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ABSTRACT 
Due to embedded systems’ stringent design constraints, much prior 
work focused on optimizing energy consumption and/or 
performance. However, since embedded systems have fewer 
cooling options, rising temperature, and thus temperature 
optimization, is an emergent concern. We present thermal-aware 
phase-based tuning—TaPT—that determines Pareto optimal 
configurations for fine-grained execution time, energy, and 
temperature tradeoffs. Results show that TaPT reduces execution 
time, energy, and temperature by as much as 5%, 30%, and 25%, 
respectively, while adhering to designer-specified design 
constraints. 

Categories and Subject Descriptors 
B.3.2 [Hardware]: Memory Structures: Design Styles – cache 
memories. 

Keywords 
Dynamic thermal management, phase-based tuning, thermal-aware 
tuning, energy savings, configurable caches, dynamic optimization. 

1.    INTRODUCTION AND MOTIVATION 
Embedded systems have been the focus of much optimization 
research due to these systems’ pervasiveness and intrinsic design 
constraints. Since most embedded systems are battery operated, 
reducing energy consumption without significantly degrading 
system performance is a key design optimization. However, 
temperature is also a growing issue in embedded systems 
optimization research since most embedded systems have fewer 
cooling options as compared to general purpose computers due to 
area/size, cost, and energy constraints. Most embedded systems only 
dissipate heat by passive convection, thus necessitating efficient 
thermal management methodologies. 

Increased chip temperature in an embedded system can result in 
increased cooling costs, reduced mean time to failure (MTTF), 
reduced reliability, etc. Increased temperature can also lead to 
thermal emergencies, which can result in an exponential increase in 
leakage power and compounding temperature increases (i.e., thermal 
runaway), leading to permanent chip damage. To address these 
issues, several dynamic thermal management (DTM) techniques 
have been proposed for managing chip temperature, most of which 
leverage clock gating [5], dynamic voltage scaling (DVS), dynamic 

frequency scaling (DFS), dynamic voltage and frequency scaling 
(DVFS) [19], and task migration [11].  

DTM techniques have been successful in reducing chip temperature, 
however, some DTM techniques consider temperature in isolation 
[16], which may adversely affect other design objectives, such as 
execution time and/or energy consumption. Furthermore, the 
applications’ execution characteristics (e.g., cache misses, 
instructions per cycle (IPC), branch mispredictions, etc.) can affect 
the temperature [21], and even though some DTM techniques 
consider inter-application characteristic variations [12], these 
techniques do not consider intra-application characteristic variations, 
which can significantly limit optimization potential [7]. 

To increase optimization potential using fine-grained system tuning 
(i.e., specialization) to varying application characteristics without 
incurring significant tuning overhead in terms of energy, area, 
and/or performance, previous work has proposed phase-based tuning 
[6]. A phase is a length of execution where an application’s 
characteristics remain relatively stable, and therefore the best system 
configuration, or specific parameter values (e.g., cache size, 
associativity, line size, clock frequency, etc.), that adhere to the 
design constraints also remain relatively stable. Phase-based tuning 
requires configurable hardware with tunable parameters where the 
parameter’s values can be specified/changed during runtime. Phase-
based tuning also requires a mechanism to evaluate the application’s 
characteristics to determine the best system configuration for each 
phase of execution to best satisfy design objectives (e.g., minimize 
energy, execution time, etc.) and design constraints (e.g., 
temperature thresholds). Previous work showed that phase-based 
tuning significantly reduced energy consumption in embedded 
systems [6]. For example, Gordon-Ross et al. [8] showed that phase-
based cache tuning saved as much as 62% of the memory access 
energy. However, little work studied the combination of phase 
based-tuning and DTM. 

Since prior work showed that phase-based cache tuning significantly 
impacts energy consumption and execution time, and DTM 
techniques can significantly impact temperature, energy 
consumption, and execution time, we combine phase-based cache 
tuning and DFS for fine-grained and efficient temperature, energy, 
and execution time optimization. However, since optimizing one 
design objective may adversely impact the other design objectives, 
combining these techniques presents a multi-objective optimization 
problem. The solution to a multi-objective optimization problem is 
the Pareto optimal configuration set, which enables designers to 
choose the system configuration that best meets the design 
constraints. 

We present thermal-aware phase-based tuning (TaPT), which 
dynamically determines the Pareto optimal system configurations 
trading off execution time, energy, and temperature design 
objectives. TaPT is based on the strength Pareto evolutionary 
algorithm II (SPEA2) [23], which is a well-known and effective 
evolutionary algorithm for solving multi-objective optimization 
problems. We modify SPEA2 to implement phase-based tuning and 
consider designer-selected priority settings. These priority settings 
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allow designers to prioritize a design objective, thus trading 
off/degrading non-prioritized design objectives to increase the 
prioritized design objective based on design constraints. TaPT’s 
runtime automation aids designers in adhering to design constraints 
with no design time effort. TaPT leverages previously 
proposed/existing configurable hardware, thus minimizing the 
additional hardware overhead with respect to these prior techniques. 
Experimental results show that compared to using the same system 
configuration throughout an application’s execution, TaPT reduces 
execution time, energy consumption, and temperature by as much as 
5%, 30%, and 25%, while adhering to designer-specified design 
constraints. 

2.    BACKGROUND AND RELATED WORK 
Since much previous work focuses on phase-based tuning [1][6][8] 
and DTM [5][11][19] separately, and to the best of our knowledge, 
our work is the first to combine phase-based tuning and DTM, we 
present related work and background in these two areas. We also 
present background and key concepts for SPEA2, which serves as 
the basis for TaPT. 

2.1    Phase-based Tuning and DTM 
To facilitate phase-based tuning, hardware- or software-based phase 
classification partitions an application’s execution into intervals, 
measured by the number of instructions executed. Intervals showing 
similar characteristics can be clustered into phases. 
Balasubramonian et al. [3] used cache miss rates, cycles per 
instruction (CPI), and branch frequency characteristics to detect 
changes in application characteristics for cache tuning, and found 
that these characteristics were effective for phase classification. 
Since we utilize cache tuning in this work, for brevity, we limit our 
review to phase-based cache tuning. 

Phase-based tuning can leverage any configurable cache architecture 
(e.g., [7]) and tuning method to search the configuration design 
space, which consists of all the different system 
configurations/combinations of tunable parameter values. Zhang et 
al. [22] proposed a low energy and area overhead configurable cache 
architecture that provided runtime-configurable total cache size, 
associativity, and line size using a small, hardware-settable bit-width 
configuration register. Motorola’s M*CORE processor [14] 
provided per-way configuration using way management, which 
allowed ways to be shut down or designated as instruction only, data 
only, or unified.  

A major challenge of phase-based tuning is tuning the configurable 
hardware to the best configuration for each phase without incurring 
significant tuning overhead. Gordon-Ross et al. [6] presented cache 
design space exploration heuristics that when used for phased-based 
tuning, realized as much as 39% energy savings on average as 
compared to non-phase-based tuning (i.e., using a single 
configuration for the entire application). Hajimir et al. [10] 
presented a dynamic programming-based algorithm to find the best 
cache configuration for each phase. However, these methods only 
focused on energy savings and did not consider thermal issues. 

To reduce chip temperature dissipation, several DTM techniques 
have been proposed. Brooks et al. [5] investigated clock gating, 
which turns off the clock signals during thermal emergencies. Heo et 
al. [11] proposed task migration, which migrated tasks from a hot 
core to a cooler core to avoid a thermal emergency. However, these 
works did not explicitly consider the tradeoffs between energy, 
temperature, and execution time, thus increasing the possibility of 
significantly degrading one design objective while optimizing other 

design objectives. Furthermore, these methods were not phase-based 
and did not consider intra-application variations. 

Our work differs from previous works by combining phase-based 
cache tuning and DFS to achieve Pareto optimal configurations that 
trade off execution time, energy, and temperature, thus achieving 
fine-grained multi-objective optimization. 

2.2    SPEA2 Algorithm 
Evolutionary algorithms leverage biological evolutionary concepts, 
such as population, reproduction, mutation, selection, etc., for 
efficiently determining Pareto optimal solutions to multi-objective 
optimization problems. The solution space consists of all of the 
possible solutions to the optimization problem, the population is a 
subset of the solution space, and the population’s solutions are 
referred to as individuals. A solution’s fitness dictates the solution’s 
quality and represents how well the solution adheres to design 
constraints. Evolution iterates over successive generations of 
populations, where each evolution considers the population’s 
individuals’ finesses and replaces the least fit individuals with new 
solutions from the solution space, and interjects random solution 
mutations to create the successive generation. 

Prior work shows that SPEA2 outperforms most other evolutionary 
algorithms for solving multi-objective optimization problems [23]. 
SPEA2 uses elitism, which maintains an external set of non-
dominated solutions, called an archive. A solution is non-dominated 
(or Pareto optimal) if none of the design objectives can be improved 
without degrading another design objective. For example, given two 
configurations Cx and Cy, Cx dominates Cy (written as Cx ≻ Cy) if 
and only if: 

∀i � {1, 2, …, k} : fi(Cx) ≥ fi(Cy)   ∃j � {1, 2, …, k} : fj(Cx) > fj(Cy)           
(1) 

where k is the number of objectives and fk represents the design 
objectives’ objective functions, and fk(Cx) characterizes how well Cx 
achieves the design objectives. 

For brevity, we present an overview of SPEA2, and refer the reader 
to [23] for additional details. SPEA2 takes the solution space as 
input and outputs the Pareto optimal solution set. SPEA2 generates 

Phase 
characteristics

New phase?
Get config, CPi from 
phase history table

Search phase history 
table for Pi

No

Yes

TaPT 
Algorithm

Pi configuration, 
CPi

Add Pi to phase history 
table

Execute phase Pi with 
CPi

Phase Pi encountered

Phase 
classification

 
Figure 1. TaPT overview 



 
 

an initial population and creates an empty archive and populates the 
first generation’s archive with the population’s non-dominated 
individuals. For subsequent generations, SPEA2 calculates the 
population’s and archive’s individuals’ finesses, and populates the 
next generation’s archive with the population’s and archive’s non-
dominated individuals. When the maximum number of generations 
has been reached and/or number of solutions that satisfy the design 
objectives have been determined, the current archive contains the 
Pareto optimal set.  

3.   THERMAL-AWARE PHASE-BASED 
TUNING (TAPT) 

TaPT leverages several fundamental assumptions based on 
mechanisms that have been widely studied and implemented in 
embedded systems [15][22]. Since our work is independent from the 
specific phase classification technique leveraged and prior work 
presents many phase classification techniques, we assume phase 
classification has already been performed and the applications’ 
phases and the phases’ instruction and data cache miss rates and IPC 
characteristics are input into phase-based tuning. We also assume 
that DFS is enabled, and the system has a temperature sensor, a 
hardware tuner [7] to orchestrate phase classification and implement 
TaPT, and a hardware-tunable cache with tunable size, associativity, 
and line size. In this section, we present an overview of TaPT and 
details of the TaPT algorithm. 

3.1    Overview of TaPT 
Figure 1 depicts an overview of TaPT. TaPT takes as input the 
classified phases’ characteristics, which are output from phase 
classification. To minimize tuning overhead, a phase history table 
stores information about previously executed phases and the phases’ 
best system configurations. When a phase Pi is executed, if Pi is in 
the phase history table, Pi has been previously executed (i.e., Pi is a 
not new phase) and the stored best system configuration CPi is used 
to execute Pi. If Pi is not in the phase history table (i.e., Pi is a new 
phase), TaPT determines Pi’s best system configuration CPi, Pi is 
executed with CPi and CPi is stored in the phase history table for 
subsequent executions of Pi. 

3.2    The TaPT Algorithm 
TaPT contains three designer-specified priority settings, X, N, and T, 
which prioritize execution time, energy, or temperature 
minimization, respectively. These priority settings enable TaPT to 
efficiently determine the best system configuration CPi for a phase Pi 
while adhering to designer-specified constraints. The priority 
settings trade off the non-prioritized design objectives in favor of the 
prioritized design objective. For example, X trades off increased 
execution time and increased temperature for minimized energy. If 
the designer does not specify a priority, the priority setting defaults 
to S, which prioritizes energy delay product (EDP) minimization to 
account for both energy consumption and execution time while also 
reducing temperature and/or preventing a significant temperature 
increase. TaPT also allows the designer to associate a peak 
temperature threshold with each priority setting, such that TaPT 
determines Pareto optimal configurations that do not exceed the 
temperature threshold.  

To ensure equal probability of selection for all configurations when 
generating the population, TaPT uses random uniform distribution, 
and on system startup, the initial archive is an empty set since there 
are no previously executed phases. TaPT generates Pi’s archive from 
Pi’s population’s and archive’s non-dominated configurations 
(Equation (1)) using the configurations’ fitness and stores Pi’s final 
archive in the phase history table. A configuration Ci’s fitness is the 
sum of Ci’s dominators’ strengths, and a configuration’s Ci’s 
strength S(Ci) is the number of configurations dominated by that 
configuration such that: 

S(Ci) = |{Cj | Cj ∈ P ∪ A ∀ Ci ≻ Cj}|                              (2) 

where P and A are Pi’s population and archive, respectively. Ci’s 
fitness R(Ci) is: 

R(Ci) = ∑ܵሺܥ௝ሻ ∀ Cj ∈ P ∪ A, Cj ≻ Ci                             (3) 

where R(Ci) = 0 indicates that Ci is non-dominated.  

To implement phase-based tuning, TaPT calculates the phase 
distances [1] between the currently executing phase Pi and all of the 
previously executed phases Pi-1, Pi-1, …, Pi-n. The phase distance is 
the difference between two phases’ characteristics, which the 
authors in [1] calculated using the normalized difference between 
the two phases’ cache miss rates. However, since TaPT tunes 
multiple hardware parameters (instruction and data cache 
configurations and clock frequency), TaPT calculates the phase 
distance using the Euclidean distance between the instruction cache 
miss rate (iMR), data cache miss rate (dMR), and the instructions per 
cycle (IPC). The phase distance D between two phases Pi and Pj is: 

        D = ඥሺܴ݅ܯ௉௜ 	െ	 ௉௝ሻଶܴܯ݅ ൅ ሺܴ݀ܯ௉௜ 	െ ௉௝ሻଶܴܯ݀	 ൅ ሺܥܲܫ௉௜ 	െ	  ௉௝ሻଶ       (4)ܥܲܫ

TaPT uses the most similar phase’s archive as the currently 
executing phase’s initial archive, where the most similar phase has 

Input: n, s, Asize, G, Q 
Output: Pi’s best configuration 

0 t ← 0 

1 for i ← 1 to s do 

2      Ci ← rand() / s + 1 

3 end 
4 population is {C1, C2, …, Cs} 

5 for j ← 1 to n do 

6      Dj ← d(Pi, Pj)  

7 end 

8 Amsp ← archive(Pj) | D = min(Dj) 
9 if n == 0 && t == 0 then 

10      archive ← ∅ 
11 else if k > 0 && t == 0 then 

12           archive ← Amsp  

13      end 
14 else                

15      archive ← archive(t-1) 

16 end 

17 U ← population + archive  

18 for (Ci ∈ U) do  

19      fit(Ci) ← calculateFitness(Ci) 

20 end      

21 archive ← getNonDominated(U)  

22 size(archive) ← Asize 
23 if t == (G – 1) then 

24      bestConfiguration(Pi) ← min(f(Q)) 

25 exit



 
 

the minimum D from Pi. Since phases with stable characteristics 
require similar configurations, using the most similar phase’s 
archive as Pi’s initial archive starts the TaPT algorithm with 
solutions that are presumably closer to Pi’s Pareto optimal solutions, 
as compared to an archive from the randomly-generated initial 
population. 

Algorithm 1 depicts the TaPT algorithm, which executes for each 
new phase Pi. The algorithm takes as input the number of previously 
executed phases n and a designer-specified population size s, 
archive size Asize, number of generations G, and priority setting Q. 
The algorithm outputs Pi’s best system configuration. The product 
of s and G defines the maximum number of configurations 
explored/executed during tuning, which limits the tuning overhead, 
and Asize specifies the size of the archive and ensures that only the 
most fit configurations (Equations (2) and (3)) are stored in the 
archive. Given the nature of evolutionary algorithms, the archive 
does not necessarily contain the actual Pareto optimal solutions. In 
general, larger s and G values determine solutions that are closer to 
the Pareto optimal solutions, but also increase tuning overhead. 
Alternatively, smaller s and G values reduce tuning overhead, but 
may also determine configurations that are farther from the Pareto 
optimal solutions. We extensively evaluated different values of s, G, 
and Asize and observed that s and G values that explored 4% of the 
design space and Asize = 5 yielded an efficient balance between 
determining Pareto optimal solutions and reduced tuning overhead. 

First, TaPT generates an initial population from the configuration 
space and calculates the phase distance D between the currently 
executing phase and all of the previously executed phases (lines 1 – 
7). Next, TaPT initializes Pi’s archive to Pi’s most similar phase’s 
archive (i.e., the phase with the minimum distance D from Pi) (lines 
8 and 16). At system startup (n = 0), there are no previously 
executed phases (D = null), and the archive is initialized to an empty 
set (lines 9 – 10). For each generation, TaPT uses the previous 
generation’s Pareto optimal set as the current generation’s initial 
archive (line 15). TaPT calculates each population’s and archive’s 
configuration’s fitness using Equations (2) and (3), and updates the 
current generation’s archive with the non-dominated configurations 
(lines 17 – 21). TaPT maintains Pi’s archive’s size at Asize by 

discarding the least fit configurations or adding the most fit 
configurations from the population (line 22).  

On the final generation, TaPT selects the best configuration from the 
archive that optimizes the specified priority setting (line 24). Finally, 
TaPT stores CPi in the phase history table (Figure 1) for Pi’s 
subsequent executions. 

3.3  Computational Complexity and Hardware 
Overhead 

TaPT calculates S(Ci) and R(Ci) with worst-case time complexity 
O(m2), where m is the sum of the population and archive sizes, and 
calculates D with worst-case time complexity O(n), where n is the 
number of previously executed phases. Thus, since these 
calculations dominate TaPT, TaPT results in minimal computation 
overhead. Furthermore, since TaPT utilizes previously proposed and 
implemented hardware, such as a DFS mechanism, phase history 
table, and configurable caches, TaPT imposes no additional 
hardware overhead as compared to prior work. 

4.    EXPERIMENTAL RESULTS 
4.1    Experimental Setup 
We evaluated TaPT’s execution time, energy, EDP, and temperature 
savings by comparing a system that switches to the best 
configuration, as determined by TaPT, for each phase to a base 
system with a fixed system configuration. The base system had 32 
Kbyte, 4-way private level one (L1) instruction and data caches with 
64 byte line sizes, and a processor clock frequency of 2 GHz . This 
configuration is similar to current embedded systems (e.g., Motorola 
RAZR XT890 [15]), and thus serves as a good base comparison to a 
commercial off-the-shelf (COTS) system. 

We modeled an embedded processor architecture, similar to the 
ARM Cortex A9 [2], consisting of a 4-width out-of-order issue 
processor with 8 pipeline stages and 45 nm technology. Our 
experiments represent state-of-the-art embedded systems, and our 
results and analyses extend to future and/or more complex systems 
(e.g., n-core processors, heterogeneous systems, etc.) because TaPT 
is independent of these system characteristics. The processor’s 

          
(a)                                                                                                  (b) 

 
(c)                                                                                                      (d) 

   Figure 2. Execution time, energy, EDP, and temperature normalized to the base configuration for priority settings (a) S, (b) N, (c) T, 
and (d) X.

0

0.2

0.4

0.6

0.8

1

1.2

E
xe

cu
tio

n 
tim

e,
 e

ne
rg

y,
 E

D
P

, 
te

m
pe

ra
tu

re
 n

or
m

al
iz

ed
 t

o 
th

e 
ba

se
 c

on
fig

ur
at

io
n

Execution time Energy EDP Temperature

0

0.2

0.4

0.6

0.8

1

1.2

E
xe

cu
tio

n 
tim

e,
 e

ne
rg

y,
 E

D
P

, 
te

m
pe

ra
tu

re
 n

or
m

al
iz

ed
 t

o 
th

e 
ba

se
 c

on
fig

ur
at

io
n

Execution time Energy EDP Temperature

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

E
xe

cu
tio

n 
tim

e,
 e

ne
rg

y,
 E

D
P

, 
te

m
pe

ra
tu

re
 n

or
m

al
iz

ed
 t

o 
th

e 
ba

se
 c

on
fig

ur
at

io
n

Execution time Energy EDP Temperature

0

0.2

0.4

0.6

0.8

1

1.2

E
xe

cu
tio

n 
tim

e,
 e

ne
rg

y,
 E

D
P

, 
te

m
pe

ra
tu

re
  n

or
m

al
iz

ed
 t

o 
th

e 
ba

se
 c

on
fig

ur
at

io
n

Execution time Energy EDP Temperature



 
 

configurable L1 instruction and data cache sizes ranged from 8 to 32 
Kbyte, line sizes ranged from 16 to 64 byte, and associativities 
ranged from 1- to 4-way, all in power-of-two increments. The 
processor offered seven clock frequencies ranging from 800 MHz to 
2 GHz in 200 MHz increments. Given these parameter values, the 
design space contains 1,701 configurations.  

We modeled the processor using GEM5 [4] and generated cache 
miss rates and core statistics, which we used to calculate the 
execution time. We also used these statistics to calculate the 
system’s total energy consumption and EDP with McPAT [13]. We 
used Hotspot 5.0 [20] as the thermal modeling tool to measure the 
temperature using a floorplan and silicon chip area similar to the 
ARM Cortex A9 processor. We ran thermal simulations and 
sampled the application’s power consumption at 10 ms intervals, 
similar to modern operating systems (e.g., Linux) [18]. Previous 
work [18] showed that this fine-grained sampling accurately 
depicted the application’s temperature characteristics during 
execution. To simulate an embedded system without cooling 
mechanisms, such as a heat sink and/or spreader, we set the 
convection resistance to 4K/W and the heat sink and spreader 
thickness to 1 mm and 0.1 mm, respectively, which are considered 
negligible in Hotspot.  

To model a variety of real-world embedded system applications, we 
used eighteen benchmarks: twelve EEMBC [17] Automotive 
benchmarks (the full suite could not be evaluated due to compilation 
errors) and six MiBench [9] benchmarks selected to represent 
different application domains. The benchmarks were specific 
compute kernels performing specific tasks in different application 
domains, such as networking, image processing, security, etc. 

We implemented TaPT using Perl scripts to drive simulations and 
executed each phase once to completion. To implement phase 
classification, we ran execution trace simulations on each 
benchmark using GEM5 to generate cache miss rates and IPC 
statistics, and grouped intervals with similar characteristics as 
phases using variable-length intervals [7], which previous work 
found to be effective for phase classification. Since the benchmarks 
were specific compute kernels, our experiments revealed that the 
benchmarks exhibited relatively stable characteristics throughout 
execution. Without loss of generality, this characteristic stability 
enabled us to consider each kernel/benchmark as a different phase of 
execution.  

To determine appropriate values for s, G, and Asize, we ran extensive 
experiments with different values and observed that s = 20, G = 3, 
and Asize = 5 achieved a good balance between Pareto optimal 
solutions and tuning overhead. These values explored only 4% of 
the design space, while larger values increased tuning overhead 
without significantly improving the Pareto optimal solutions and 
smaller values reduced tuning overhead, but achieved sub-Pareto-
optimal solutions. s and G are system dependent and can be scaled 
appropriately for different design spaces.  

To explore several diverse design objectives, we modeled all of 
TaPT’s priority settings using these values of s, G, and Asize. To 
evaluate the impact of designer-specified temperature thresholds 
lower than the base configuration’s average peak temperature of 
89oC (determined by simulation), we evaluated empirically-
determined high and low temperature thresholds set at 82oC and 
65oC, based on the range of temperatures observed during 
simulation. The high 82oC threshold illustrates a system where the 
primary concern is for the temperature to be maintained below 82oC 
to prevent overheating damage, while the low 65oC threshold 
represents a strict temperature-constrained system to illustrate how 
maintaining a low temperature impacts the other objective functions. 

4.2    Results 
Figure 2 depicts the execution time, energy, EDP and temperature of 
the best configurations as determined by TaPT normalized to the 
base system configuration for a single execution of each 
benchmark/phase for each priority setting. Figure 2 (a) depicts a 
zero-designer-effort system, with a default priority setting S (EDP 
prioritization) and no temperature threshold. The results show 
average EDP, energy, execution time, and temperature reductions of 
31%, 30%, 2%, and 21%, respectively, with maximum reductions of 
48%, 35%, 19%, and 5%, respectively. For some phases, prioritizing 
EDP minimization only slightly reduced the temperature. For 
example, candr01’s EDP, energy, and execution time reduced by 
40%, 27%, and 18%, respectively, while reducing the temperature 
by only 8%. However, other phases suffered increased execution 
time, up to 6%, to prioritize EDP minimization, but gained 
significant reductions in energy and temperature. For example, 
mad’s EDP, energy, and temperature reduced by 23%, 26%, and 
21%, respectively, while increasing the execution time by 4%. In 
general, priority setting S minimizes EDP, and reduces the energy 
consumption and temperature for all phases, with only minor 
increases in execution time for some phases.   

Figure 2 (b) shows that priority setting N (energy prioritization) and 
a temperature threshold of 82oC resulted in average execution time, 
energy, EDP, and temperature reductions of 4%, 31%, 34%, and 
20%, respectively. Figure 3 illustrates the impact of a high 
temperature threshold, and depicts the phases’ peak temperatures 
with respect to the threshold temperature 82oC. For all of the phases, 
the temperature never exceeded 82oC, because rather than 
minimizing temperature, TaPT maintained the temperature at or 
below 82oC, which allowed for further execution time, energy, and 
EDP reduction since the temperature threshold was relatively high. 

Figure 2 (c) depicts a much lower temperature threshold set at 65oC 
and priority setting T (temperature prioritization). On average over 
all of the phases, the energy and temperature decreased by 13% and 
25%, respectively. However, the execution time and EDP 
significantly increased by 39% and 22%, respectively. TaPT 
maintained a peak temperature for all the phases within 65oC to 
68oC, however, to maintain this low peak temperature, TaPT traded 
off execution time and energy consumption. Increasing the 
temperature threshold to 70oC (results not shown for brevity) 
decreased the energy, EDP, and temperature by 27%, 26%, and 
21%, respectively, while the execution time only increased by 2%. 
These results show TaPT’s ability to trade off objective functions in 
order to adhere to design constraints. The results also show the 
extent to which some objective functions may be adversely affected 
in a multi-objective optimization problem where one of the objective 
functions is significantly constrained. 

Figure 2 (d) shows that using priority setting X (execution time 
prioritization) with no temperature threshold decreased execution 

 
Figure 3. Peak temperatures with respect to a temperature 

threshold of 82oC (broken horizontal line).



 
 

time, energy, EDP, and temperature by 5%, 26%, 29%, and 16%, 
respectively. For example, TaPT significantly decreased tblook’s 
execution time, energy, EDP, and temperature by 24%, 47%, 60%, 
and 22%, respectively. However, for some phases there was no 
execution time decrease, such as mad, which increased by 5% while 
the energy, EDP, and temperature decreased by 36%, 32%, and 
27%, respectively. Even though TaPT achieved significant 
execution time improvement for some phases, the base 
configuration performed well in terms of execution time for most 
phases. Thus, for those phases, TaPT determined configurations that 
did not significantly increase the execution time, while also reducing 
the energy and temperature. Therefore, even though TaPT 
emphasized execution time minimization in this experiment, since 
the base configuration was a high performing configuration on 
average, the relatively low execution time reduction was expected. 
In general, TaPT successfully achieved significant savings in terms 
of execution time, energy, and temperature while adhering to 
specified design constraints.  

4.3    TaPT Exploration Time 
We evaluated TaPT’s exploration time by comparing how much 
time TaPT required to determine a phase’s best configuration with 
how much time was required to determine the phase’s best 
configuration using an exhaustive search of the design space. On 
average over all the phases, TaPT reduced the exploration time from 
142 seconds to 6 seconds, with the longest and shortest exploration 
reductions being from 321 seconds to 13 seconds and from 25 
seconds to 1 second, respectively. Thus, on average, TaPT reduced 
the exploration time by 96%, translating to a 25 times speedup in 
exploration time. 

5.    CONCLUSIONS 
In this paper, we presented thermal-aware phase-based tuning, 
TaPT, which combines phase-based cache tuning and dynamic 
frequency scaling (DFS) to determine Pareto optimal configurations 
for different application phases of execution. We show TaPT’s 
effectiveness in determining Pareto optimal configurations that 
significantly reduce execution time, energy, energy delay product 
(EDP), and temperature, with minimal computational complexity, 
while adhering to specified design constraints. Future work includes 
incorporating runtime phase classification into TaPT to provide 
optimization for systems where the executing applications are not 
known and/or classified a priori. Additionally, we plan to verify 
TaPT’s scalability to more complex systems with much larger 
design spaces (e.g., heterogeneous multi-/many core systems).  
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