
best system configurations. When a phase Pi is executed, if Pi is in
the phase history table, Pi has been previously executed (i.e., Pi is a
not new phase) and the stored best system configuration CPi is used
to execute Pi. If Pi is not in the phase history table (i.e., Pi is a new
phase), TaPT determines Pi’s best system configuration CPi, Pi is
executed with CPi and CPi is stored in the phase history table for
subsequent executions of Pi.

3.2 The TaPT Algorithm
TaPT contains three designer-specified priority settings, X, N, and T,
which prioritize execution time, energy, or temperature
minimization, respectively. These priority settings enable TaPT to
efficiently determine the best system configuration CPi for a phase Pi
while adhering to designer-specified constraints. The priority
settings trade off the non-prioritized design objectives in favor of the
prioritized design objective. For example, X trades off increased
execution time and increased temperature for minimized energy. If
the designer does not specify a priority, the priority setting defaults
to S, which prioritizes energy delay product (EDP) minimization to
account for both energy consumption and execution time while also
reducing temperature and/or preventing a significant temperature
increase. TaPT also allows the designer to associate a peak
temperature threshold with each priority setting, such that TaPT
determines Pareto optimal configurations that do not exceed the
temperature threshold.

To ensure equal probability of selection for all configurations when
generating the population, TaPT uses random uniform distribution,
and on system startup, the initial archive is an empty set since there
are no previously executed phases. TaPT generates Pi’s archive from
Pi’s population’s and archive’s non-dominated configurations
(Equation (1)) using the configurations’ fitness and stores Pi’s final
archive in the phase history table. A configuration Ci’s fitness is the
sum of Ci’s dominators’ strengths, and a configuration’s Ci’s
strength S(Ci) is the number of configurations dominated by that
configuration such that:

S(Ci) = |{Cj | Cj ∈ P ∪ A ∀ Ci ≻ Cj}| (2)

where P and A are Pi’s population and archive, respectively. Ci’s
fitness R(Ci) is:

R(Ci) = ∑ܵሺܥ௝ሻ ∀ Cj ∈ P ∪ A, Cj ≻ Ci (3)

where R(Ci) = 0 indicates that Ci is non-dominated.

To implement phase-based tuning, TaPT calculates the phase
distances [1] between the currently executing phase Pi and all of the
previously executed phases Pi-1, Pi-1, …, Pi-n. The phase distance is
the difference between two phases’ characteristics, which the
authors in [1] calculated using the normalized difference between
the two phases’ cache miss rates. However, since TaPT tunes
multiple hardware parameters (instruction and data cache
configurations and clock frequency), TaPT calculates the phase
distance using the Euclidean distance between the instruction cache
miss rate (iMR), data cache miss rate (dMR), and the instructions per
cycle (IPC). The phase distance D between two phases Pi and Pj is:

 D = ඥሺܴ݅ܯ௉௜ 	െ	 ௉௝ሻଶܴܯ݅ ൅ ሺܴ݀ܯ௉௜ 	െ ௉௝ሻଶܴܯ݀	 ൅ ሺܥܲܫ௉௜ 	െ	 ௉௝ሻଶ (4)ܥܲܫ

TaPT uses the most similar phase’s archive as the currently
executing phase’s initial archive, where the most similar phase has

Input: n, s, Asize, G, Q
Output: Pi’s best configuration

0 t ← 0

1 for i ← 1 to s do

2 Ci ← rand() / s + 1

3 end
4 population is {C1, C2, …, Cs}

5 for j ← 1 to n do

6 Dj ← d(Pi, Pj)

7 end

8 Amsp ← archive(Pj) | D = min(Dj)
9 if n == 0 && t == 0 then

10 archive ← ∅
11 else if k > 0 && t == 0 then

12 archive ← Amsp

13 end
14 else

15 archive ← archive(t-1)

16 end

17 U ← population + archive

18 for (Ci ∈ U) do

19 fit(Ci) ← calculateFitness(Ci)

20 end

21 archive ← getNonDominated(U)

22 size(archive) ← Asize
23 if t == (G – 1) then

24 bestConfiguration(Pi) ← min(f(Q))

25 exit

the minimum D from Pi. Since phases with stable characteristics
require similar configurations, using the most similar phase’s
archive as Pi’s initial archive starts the TaPT algorithm with
solutions that are presumably closer to Pi’s Pareto optimal solutions,
as compared to an archive from the randomly-generated initial
population.

Algorithm 1 depicts the TaPT algorithm, which executes for each
new phase Pi. The algorithm takes as input the number of previously
executed phases n and a designer-specified population size s,
archive size Asize, number of generations G, and priority setting Q.
The algorithm outputs Pi’s best system configuration. The product
of s and G defines the maximum number of configurations
explored/executed during tuning, which limits the tuning overhead,
and Asize specifies the size of the archive and ensures that only the
most fit configurations (Equations (2) and (3)) are stored in the
archive. Given the nature of evolutionary algorithms, the archive
does not necessarily contain the actual Pareto optimal solutions. In
general, larger s and G values determine solutions that are closer to
the Pareto optimal solutions, but also increase tuning overhead.
Alternatively, smaller s and G values reduce tuning overhead, but
may also determine configurations that are farther from the Pareto
optimal solutions. We extensively evaluated different values of s, G,
and Asize and observed that s and G values that explored 4% of the
design space and Asize = 5 yielded an efficient balance between
determining Pareto optimal solutions and reduced tuning overhead.

First, TaPT generates an initial population from the configuration
space and calculates the phase distance D between the currently
executing phase and all of the previously executed phases (lines 1 –
7). Next, TaPT initializes Pi’s archive to Pi’s most similar phase’s
archive (i.e., the phase with the minimum distance D from Pi) (lines
8 and 16). At system startup (n = 0), there are no previously
executed phases (D = null), and the archive is initialized to an empty
set (lines 9 – 10). For each generation, TaPT uses the previous
generation’s Pareto optimal set as the current generation’s initial
archive (line 15). TaPT calculates each population’s and archive’s
configuration’s fitness using Equations (2) and (3), and updates the
current generation’s archive with the non-dominated configurations
(lines 17 – 21). TaPT maintains Pi’s archive’s size at Asize by

discarding the least fit configurations or adding the most fit
configurations from the population (line 22).

On the final generation, TaPT selects the best configuration from the
archive that optimizes the specified priority setting (line 24). Finally,
TaPT stores CPi in the phase history table (Figure 1) for Pi’s
subsequent executions.

3.3 Computational Complexity and Hardware
Overhead

TaPT calculates S(Ci) and R(Ci) with worst-case time complexity
O(m2), where m is the sum of the population and archive sizes, and
calculates D with worst-case time complexity O(n), where n is the
number of previously executed phases. Thus, since these
calculations dominate TaPT, TaPT results in minimal computation
overhead. Furthermore, since TaPT utilizes previously proposed and
implemented hardware, such as a DFS mechanism, phase history
table, and configurable caches, TaPT imposes no additional
hardware overhead as compared to prior work.

4. EXPERIMENTAL RESULTS
4.1 Experimental Setup
We evaluated TaPT’s execution time, energy, EDP, and temperature
savings by comparing a system that switches to the best
configuration, as determined by TaPT, for each phase to a base
system with a fixed system configuration. The base system had 32
Kbyte, 4-way private level one (L1) instruction and data caches with
64 byte line sizes, and a processor clock frequency of 2 GHz . This
configuration is similar to current embedded systems (e.g., Motorola
RAZR XT890 [15]), and thus serves as a good base comparison to a
commercial off-the-shelf (COTS) system.

We modeled an embedded processor architecture, similar to the
ARM Cortex A9 [2], consisting of a 4-width out-of-order issue
processor with 8 pipeline stages and 45 nm technology. Our
experiments represent state-of-the-art embedded systems, and our
results and analyses extend to future and/or more complex systems
(e.g., n-core processors, heterogeneous systems, etc.) because TaPT
is independent of these system characteristics. The processor’s

(a) (b)

(c) (d)

 Figure 2. Execution time, energy, EDP, and temperature normalized to the base configuration for priority settings (a) S, (b) N, (c) T,
and (d) X.

0

0.2

0.4

0.6

0.8

1

1.2

E
xe

cu
tio

n
tim

e,
 e

ne
rg

y,
 E

D
P

,
te

m
pe

ra
tu

re
 n

or
m

al
iz

ed
 t

o
th

e
ba

se
 c

on
fig

ur
at

io
n

Execution time Energy EDP Temperature

0

0.2

0.4

0.6

0.8

1

1.2

E
xe

cu
tio

n
tim

e,
 e

ne
rg

y,
 E

D
P

,
te

m
pe

ra
tu

re
 n

or
m

al
iz

ed
 t

o
th

e
ba

se
 c

on
fig

ur
at

io
n

Execution time Energy EDP Temperature

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

E
xe

cu
tio

n
tim

e,
 e

ne
rg

y,
 E

D
P

,
te

m
pe

ra
tu

re
 n

or
m

al
iz

ed
 t

o
th

e
ba

se
 c

on
fig

ur
at

io
n

Execution time Energy EDP Temperature

0

0.2

0.4

0.6

0.8

1

1.2

E
xe

cu
tio

n
tim

e,
 e

ne
rg

y,
 E

D
P

,
te

m
pe

ra
tu

re
 n

or
m

al
iz

ed
 t

o
th

e
ba

se
 c

on
fig

ur
at

io
n

Execution time Energy EDP Temperature

configurable L1 instruction and data cache sizes ranged from 8 to 32
Kbyte, line sizes ranged from 16 to 64 byte, and associativities
ranged from 1- to 4-way, all in power-of-two increments. The
processor offered seven clock frequencies ranging from 800 MHz to
2 GHz in 200 MHz increments. Given these parameter values, the
design space contains 1,701 configurations.

We modeled the processor using GEM5 [4] and generated cache
miss rates and core statistics, which we used to calculate the
execution time. We also used these statistics to calculate the
system’s total energy consumption and EDP with McPAT [13]. We
used Hotspot 5.0 [20] as the thermal modeling tool to measure the
temperature using a floorplan and silicon chip area similar to the
ARM Cortex A9 processor. We ran thermal simulations and
sampled the application’s power consumption at 10 ms intervals,
similar to modern operating systems (e.g., Linux) [18]. Previous
work [18] showed that this fine-grained sampling accurately
depicted the application’s temperature characteristics during
execution. To simulate an embedded system without cooling
mechanisms, such as a heat sink and/or spreader, we set the
convection resistance to 4K/W and the heat sink and spreader
thickness to 1 mm and 0.1 mm, respectively, which are considered
negligible in Hotspot.

To model a variety of real-world embedded system applications, we
used eighteen benchmarks: twelve EEMBC [17] Automotive
benchmarks (the full suite could not be evaluated due to compilation
errors) and six MiBench [9] benchmarks selected to represent
different application domains. The benchmarks were specific
compute kernels performing specific tasks in different application
domains, such as networking, image processing, security, etc.

We implemented TaPT using Perl scripts to drive simulations and
executed each phase once to completion. To implement phase
classification, we ran execution trace simulations on each
benchmark using GEM5 to generate cache miss rates and IPC
statistics, and grouped intervals with similar characteristics as
phases using variable-length intervals [7], which previous work
found to be effective for phase classification. Since the benchmarks
were specific compute kernels, our experiments revealed that the
benchmarks exhibited relatively stable characteristics throughout
execution. Without loss of generality, this characteristic stability
enabled us to consider each kernel/benchmark as a different phase of
execution.

To determine appropriate values for s, G, and Asize, we ran extensive
experiments with different values and observed that s = 20, G = 3,
and Asize = 5 achieved a good balance between Pareto optimal
solutions and tuning overhead. These values explored only 4% of
the design space, while larger values increased tuning overhead
without significantly improving the Pareto optimal solutions and
smaller values reduced tuning overhead, but achieved sub-Pareto-
optimal solutions. s and G are system dependent and can be scaled
appropriately for different design spaces.

To explore several diverse design objectives, we modeled all of
TaPT’s priority settings using these values of s, G, and Asize. To
evaluate the impact of designer-specified temperature thresholds
lower than the base configuration’s average peak temperature of
89oC (determined by simulation), we evaluated empirically-
determined high and low temperature thresholds set at 82oC and
65oC, based on the range of temperatures observed during
simulation. The high 82oC threshold illustrates a system where the
primary concern is for the temperature to be maintained below 82oC
to prevent overheating damage, while the low 65oC threshold
represents a strict temperature-constrained system to illustrate how
maintaining a low temperature impacts the other objective functions.

4.2 Results
Figure 2 depicts the execution time, energy, EDP and temperature of
the best configurations as determined by TaPT normalized to the
base system configuration for a single execution of each
benchmark/phase for each priority setting. Figure 2 (a) depicts a
zero-designer-effort system, with a default priority setting S (EDP
prioritization) and no temperature threshold. The results show
average EDP, energy, execution time, and temperature reductions of
31%, 30%, 2%, and 21%, respectively, with maximum reductions of
48%, 35%, 19%, and 5%, respectively. For some phases, prioritizing
EDP minimization only slightly reduced the temperature. For
example, candr01’s EDP, energy, and execution time reduced by
40%, 27%, and 18%, respectively, while reducing the temperature
by only 8%. However, other phases suffered increased execution
time, up to 6%, to prioritize EDP minimization, but gained
significant reductions in energy and temperature. For example,
mad’s EDP, energy, and temperature reduced by 23%, 26%, and
21%, respectively, while increasing the execution time by 4%. In
general, priority setting S minimizes EDP, and reduces the energy
consumption and temperature for all phases, with only minor
increases in execution time for some phases.

Figure 2 (b) shows that priority setting N (energy prioritization) and
a temperature threshold of 82oC resulted in average execution time,
energy, EDP, and temperature reductions of 4%, 31%, 34%, and
20%, respectively. Figure 3 illustrates the impact of a high
temperature threshold, and depicts the phases’ peak temperatures
with respect to the threshold temperature 82oC. For all of the phases,
the temperature never exceeded 82oC, because rather than
minimizing temperature, TaPT maintained the temperature at or
below 82oC, which allowed for further execution time, energy, and
EDP reduction since the temperature threshold was relatively high.

Figure 2 (c) depicts a much lower temperature threshold set at 65oC
and priority setting T (temperature prioritization). On average over
all of the phases, the energy and temperature decreased by 13% and
25%, respectively. However, the execution time and EDP
significantly increased by 39% and 22%, respectively. TaPT
maintained a peak temperature for all the phases within 65oC to
68oC, however, to maintain this low peak temperature, TaPT traded
off execution time and energy consumption. Increasing the
temperature threshold to 70oC (results not shown for brevity)
decreased the energy, EDP, and temperature by 27%, 26%, and
21%, respectively, while the execution time only increased by 2%.
These results show TaPT’s ability to trade off objective functions in
order to adhere to design constraints. The results also show the
extent to which some objective functions may be adversely affected
in a multi-objective optimization problem where one of the objective
functions is significantly constrained.

Figure 2 (d) shows that using priority setting X (execution time
prioritization) with no temperature threshold decreased execution

Figure 3. Peak temperatures with respect to a temperature

threshold of 82oC (broken horizontal line).

time, energy, EDP, and temperature by 5%, 26%, 29%, and 16%,
respectively. For example, TaPT significantly decreased tblook’s
execution time, energy, EDP, and temperature by 24%, 47%, 60%,
and 22%, respectively. However, for some phases there was no
execution time decrease, such as mad, which increased by 5% while
the energy, EDP, and temperature decreased by 36%, 32%, and
27%, respectively. Even though TaPT achieved significant
execution time improvement for some phases, the base
configuration performed well in terms of execution time for most
phases. Thus, for those phases, TaPT determined configurations that
did not significantly increase the execution time, while also reducing
the energy and temperature. Therefore, even though TaPT
emphasized execution time minimization in this experiment, since
the base configuration was a high performing configuration on
average, the relatively low execution time reduction was expected.
In general, TaPT successfully achieved significant savings in terms
of execution time, energy, and temperature while adhering to
specified design constraints.

4.3 TaPT Exploration Time
We evaluated TaPT’s exploration time by comparing how much
time TaPT required to determine a phase’s best configuration with
how much time was required to determine the phase’s best
configuration using an exhaustive search of the design space. On
average over all the phases, TaPT reduced the exploration time from
142 seconds to 6 seconds, with the longest and shortest exploration
reductions being from 321 seconds to 13 seconds and from 25
seconds to 1 second, respectively. Thus, on average, TaPT reduced
the exploration time by 96%, translating to a 25 times speedup in
exploration time.

5. CONCLUSIONS
In this paper, we presented thermal-aware phase-based tuning,
TaPT, which combines phase-based cache tuning and dynamic
frequency scaling (DFS) to determine Pareto optimal configurations
for different application phases of execution. We show TaPT’s
effectiveness in determining Pareto optimal configurations that
significantly reduce execution time, energy, energy delay product
(EDP), and temperature, with minimal computational complexity,
while adhering to specified design constraints. Future work includes
incorporating runtime phase classification into TaPT to provide
optimization for systems where the executing applications are not
known and/or classified a priori. Additionally, we plan to verify
TaPT’s scalability to more complex systems with much larger
design spaces (e.g., heterogeneous multi-/many core systems).

6. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation (CNS-
0953447). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

7. REFERENCES
[1] T. Adegbija, A. Gordon-Ross, and A. Munir, “Dynamic

Phase-based Tuning for Embedded Systems Using Phase
Distance Mapping,” International Conference on Computer
Design, 2012.

[2] ARM, http://www.arm.com/products/processors/cortex-
a/cortex-a9.php.

[3] R. Balasubramonian, D. Albonesi, A. Byoktosunoglu, and S.
Dwarkada, “Memory hierarchy reconfiguration for energy and
performance in general-purpose architectures,” International
Symposium on Microarchitecture, 2000.

[4] N. Binkert, et al, “The gem5 simulator,” Computer
Architecture News, May 2011.

[5] D. Brooks and M. Martonosi, “Dynamic thermal management
for high performance microprocessors,” International
Symposium on High-Performance Computer Architecture,
2001.

[6] A. Gordon-Ross, J. Lau, and B. Calder, “Phase-based cache
reconfiguration for a highly-configurable two-level cache
hierarchy,” ACM Great Lakes Symposium on VLSI, 2008

[7] A. Gordon-Ross and F. Vahid, “A self-tuning configurable
cache,” IEEE Design Automation Conference, 2003.

[8] A. Gordon-Ross, F. Vahid, and N. Dutt, “Fast configurable-
cache tuning with a unified second level cache,” International
Symposium on Low Power Electronics and Design, 2005.

[9] M. R. Guthausch et al., “Mibench: a free, commercially
representative embedded benchmark suite,” IEEE Workshop
on Workload Characterization, 2001.

[10] H. Hajimir and P. Mishra, “Intra-task dynamic cache
reconfiguration,” International Conference on VLSI Design,
2012.

[11] S. Heo, K. Barr, and K. Asanovic, “Reducing power density
through activity migration,” International Symposium on Low
Power Electronics and Design, 2003.

[12] R. Jayaseelan and T. Mitra, “Temperature aware task
sequencing and voltage scaling,” International Conference on
Computer-Aided Design, 2008.

[13] S. Li, et al, “McPAT: an integrated power, area, and timing
modeling framework for multicore and manycore
architectures,” International Symposium on Microarchitecture,
2009.

[14] A. Malik, W. Moyer, and D. Cermak, “A low power unified
cache architecture providing power and performance
flexibility,” International Symposium on Low Power
Electronics and Design, 2000.

[15] Motorola RAZR i XT890 -
http://www.gsmarena.com/motorola_razr_i_xt890-4998.php.

[16] M. Pedram and S. Narian, “Thermal modeling, analysis, and
management in VLSI circuits: principles and methods,”
Special Issue on Thermal Analysis of ULSI, Vol. 94, No. 8,
pp. 1487-1501, 2006.

[17] J. Poovey, M. Levy, and S. Gal-On, “A benchmark
characterization of the EEMBC benchmark suite,”
International Symposium on Microarchitecture, 2009.

[18] S. Sharifi, A. Coskun, and T. Rosing, “Hybrid dynamic energy
and thermal management in heterogeneous embedded
multiprocessor SoCs,” Asia and South Pacific Design
Automation Conference, 2010.

[19] K Skadron, “Hybrid architectural dynamic thermal
management,” Design Automation and Test in Europe, 2004.

[20] K. Skadron, et al., “Temperature-aware microarchitecture:
modeling and implementation,” Transactions on Architecture
and Code Optimization, March 2004.

[21] I. Yeo and E. Kim, “Temperature-aware scheduler based on
thermal behavior grouping in multicore systems,” Design
Automation and Test in Europe, 2009.

[22] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable
cache architecture for embedded systems,” International
Symposium on Computer Architecture, 2003.

[23] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving
the strength pareto evolutionary algorithm,” Swiss Federal
Institute of Technology, Dept. of Electrical Engineering,
Technical Report 103, 2001.

