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ABSTRACT
Non-volatile memory (NVM) technologies have recently em-
erged as alternatives to traditional SRAM-based cache mem-
ories, since NVMs offer advantages such as non-volatility,
low leakage power, fast read speed, and high density. How-
ever, NVMs also have disadvantages, such as high write la-
tency and energy, which necessitate further research into ro-
bust optimization techniques. In this paper, we propose and
evaluate configurable non-volatile memories (configNVM) as
a viable NVM optimization technique, and show that con-
figNVMs can reduce the cache’s energy consumption by up
to 60%, with minimal performance degradation. We de-
scribe the knowledge gaps that must be filled to enable con-
figNVMs, and show that configNVMs offer new opportuni-
ties for energy efficient caching in embedded systems.

CCS Concepts
•Computer systems organization → Embedded sys-
tems; Processors and memory architectures; •Hard-
ware → Non-volatile memory;

Keywords
Configurable memory, non-volatile memory, cache memo-
ries, low-power design, low-power embedded systems, adapt-
able hardware.

1. INTRODUCTION AND MOTIVATION
Caches have been the focus of much optimization research,

since they significantly impact performance and account for
a large percentage of a microprocessor’s total system power
and energy consumption, especially in embedded systems.
A commonly researched cache optimization involves using
highly configurable caches [10, 24] whose configurations (cache
size, associativity, and line size) can be dynamically adapted
to varying runtime application execution requirements. Pre-
vious work has shown that such configurable caches can re-
duce cache energy consumption by up to 62% [11].
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More recently, non-volatile memories (NVMs), such as
spin-torque-transfer random access memory (STTRAM) and
resistive RAM (ReRAM) have emerged as promising alter-
natives to the traditional volatile, SRAM-based memories
[13]. While NVM-based memories are still nascent, studies
have shown that they offer advantages over traditional mem-
ories, such as low leakage power, non-volatility, and high
density [20]. These advantages make NVM-based technolo-
gies especially attractive for caches in resource constrained
embedded systems. However, NVMs also result in over-
heads, such as high write latency, dynamic energy, that
necessitate much ongoing research into NVM optimization
techniques [14]. For example, previous works [19, 22, 25]
have explored architectural-level and circuit-level techniques
for masking the effects of high write latencies and write en-
ergy. Alternatively, a recent work [13] explored the tuning
of data retention time in order to reduce write latencies and
write energy.

In this paper, our overarching goal is to design an NVM-
based cache that is energy efficient, low-overhead (in terms
of performance and area), adaptable to varying application
requirements, and easy to implement. Therefore, we propose
and draw attention to configurable NVMs (configNVMs) as
a viable low-overhead optimization technique for energy ef-
ficient caches in low-power embedded systems. ConfigN-
VMs dynamically adapt the cache’s configurations to vary-
ing application cache requirements, in order to minimize
the energy consumption without incurring significant per-
formance overheads. Due to the optimization potential that
configurability affords, we motivate research focus on robust
and efficient techniques for designing configNVMs, and pro-
pose that configurability/adaptability should be an intrinsic
design characteristic of NVM technologies, and not an af-
terthought. We explore the energy benefits of configNVMs
and show that by adapting NVM-based caches’ configura-
tions to different applications’ characteristics, significant en-
ergy savings are achievable as compared to non-configurable
NVM-based caches. We show that augmenting an NVM-
based cache for configurability incurs little design time over-
head, and suggest techniques for achieving configNVMs.

The main contributions of this paper are summarized as
follows:
• Focusing on embedded systems benchmarks, and using
the ReRAM and STTRAM as case studies of promising
NVM technologies, we empirically show that configNVMs
can reduce average energy consumption by up to 60%, as
compared to non-configurable NVMs, without degrading the
performance.



8
 K

B
 b

an
k

8
 K

B
 b

an
k

16B physical lines

32 KB total cache

8
 K

B
 b

an
k

8
 K

B
 b

an
k

Way concatenation

Way shutdown

b=00 b=01 b=10 b=11

r0 = {0,1}

r1 = {0,1}

Config
registers

if r0 = 1 and r1 = 1
associativity = 1

if (r0 = 0 and r1 = 1) or (r0 = 1 and r1 = 0)
associativity = 2

if r0 = 0 and r1 = 0
associativity = 4

Figure 1: Illustration of configNVM architecture

•We analyze the tradeoffs of STTRAM- and ReRAM-based
configNVMs for different applications, and show that the
different technologies perform differently for different appli-
cations. Therefore, we give insight into which of the two
technologies designers should focus on when researching and
designing configNVM techniques.
• Drawing from previous work on configurable SRAM-based
caches, we describe the knowledge gaps that must be filled
in order to enable configNVMs.

2. RELATED WORK
Different circuit-level and architecture-level techniques have

been proposed for reducing the high write latency and en-
ergy consumption imposed by NVMs. Smullen et al. [18]
proposed to reduce the high energy and write latency by
lowering the STTRAM’s retention time, thereby relaxing the
non-volatility. The authors used a combination of SRAM-
based L1 caches and reduced-retention STTRAM L2 and L3
caches to eliminate performance loss and reduce the energy-
delay product. Rasquinha et al. [15] proposed a microar-
chitectural optimization that reduced the STTRAM’s write
energy by preventing the premature eviction of cache lines
to lower cache levels. They used a replacement algorithm
that increased the residency of dirty lines in the L1 cache
in order to accommodate all the stores to those lines, at the
expense of higher miss rates.

Xu et al. [23] quantitatively studied the impact of the
STTRAM’s memory cell sizing on overall computing system
performance and showed that different applications have dif-
ferent memory sizing expectations. The authors used the
STTRAM for the L2 cache in their studies. Xu et al. [21]
studied the memristor-based ReRAM design and provided
insight on the different design choices for the best tradeoffs
in performance, energy, and area. In this paper we focus
on low-power, resource constrained embedded systems, and
propose configNVMs as a complementary low-overhead mi-
croarchitectural optimization to previous optimization tech-
niques. ConfigNVMs reduce non-volatile memories’ energy
consumption, while incurring minimal performance degra-
dation. Our major design goals are high energy savings,
adaptability to application resource requirements, low per-
formance and area overheads, and ease of design and imple-
mentation.

3. ARCHITECTING CONFIGNVMS
Configurable non-volatile memory-based caches (ConfigN-

VMs) allow the cache configurations to be dynamically adapt-
ed to varying runtime application resource requirements.
To architect configNVMs, three key design challenges must
be addressed: augmenting NVM caches for configurability,
cache tuning heuristics/algorithms, and low-overhead cache
tuners. Since configurable caches have been well researched
in traditional SRAM-based caches, several previous tech-
niques can be reused and/or modified for configNVMs, al-
lowing previous design efforts to be amortized. Furthermore,
NVMs generally have similar electrical interfaces to SRAMs
[8], thus, configNVMs can also be organized similarly to tra-
ditional configurable SRAM-based caches. The most impor-
tant criterion for techniques used to architect configNVMs is
that they most impose minimal area and performance over-
head on the system. In this section, we describe our ap-
proaches to addressing the configNVM design challenges.

3.1 Augmenting NVM Caches for Configura-
bility

To augment NVM caches for configurability, we use way
shutdown, way concatenation, and line concatenation [24] to
configure the cache size, associativity, and line size, respec-
tively. In the following discussions, we assume a cache with
a maximum of four ways, however, the techniques described
herein can be extended to any n-way system.

Figure 1 illustrates the configNVM’s architecture. Each
configNVM comprises of four banks, with each bank com-
posed of the memory cells (e.g., STTRAM or ReRAM cells).
The banks act as ways, and are organized such that dif-
ferent ways can be concatenated and/or shutdown (using
power-gating) to configure the configNVM cache configura-
tions. Using two single-bit configuration registers (r0 and
r1), way concatenation allows the cache to be configured as
one-way/direct-mapped (when r0 = 0 and r1 = 0), two-way
(when r0 = 0 and r1 = 1 or r0 = 1 and r1 = 0), or four-way
set associative (when r0 = 1 and r1 = 1). Each bank also
has a bank ID, b, which specifies the bank that should be
gated for way shutdown (Section 3.2). For example, given
a 32 KB configNVM as shown in Figure 1, the configNVM
comprises of four 8 KB banks, each of which serves as a
way, and can be gated to configure the cache size into 8
KB (shutdown three banks), 16 KB (shutdown two banks)
or 32 KB (no bank shutdown). When the banks are shut
down for 8 KB and 16 KB caches, the value of b determines
which specific banks are shutdown, based on the cache tun-
ing heuristic (Section 3.2). Finally, the cache’s physical line
size is 16 B, and multiple contiguous lines can be fetched to
logically configure the line size to 32 B or 64 B.

3.2 Cache Tuning Heuristics/Algorithms
Given a configNVM with several possible configurations,

the design space exploration method is critical to mitigating
runtime overheads, and necessitates efficient tuning heuris-
tics/algorithms. To enable our experiments and analysis,
we developed a simple cache tuning heuristic. Since the
goal of this work is to show the benefits of configNVM, we
decided to use a simple heuristic for our evaluations, how-
ever, we intend to develop more elaborate and robust heuris-
tics/algorithms for future work. Figure 2 depicts our tuning
heuristic, which explores different cache configurations and
determines the best cache configurations for the different
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Figure 2: Tuning heuristic

applications based on the energy consumption. Each poten-
tial configuration is explored for one tuning interval, which
could be measured by the number of executed instruction or
in time [17]. For our experiments, we used a tuning inter-
val of 10ms, during which we empirically determined that
stable execution statistics can be gathered. Some modern
operating systems (e.g., Linux) also use sampling intervals
(OS scheduler ticks) of 10ms.

When an application is executed for the first time, the
heuristic first executes the application in the largest/base
cache configurations for one tuning interval. The heuristic
then decreases the cache size as long as decreasing the cache
size reduces the energy consumption as compared to the
base configuration. Thereafter, the heuristic decreases the
line size as long as decreasing the line size reduces the energy
consumption, followed by similar adjustments to the asso-
ciativity. The final configuration is then stored in a config-
uration table for subsequent executions of that application.
Figure 3 depicts the basic structure of the configuration ta-
ble. The configuration table is a small hardware structure
that consists of three fields: appID, config, and bankID fields.
The appID field stores the application’s identification, con-
fig stores the application’s best configuration as determined
by our tuning heuristic, and bankID stores the identification
of the application’s most recently used cache bank. In or-
der to potentially reduce the number of compulsory cache
misses, when the application is subsequently executed, the
application’s most recently used banks are reused. Since

appID bankIDconfig

Figure 3: Basic structure of the configuration table

NVM caches retain their data after the banks are shutdown,
reusing the banks may allow some of that application’s pre-
viously fetched memory blocks to be used without having to
fetch the blocks from lower levels of the memory hierarchy.
However, if the banks are occupied, then alternate banks
can be used.

3.3 Cache Tuners
In order to orchestrate the tuning process and implement

the tuning heuristics, low-overhead software or hardware
cache tuners are required. Software tuners use the system’s
processor to execute the tuning heuristics, which enables
easy system integration. However, software tuners can also
affect the cache and runtime behavior due to context switch-
ing. These effects can cause the heuristic to choose infe-
rior configurations. Alternatively, hardware tuners alleviate
these effects by incorporating custom hardware that exe-
cute the heuristics [4]. For our work, we designed a custom
hardware tuner using synthesizable VHDL, and quantified
the area and power overheads using Synopsys Design Com-
piler [7]. Relative to an ARM Cortex A9 microprocessor [1],
which we used to represent current embedded systems, our
tuner imposes 1.2% and 1% area and power overheads, re-
spectively. We omit low level details of the tuner designs for
brevity, since that is not the focus of this paper.

4. EXPERIMENTS
In this section, we compare the proposed configNVM with

a base NVM cache with fixed configurations for both the
STTRAM and ReRAM technologies.

4.1 Experimental Setup
We evaluated the proposed configNVM by comparing a

system that switches to the best cache configuration for each
executing application to a base system with fixed cache con-
figurations. The base system had 32 KB, 4-way private level
one (L1) instruction and data caches with 64 B line sizes,
similar to several state-of-the-art embedded systems micro-
processors’ cache configurations [1]. Thus, the configNVM
offered 8 KB, 16 KB, and 32KB cache sizes, 1, 2, and 4-way
set associativity, and 16 B, 32 B, and 64 B line sizes. We
simulated our work using a combination of the GEM5 simu-
lator [6], to gather cache execution statistics, and NVSim [9]
to calculate the energy and latency statistics for the STT-
RAM and ReRAM technologies. GEM5 is a widely used
simulator for computer architecture research, while NVSim
is a circuit-level model for NVM performance, energy, and
area estimation, which has been validated against industrial
NVM prototypes.

To model a variety of embedded systems applications, we
used a total of seventeen embedded systems benchmarks,
comprising of twelve EEMBC Automotive benchmarks [2]
and five Mibench benchmarks [12] that were selected to rep-
resent different application domains. We used a tuning in-
terval of 10 ms, and assumed a system with persistent appli-
cations that execute several times throughout the system’s
lifetime. For all the benchmarks, the tuning process com-
pleted during a few executions, thus, the tuning overhead
amortized very rapidly over subsequent executions (details
in Section 4.4).
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Figure 4: Energy consumption of configNVM normalized to the base NVM
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Figure 5: Write latency of configNVM normalized to the base NVM

4.2 Energy Savings
Figure 4 depicts the ReRAM and STTRAM configNVMs’

energy consumption normalized to the base NVM cache for
a single execution of each of the benchmarks. To consider
a worst case scenario, we used a variation of our heuristic
(Section 3) in which the configuration did not revert to the
base configuration when the heuristic could not find a bet-
ter configuration than the base. Rather than reverting to
the base configuration, the heuristic used the best configu-
ration other than the base, i.e., the best among all the other
explored configurations.

On average over all the benchmarks, compared to the base
ReRAM cache, ReRAM configNVM cache achieved 48% en-
ergy savings, with savings ranging from 45% for dijkstra to
72% for m djpeg. The energy was reduced mainly because
of the significant reduction in leakage power when the cache
banks were shut down as determined by our tuning heuris-
tic. In addition, the dynamic energy was also reduced when
the set associativities were adapted to the access require-
ments of the executing applications. However, for four out
of the fifteen benchmarks (m cjpeg, rspeed01, iirflt01, and
aifftr01 ), the ReRAM configNVM increased the energy by
an average of 6%, with an increase of up to 10% for rspeed01.
This energy degradation can be prevented (or amortized over
multiple executions) by reverting to the base configuration
for applications for which configNVM degraded the energy,
as is the case with our original heuristic.

On the other hand, compared to the base cache, the STT-
RAM configNVM achieved 60% energy savings on average
over all the benchmarks, with savings ranging from 22%
for m cjpeg to 82% for bitmnp01. Unlike in the case of
ReRAM, the STTRAM configNVM increased the energy for
only rspeed01 by 13%. We observed some significant differ-

ences in the configNVM’s impact on the energy consump-
tion when using ReRAM versus STTRAM. For example,
even though ReRAM configNVM degraded aifftr01’s and
iirflt01’s energy consumption by 7% and 4%, respectively,
STTRAM improved the energy consumption for both bench-
marks by 28% and 26%, respectively.

In general, STTRAM configNVM outperformed ReRAM
configNVM in energy savings for all the benchmarks, ex-
cept for rspeed01, for which STTRAM’s energy increase was
higher than that of ReRAM. These results illustrate the op-
timization potential achievable by configNVM, even with a
naive tuning heuristic. We expect the energy savings to
be even higher with a more robust and intelligent tuning
heuristic, which we intend to explore in future work. The
results also show that while configNVM achieves significant
energy savings on average, the choice of the specific NVM
technology used for implementing the configNVM may differ
for different applications and use-cases. Other design trade-
offs that must be considered include design cost, endurance,
scalability, etc. For example, even though STTRAM outper-
forms ReRAM in energy savings, STTRAM is also known to
be more expensive and less scalable than ReRAM [5]. Thus,
use-case-specific design tradeoffs and goals must be carefully
considered when deciding which technologies to use for im-
plementing configNVMs.

4.3 Write Latency
Our goal in exploring configNVM was to optimize the

cache’s energy consumption without significant latency degra-
dation. However, we also found that configNVM nominally
improved the write latency as compared to the base NVM.
Figure 5 depicts the ReRAM and STTRAM configNVMs’
write latency normalized to the base NVM. On average over
all the benchmarks, ReRAM configNVM reduced the write



latency by 2%, and by up to 23% for m djpeg. ReRAM con-
figNVM degraded cacheb01’s latency by 1%, but the latency
for all the other applications either improved or remained the
same. Similarly, STTRAM configNVM reduced the average
write latency by 7.5%, and by up to 27% for m djpeg. STT-
RAM configNVM did not degrade any benchmark’s write
latency.

4.4 Tuning Overheads
We measured the tuning overheads imposed by configNVM

with respect to an application’s tuning performance and en-
ergy overheads. We calculated the tuning performance over-
head as the number of tuning stall cycles incurred while
determining an application’s best configuration, given as
(number of configurations explored - 1) * tuning stall cycles
[4, 16]. We calculated the tuning energy overhead as the
energy consumed during the tuning process, when inferior
configurations are executed while determining an applica-
tion’s best configuration. Table 1 depicts the benchmarks,
number of configurations explored, number of tuning inter-
vals in a single execution, and number of tuning stall cycles.
The number of tuning stall cycles on average over all the
applications was 3176 cycles, which imposed a maximum
of 0.02% performance overhead relative to the tuning in-
terval of 10 ms (20 million cycles). Since the tuning stall
cycles were so few relative to the tuning interval, the tuning
energy overheads were also infinitesimal and imposed min-
imal dent on the overall energy savings. These overheads
were negligible because of our relatively large tuning inter-
val, and are likely to increase with a smaller tuning interval
or a higher tuning frequency, such as in phase-based tuning
[3], where configurations are adapted to application phase
changes rather than application changes.

Furthermore, we also observed that the tuning overheads
imposed by configNVM amortized rapidly during applica-
tion execution iterations. Figure 6 depicts the number of
iterations required to determine the best configurations for
each application. On average over all the application, two
iterations were required to determine the best configura-
tion, with as many as 3.3 iterations required for mad, and
as few as 0.7 iterations for m cjpeg. Some applications re-
quired more than one iteration to determine the best con-
figuration because there were more configurations explored
by our heuristic than tuning intervals in a single execution
of the applications (Table 1). The number of iterations re-
quired can be reduced even further by using a tuning heuris-
tic/algorithm that explores fewer configurations per appli-
cation.

5. CONCLUSIONS
In this paper, we proposed configNVMs as a viable opti-

mization for non-volatile memory-based caches in low-power
embedded systems, in order to reduce the energy consump-
tion. ConfigNVMs significantly reduce the energy consump-
tion by adapting NVM-based caches’ configurations to vary-
ing application execution requirements, without imposing
significant performance overheads. We discussed potential
approaches for implementing configNVMs and empirically
showed that configNVMs reduce the average energy con-
sumption by up to 60% as compared to an NVM cache with
fixed configurations. We also showed that different NVM
technologies perform differently for different applications,
thus careful analysis must be performed to determine the

Table 1: Benchmarks, number of configurations ex-
plored, number of tuning intervals, and tuning stall
cycles

Benchmark Configs explored # of intervals stall cycles

dijkstra 14 8 3458
m djpeg 13 5 3192
c djpeg 10 14 2394
mad 13 4 3192
ttsprk01 11 6 2660
tblook01 13 5 3192
rspeed01 11 4 2660
puwmod01 12 6 2926
pntrch01 11 8 2660
iirflt01 12 4 2926
canrdr01 15 6 3724
cacheb01 13 5 3192
bitmnp01 13 17 3192
basefp01 18 12 4522
aifftr01 11 10 2660
a2time01 16 9 3990
sha 14 9 3458

appropriate technology for specific use-cases.
For future work, we intend to develop additional robust

and low-overhead cache tuning heuristic/algorithms that take
into account the different NVM technologies’ characteristics
and application behaviors. We also intend to explore the
benefits of phase-based tuning for configNVMs where con-
figurations are adapted to different application phases to
achieve finer-grained optimization. Finally, we intend to ex-
plore other novel techniques complementary to configNVMs
for minimizing the write latency and energy consumption.
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