
Phase-based Dynamic Instruction Window Optimization for Embedded Systems

Abstract—Even though much previous work explores adapting

instruction queue (IQ) and reorder buffer (ROB) sizes to

application requirements, traditional IQ/ROB optimizations may

be prohibitive for resource-constrained embedded systems, due to

the hardware/execution time overheads. We propose low overhead,

phase-based instruction window optimization to dynamically vary

IQ and ROB sizes for different execution phases based on the

applications’ variable execution characteristics. Results show that

our methodology reduces both the average execution time and

energy consumption by 23%, compared to a base system with fixed

IQ/ROB sizes.

Keywords—dynamic optimizations, low-power embedded

systems, instruction window optimization, phase-based tuning, out

of order execution

I. INTRODUCTION AND MOTIVATION

Due to consumer demands and technology advances,
increasingly capable embedded systems (e.g., smartphones and
tablets) have become ubiquitous and are expected to execute
algorithmically complex and memory-intensive applications.
Designing embedded system microprocessors that are equipped to
execute these high-demand applications is challenging due to
embedded systems’ intrinsic design constraints, such as low power,
small area, real-time deadlines, etc. These challenges are
exacerbated by the adversarial nature of different design objectives
(e.g., minimizing power, area, and maximizing
performance/reducing execution time). For example, improving
performance by incorporating a more complex cache hierarchy
could increase power consumption and area.

Additionally, similar to general purpose processors, embedded
systems are also impacted by the speed discrepancy between the
processor and main memory—the well-known memory wall. An
embedded system’s performance is significantly impeded when
there is a last level cache (LLC) miss, which imposes delays due to
long memory access latencies. Thus, much research emphasis has
been placed on system optimizations that ameliorate the
performance degradations imposed by LLC misses.

Out-of-order (OoO) execution is an execution paradigm that
enables the use of instruction cycles that would otherwise have been
wasted due to execution delays, caused by long memory access
latencies, execution of complex instructions, etc., by allowing an
application’s instructions to execute out of program order. Unlike
in-order execution where an execution delay would cause the
application to stall until the delay is resolved, OoO instruction
window resources, such as the reorder buffer (ROB), instruction
queue (IQ), and load-store queue (LSQ), allow independent
instructions to be executed while the delay is being resolved. These
hardware resources reduce the effective memory latency by enabling

1SPEC2006 benchmarks exhibit greater runtime execution variability than

typical embedded systems benchmarks (Section V) and provide a more rigorous
evaluation of our methodology.

parallel memory accesses in memory-intensive applications—
memory-level parallelism (MLP)—and facilitate parallel execution
of independent instructions in compute-intensive applications—
instruction-level parallelism (ILP).

However, the instruction window resources can constitute
significant energy overhead due to these resources’ power
consumption [7]. Since applications have varying execution
requirements, these overheads can be minimized by
specializing/optimizing the resources based on applications’ unique
requirements. In addition, such resource specialization allows the
resources to more closely adhere to system design objectives.

To enable this specialization, dynamic instruction window
resizing reduces the energy overhead imposed by instruction
window resources by dynamically adapting the instruction window
(IQ, ROB, and/or LSQ) sizes to varying application requirements.
Since MLP and ILP have been shown [10] to be the most important
application characteristics for dictating an application’s required
instruction window resources, most previous work used a fine-
grained optimization approach that specialized the resources based
on changes in the application’s ILP and/or MLP. ILP-based (e.g.,
[7]) and MLP-based (e.g., [13]) techniques adapt the instruction
window resources to an application’s exhibited ILP and MLP,
respectively. However, recent research reveals a new understanding
of the applications’ MLP and the relationship between MLP and
ILP. Thus recent work focuses on MLP-based techniques, since
these techniques have been shown to also exploit the application’s
ILP [10].

We present new analysis to show that, for embedded systems, a
better alternative to application-based optimization and fine-grained
optimization techniques, such as ILP and MLP-based techniques, is
phase-based optimization. Application execution can be partitioned
into execution intervals, and intervals with similar and stable
characteristics (e.g., cache misses, instructions per cycle (IPC),
branch mispredicts, etc.) can be grouped as phases. Since same-
phased intervals tend to have similar resource requirements, phase-
based optimization adapts the system resources to an application’s
distinct phases. To facilitate phase-based optimization, phase
classification clusters instruction intervals with similar
characteristics using methods such as K-means clustering [14].

Since MLP-based techniques impose significant overheads that
make these techniques infeasible for embedded systems, we propose
phase-based instruction window optimization as a viable alternative
to MLP-based dynamic instruction window optimization techniques
for embedded systems. First, the resizing frequency in traditional
MLP-based techniques can impose significant execution time and
energy overheads on embedded systems. For example, our analysis
of various SPEC2006 [15]1 applications showed that different
application phases can have similar MLP, such that resizing the
instruction window resources based on MLP changes, rather than

Tosiron Adegbija
Department of Electrical and Computer Engineering

University of Arizona, Tucson, AZ, USA

tosiron@email.arizona.edu

Ann Gordon-Ross
Department of Electrical and Computer Engineering

University of Florida, Gainesville, FL, USA

ann@ece.ufl.edu
Also affiliated with the NSF Center for High-Performance

Reconfigurable Computing (CHREC) at UF

phase changes, can significantly increase execution time and energy.
Second, previous MLP-based techniques [10][13] used additional
hardware to maintain an application’s MLP information, which
contain how much MLP could be exploited in the application. While
this hardware overhead may be acceptable in general purpose
processors, the overhead is significant in resource-constrained
embedded systems. For example, based on the reported area of the
proposed hardware structure used to store the MLP information in
[10], this hardware structure would constitute about 16% hardware
overhead if used in the ARM Cortex A9 processor [5].

Our phase-based instruction window optimization methodology
obviates the need for the MLP-based technique’s additional
hardware by significantly reducing how much information is
collected at runtime. Rather than resizing the instruction window
based on MLP changes, our methodology profiles applications
online to determine application phases. Our methodology then
determines the instruction window size for each distinct phase using
a simple optimization heuristic. The instruction window size is then
used for subsequent occurrences of the phase. Since previous work
[7] has shown that the ROB and IQ are the most impactful
instruction window resources for performance and energy
consumption, we focus on these resources in our work. Our phase-
based instruction window optimization methodology achieves finer
optimization granularity than application-based optimization, but
also eliminates the execution time and energy overhead accrued by
MLP-based techniques. Additionally, our methodology allows
instruction window optimization to be performed concurrently with
other hardware optimizations (e.g., cache tuning) at runtime, since
the phases classified in our work can be used as the basis for parallel
optimization of other hardware resources.

In this paper, we show that the instruction window resources can
be optimized on the basis of phase changes, rather than MLP
changes in order to minimize the attendant overheads of MLP-based
optimizations, while achieving similar optimization benefits. We
investigate the impact of the ROB and IQ sizes to give insight into
which resource has higher optimization impact, and thus should
have more optimization effort. Using insights from our studies, we
formulate our phase-based instruction window optimization
methodology, which requires minimal designer effort, requires no a
priori knowledge of the executing applications, and maintains MLP
awareness. Our experimental results reveal that our phase-based
instruction window optimization methodology reduces both the
average execution time and overall system energy consumption by
23%, compared to fixed instruction window sizes.

II. BACKGROUND AND RELATED WORK

Phase-based optimization specializes system resources to an
application’s execution phases in order to adhere to design
objectives. To enable phase-based optimization, phase classification
partitions application execution into instruction intervals, measured
by the number of instructions executed, and intervals with similar
characteristics are clustered into phases. The relationship between
phases and execution characteristics (e.g., IPC, cache miss rates) is
well known, however, in this work, we establish for the first time, to
the best of our knowledge, the relationship between phases and the
MLP, and leverage this insight for our phase-based instruction
window resizing methodology.

We broadly categorize previous instruction window resizing
techniques as ILP-based and MLP-based techniques. In general,
ILP-based techniques monitor an application’s ILP during execution
and resize the IQ and/or ROB when a change in the ILP is detected.
Folegnani et al. [7] proposed an IQ resizing technique that logically
resized the IQ based on the contributions of the most recent
instructions in the IQ to the ILP. Kucuk et al. [11] proposed a
methodology that resized the IQ based on the number of instructions

in the IQ. This methodology periodically measured the IPC and
increased the size of the IQ whenever there was an IPC reduction.
Similarly, Buyuktosunoglu et al. [3] used the number of ready-to-
issue entries in the IQ to determine the IQ size. However, these
techniques had the potential for performance overheads due to the
periodic monitoring of the ILP and the frequency of IQ resizing,
since the IQ was resized whenever the ILP changed. Also, these
works did not consider the performance impacts of resizing the
ROB. Khan et al.’s work [9] is the most similar to ours. The authors
proposed a resizing technique based on application phases, where
application phases were classified based on the ILP and instruction
mix. Even though the authors did not explicitly exploit the MLP,
which more recent work has shown to be more important for
optimizing instruction window resources, the proposed technique
can be complementary to ours, and we intend to explore this synergy
in future work.

MLP-based techniques resize the IQ and/or ROB when a change
in the MLP is detected. Kora et al. [10] showed the relationship
between MLP and ILP, and showed that focusing on exploiting an
application’s MLP was sufficient for optimizing the IQ and ROB
size. Petoumenos et al. [13] proposed an MLP-based IQ resizing
technique that resized the IQ based on the number of dispatched
instructions between LLC misses. Even though these works
exploited the MLP and achieved performance improvements
compared to a system with static IQ and ROB sizes, these works
were targeted towards general purpose computers, and required
significant hardware overhead to facilitate the resizing decisions.
Our work significantly reduces these overheads by leveraging the
application’s execution phases, which also exhibit stable MLP, and
dynamically determines the best IQ and ROB sizes for different
phases for optimal execution.

III. APPLICATION PHASE MLP ANALYSIS

Recent studies [10][13] have shown the importance of MLP in
instruction window resource performance, especially in the presence
of cache misses. MLP allows sequential and independent long-
latency memory accesses to be performed in parallel, thus
effectively halving the memory access time. To simply illustrate the
impact of MLP on performance, consider two long-latency main
memory accesses, MM1 and MM2, resulting from level two (L2)
cache misses. Assuming a main memory access latency of T cycles,
without exploiting MLP, the memory accesses occur sequentially
and require 2T cycles. Alternatively, with MLP, the memory
accesses occur in parallel and last T cycles (assuming there are
sufficient hardware resources to fully exploit MLP). Thus, for
instruction window optimization to be efficient, the optimization
methodology must exploit MLP where available (i.e., where there
exists independent main memory accesses).

Our phase-based instruction window optimization methodology
is based on the premise that the MLP for various application phases
remains relatively stable for the duration of each phase. We detected
MLP in each application phase using the occurrence of LLC misses
[10], which are easily obtainable at runtime using hardware
performance counters. Since LLC misses are typically clustered
with respect to time, the occurrence of one miss indicates that more
misses are likely to occur soon afterwards. We assumed the L2 cache
to be the LLC and quantified the MLP in each phase using the
average number of L2 cache misses per thousand instructions
(L2MPK) in each phase. Thus, to analyze the MLP in application
phases, we first classified the applications into phases using a
traditional phase classification method (Simpoint [8]) and measured
the L2MPK changes during each phase’s execution.

Fig. 1 depicts the distinct phases’ MLPs in L2MPK for
SPEC2006 mcf and bzip2, to represent memory and compute
intensive applications, respectively (the trends are similar for other

applications). As expected, mcf exhibits much higher MLP than
bzip2. In addition, detailed analysis of the applications’ phases
revealed that phases exhibited stable MLP during their executions.
We observed that the MLP did not change as frequently as other
execution characteristics (e.g., cache miss rates, branch mispredicts,
etc.) across different phases. For example, even though mcf’s phases
7 and 8 were classified as different phases due to the phases’
different execution characteristics, the MLP was relatively stable
across both phases. Similarly, bzip’s phases 1 to 5 had relatively
stable MLP, even though their execution characteristics were
different. Thus, we leveraged these observations while developing
our instruction window resizing approach to minimize the frequency
of resizing, and minimize the amount of MLP information gathered
during runtime.

IV. PHASE-BASED INSTRUCTION WINDOW OPTIMIZATION

We developed our phase-based instruction window optimization
methodology using the insights from our application phase MLP
analysis (Section III). Since phases exhibit similar MLP levels, and
MLP is the most important characteristic for instruction window
optimization, our methodology optimizes the IQ and ROB sizes at
phase granularity, rather than MLP granularity. Fig. 2 depicts an
overview of our phase-based instruction window optimization
methodology, which dynamically determines the best IQ and ROB
sizes for the application’s phases during profiling, and stores these
sizes in the phase history table (PHT). The PHT, which can be stored
in the SRAM for quick access, is a small data structure that stores
previously determined IQ and ROB sizes for the phases’ subsequent
executions, thus eliminating redundant optimization efforts and
minimizing optimization overhead. When a new phase Pi is
executed, our methodology uses the optimization algorithm (Section
IV.B) to determine Pi’s IQ and ROB sizes. The IQ and ROB sizes
are stored in the PHT for Pi’s subsequent executions, and Pi
continues execution using these IQ and ROB sizes. For previously
executed phases with similar MLP levels, the IQ and ROB are
configured to previously determined sizes as stored in the PHT.

To orchestrate our optimization methodology, we designed a
simple hardware tuner that uses a hierarchical state machine to

implement our algorithm and control the datapath that performs the
energy calculations (details of the state machine and datapath are
omitted for brevity). The tuner gathers an application’s phases’
execution statistics (e.g., IPC, L2 cache miss rates) from the
microprocessor’s hardware counters [5]. The tuner then calculates
each phase’s execution time and energy when using different IQ and
ROB sizes, as determined by our phase-based instruction window
optimization algorithm (Section IV.B), and stores the sizes that
achieve the lowest execution time and/or energy in the PHT. The
PHT also stores a phase_benefit flag to indicate whether or not an
application benefits from phase-based optimization, to prevent
redundant information from being stored in the PHT (details in
Section IV.B). The remainder of this section describes the IQ and
ROB resizing techniques we have adopted for our work, our phase-
based instruction window optimization algorithm, and our
algorithm’s computational complexity.

A. IQ and ROB Resizing

To enable low-overhead and efficient IQ and ROB resizing, we
assume multi-banked instruction window resources as described in
[1][4], where the IQ and ROB’s sizes can be configured by gating
individual banks. These multi-banked resources are easy to
implement and afford low area, power, and access time overheads,
which makes the resources suitable for constrained embedded
systems. Additionally, to further reduce power consumption, we
assume a non-compacting design, such that entries from an
instruction issue are not immediately filled, until a new instruction
is dispatched into the queue, thus reducing the number of shifts
occurring in the queue. We use a 64-entry IQ with eight 8-entry
banks and an 80-entry ROB with two 40-entry banks. Thus, our
instruction window resources offer 8-, 16-, 32-, and 64-entry IQ
sizes, and 40- and 80-entry ROB sizes. Our analysis showed that
additional banking for the ROB (i.e., 20-entry ROB) was
unnecessary, since the 20-entry ROB did not offer any execution
time or energy savings compared to the 40- and 80-entry ROBs. We
direct the reader to [1] and [4] for additional details on the circuitry
of the resizable IQ and ROB.

B. Algorithm

Algorithm 1 depicts the pseudocode for our phase-based
instruction window resizing algorithm that is implemented by the
tuner. The algorithm takes as input the array of IQ and ROB sizes,
and the base IQ and ROB sizes (line 1), and outputs a phase Pi’s best
IQ and ROB sizes (line 2). The initial IQ and ROB sizes default to
the base IQ and ROB sizes at system startup (line 3-4). For each
ROB size, our algorithm increases the IQ size as long as increasing
the IQ size decreases the execution time and/or energy. For each
configuration, our algorithm executes phase Pi for one tuning
interval, and calculates the execution time and energy for the tuning
interval to determine the next IQ and ROB sizes to explore (lines 5-
16). We used a tuning interval of 1 million instructions, which we
empirically determined to be sufficient to obtain stable execution
statistics for each phase. Additionally, this tuning interval allows our
algorithm to determine each phase’s best IQ and ROB sizes within
a single execution of that phase due to the execution length of the
phases, however, this interval could be increased/decreased with
future application requirements with no impact to our methodology.
When the ROB size is changed, our algorithm begins with the most
recently used IQ and cycles through the array of IQ sizes as long as
changing the IQ size decreases the execution time and/or energy
(lines 9-15). The best (lowest execution time) IQ and ROB sizes are
then stored in the PHT for subsequent executions of that phase (line
17). Since our algorithm targets embedded systems, any IQ/ROB
sizes that increase the energy consumption are also discarded. In
general, we observed that configurations that reduced the execution
time also reduced the energy consumption.

Fig. 1. Distinct phases’ MLPs in L2 cache misses per thousand

instructions (L2MPK)

Fig. 2. Overview of our phase-based instruction window

optimization methodology

At the end of an application’s complete execution, the tuner
clears the phase_benefit flag if the algorithm selected the same IQ
and ROB sizes for all the phases in the application (i.e., no change
in these sizes resulted in decreases in execution time savings) and
consolidates that application’s phases’ PHT entries to one entry (i.e.,
these phases have the same MLP level). Phase_benefit = 0 implies
that the complete application requires only one set of IQ and ROB
sizes, while phase_benefit = 1 implies that an application requires
different IQ and ROB sizes for different phases. Thus, if
phase_benefit = 0 for an application, the tuner sets the IQ and ROB
sizes at the start of the application’s execution and maintains the
sizes throughout the application’s execution.

C. Algorithm Computational Complexity

Our algorithm determines the best IQ and ROB sizes with worst-
case time complexity O(N), where N is the number of phases in the
system, resulting in minimal computational overhead and scales
well as the number of applications increases. We assume that the
phases are previously classified since that is not the focus of our
work, thus, this computational complexity does not include phase
classification. The comparison of optimization performance to
previous work is presented in Section V.C, and the area and power
overheads are presented in Section V.D.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluated our phase-based instruction window
optimization’s execution time and savings by comparing a system
that resizes the IQ and ROB for different application phases (i.e.,
phase-based optimization) using our methodology to a base system
with fixed IQ and ROB sizes. We used the largest IQ and ROB sizes

as the base configurations for our evaluations, thus the base
configuration was a 64-entry IQ and 80-entry ROB. We modeled an
embedded system microprocessor with configurations similar to the
ARM Cortex A9 processor in the GEM5 simulator [2] to generate
execution statistics for systems with different IQ and ROB sizes. We
calculated the energy consumption using McPAT [12], assuming a
32nm TSMC technology with a temperature of 350K. Our energy
calculations comprised of the energy consumed by the whole
system, including the caches, peripheral component interconnect
(PCI) controllers, network interface units (NIUs), etc.

We used twelve benchmarks from the SPEC2006 benchmark
suite, cross-compiled for the ARM instruction set architecture (ISA),
to evaluate our methodology’s execution time and energy efficiency.
We used SPEC2006 benchmarks because these benchmarks exhibit
greater runtime execution variability than embedded systems
benchmarks, which are typically small kernels performing a specific
task, and modern embedded systems (e.g., smart phones) execute
applications that are similar to general purpose applications.
Additionally, previous work [6] has shown SPEC2006 benchmarks
to be suitable for evaluating embedded systems due to the current
complexity of embedded systems applications. We omitted some of
the benchmarks due to cross-compilation errors. However, the
evaluated benchmarks comprise a diverse representation of the
complete benchmark suite, and thus omission of some of the
benchmarks does not affect the quality of the results or our
conclusions. We executed each benchmark using the reference input
sets for 2 billion instructions after fast-forwarding for 2 billion
instructions. We used instruction intervals of 1 million instructions
for phase classification, such that intervals with similar
characteristics (e.g., cache miss rates, branch mispredicts, IPC, etc.)
were clustered to form phases.

A. Impact of IQ and ROB Sizes on Phases

To illustrate the potential impact of IQ and ROB resizing on
different phases, we examined the IPC and energy consumed while
executing different phases with different IQ and ROB sizes. For
brevity, we only show details for mcf so that the impacts of IQ and
ROB sizes can be clearly evaluated, but note that similar trends exist
across all benchmarks.

Fig. 3 depicts the IPC and energy when executing mcf’s phases
with the 16-, 32-, and 64-entry IQs—denoted as 16_IQ, 32_IQ, and
64_IQ, respectively—normalized to the 8-entry IQ (8_IQ) with a
constant 40-entry ROB (the choice of the constant ROB size does
not affect the analysis). Fig. 3 (a) shows significant differences in
IPC across different phases and different degrees of impact when the
IQ size is varied. For example, even though 16_IQ achieved the
highest IPC for phase 2, 64_IQ improved phase 3’s IPC over 16_IQ
by 38%. Similarly, phase 7 showed significant IPC variations with
different IQ sizes. Compared to 8_IQ, 16_IQ, 32_IQ, and 64_IQ
improved phase 7’s IPC by 27%, 42%, and 81%, respectively. Fig.
3 (b) also shows that different IQ sizes have different degrees of
impact on different phases’ energy consumption. For example, for

1 Inputs: Array of IQ sizes, ROB sizes; base IQ,
ROB

2 Outputs: Best IQ size, Best ROB size
3 Initial IQ size ← base IQ;
4 Initial ROB size ← base ROB
5 i = 0
6 foreach ROB size
7 if i > 0
8 IQ = IQMRU //IQMRU: most recently used IQ size
9 foreach IQ //cycle starts with current IQ size
10 Execute for one tuning interval
11 Calculate execution time and energy
12 if current_time > previous_time or
13 Current_energy > previous energy
14 IQMRU = IQi-1 //IQi-1: previous IQ
15 break
16 i = i + 1
17 [store IQ size, ROB size in PHT]

Algorithm 1. Phase-based instruction window optimization

pseudocode

 (a) (b)

Fig. 3. (a) IPC and (b) energy of 16-, 32-, and 64-entry IQ normalized to 8-entry IQ (baseline of one) when executing mcf’s phases

phase 5, compared to 8_IQ, 16_IQ, 32_IQ, and 64_IQ reduced the
energy by 16%, 20%, and 19%, respectively. However, for phase 6,
16_IQ and 32_IQ only reduced the energy by 4% and 3%,
respectively, while 64_IQ increased the energy by 27% compared
to 8_IQ. We observed that for phase 6, there was no performance
bottleneck resulting from the fetch throughput beyond 16_IQ, since
phase 6 had fewer branch mispredicts than the other phases on
average. Thus, 64_IQ increased the power consumption without a
commensurate reduction in the execution time. These results show
that the IQ sizes have significant impact on the phases’ executions.
While smaller IQ sizes consume less power, smaller IQ sizes could
result in significantly more energy consumption due to the
significant increase in execution time that could occur when there is
a performance bottleneck due to a small IQ size.

Fig. 4 depicts the IPC and energy consumed when executing
mcf’s phases with the 40- and 80-entry ROBs—denoted as 40_ROB
and 80_ROB, respectively—normalized to the 20-entry ROB
(20_ROB) with a constant 8-entry IQ (the choice of the constant IQ
size does not affect the analysis). Fig. 4 (a) shows that while the IPC
varies significantly across different phases, variable ROBs have
considerably smaller impact on the individual phases than the IQ.
For example, the maximum IPC improvement among all the phases
occurred in phase 21, where 80_ROB increased the IPC by 9%
compared to 20_ROB. Fig. 4 (b) shows a similar energy trend as the
IPC. The maximum energy reduction was in phase 21, where
80_ROB reduced the energy by 9%, compared to 20_ROB. These
results reveal that when the designer must prioritize IQ or ROB
optimization, methodologies that prioritize the IQ over the ROB will
achieve better performance and energy efficiency. For all the phases,
40_ROB and 80_ROB both improved the IPC and energy. 20_ROB
did not provide any optimization benefit and could be eliminated in
order to reduce the design space, thus reducing optimization
overhead.

B. Execution Time and Energy Savings of Phase-based

Optimization

Fig. 5 depicts the execution time and energy consumption of our
phase-based instruction window optimization methodology as
compared to the base system with a fixed 64-entry IQ and 80-entry

ROB. On average over all the benchmarks, our methodology
reduced both the execution time and energy by 23%, compared to
the base IQ and ROB sizes. Our methodology outperformed the base
system for all the benchmarks, and determined optimal IQ and ROB
sizes for the majority of the application phases. The average
execution time and energy consumptions were within 1% of the
optimal. Our methodology achieved execution time and energy
savings as high as 48% and 47%, respectively, for namd. For this
benchmark, our methodology determined the best IQ and ROB sizes
to be the same for all the phases and cleared the phase_benefit flag,
such that subsequent executions of namd were executed with the
same IQ and ROB sizes. We observed that even though namd had
seven distinct phases, the MLP was relatively stable across all the
phases. Thus, our methodology determined a single IQ and ROB
size for executing all of namd’s phases.

To illustrate the ability of our methodology to automatically
determine the amenability of executing applications to phase-based
optimization, we evaluated the percentage of different applications
that were executed using the different possible configurations. Fig.
6 depicts the percentage of the application executions that required
different IQ and ROB sizes. The IQ and ROB sizes are depicted as
x-y, where x and y represent the ROB and IQ sizes, respectively. The
graph does not show 40-8, 40-16, and 80-8, since our methodology
did not select these configurations for any of the applications’
phases. The figure shows that our methodology selected 40-64 most
frequently among all the possible configurations, and some
applications required just 40-64 for all the phases. However, some
applications (e.g., mcf) required a variety of configurations for
different phases in the applications, due to the variability in MLP
levels in the applications’ phases. Our methodology was able to
detect these variations and determine the appropriate IQ and ROB
sizes.

In general, we observed that compared to compute intensive
applications (e.g., bzip2, calculix), memory intensive applications
(e.g., mcf, libquantum) had a much higher variation in the exhibited
MLP across different phases. This observation can be leveraged in
augmenting the optimization algorithm to predict future phases’
configurations based on previously executed phases. For example,

 (a) (b)

Fig. 4. (a) IPC and (b) energy of 40 and 80-entry ROB normalized to 20-entry ROB (baseline of one) when executing mcf’s phases

Fig. 5. Execution time and energy consumption compared to the base

configuration (80-64)

Fig. 6. Percentage of application executions that required different

IQ and ROB sizes (sizes denoted as x-y, where x is the ROB size

and y is the IQ size)

when a compute intensive application’s first phase is executed, the
algorithm could predict that the next phase will exhibit similar MLP
to the current phase, and determine those phases IQ and ROB sizes
to be the current sizes. Those sizes can then be adjusted if necessary
after the phases have been executed. While this augmented
algorithm may not necessarily improve the energy savings, it will
likely reduce the frequency of resizing, thus reducing the
optimization overhead.

Since our methodology selected 40-64 for a majority of the
phases, we also evaluated our methodology in comparison to a
system with a fixed 40-entry ROB and 64-entry IQ. Fig. 7 depicts
the execution time and energy consumption of our methodology as
compared to a system with 40-64 as the base configurations. On
average over all the benchmarks, our methodology reduced both the
execution time and energy consumption by 11%, with savings as
high as 42% and 43%, respectively, for leslie3d. Among all of the
benchmarks that required more than one configuration, our
methodology achieved average execution time and energy savings
of 20%. In summary, our phase-based instruction window
optimization methodology successfully identified the best IQ and
ROB sizes for efficient execution time and energy optimization.

C. Comparison to Prior Work

We evaluated our work with respect to prior work by comparing
our method to the MLP-based approach [10]. Results showed that
our phase-based instruction window resizing methodology achieved
similar energy optimization results to MLP-based optimization,
since the MLP-awareness was also maintained by our technique
(graphs omitted for brevity). However, our work significantly
reduced the runtime optimization overhead as compared to MLP-
based techniques. We measured the runtime optimization overhead
by the number of execution cycles required for optimization. Similar
to previous work [10], we assumed a resizing penalty of 30 cycles.
The resizing penalty is the number of cycles required to change the
IQ and ROB sizes by shutting down or switching on individual
banks (Section IV.A). We calculated the runtime optimization
overhead as (number of configurations explored – 1) * resizing
penalty. We assumed the worst-case scenarios for our phase-based
optimization methodology, where the IQ and ROB sizes are changed
for all distinct phases. Our phase-based methodology achieved a
94X runtime optimization speedup on average over all the
applications, compared to the MLP-based technique. This speedup
was achieved because our approach significantly reduced the
resizing frequency by only resizing the IQ and ROB on phase
changes rather than on MLP changes.

D. Area and Power Overheads

We have designed the hardware tuner using synthesizable
VHDL and Synopsys Design Compiler to quantify the area and
power overheads imposed by our work. We evaluated the overheads
relative to an ARM Cortex A9 processor, to represent state-of-the-
art embedded systems processors. Our tuner imposes 1.2% and 1%
area and power overheads, respectively, which represents a
significant overhead reduction from previous work. Thus, our phase-
based instruction window optimization methodology imposes

minimal area and power overheads, and is practical for resource-
constrained embedded systems.

VI. CONCLUSIONS

In this paper, we presented a low overhead phase-based
instruction window optimization methodology that leverages
applications’ execution phases and dynamically determines the best
IQ and ROB sizes for different phases for optimal execution. Our
methodology significantly reduces the optimization overheads
imposed by MLP-based techniques and involves low computational
and implementation complexity, thus making our methodology
practical for resource-constrained embedded systems. Experimental
results show that our phase-based instruction window optimization
methodology reduces both the execution time and energy
consumption by 23%, compared to a system with static IQ and ROB
sizes. Future work involves extending our methodology to multicore
systems with data dependencies among the cores.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science
Foundation (CNS-0953447). Any opinions, findings, and
conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the Nation
Science Foundation.

REFERENCES
[1] J. Abella and A. Gonzalez, “On reducing register pressure and energy in

multiple-banked register files,” International Conference on Computer
Design, 2003.

[2] N. Binkert, et al., “The gem5 simulator,” Computer Architecture News,
May 2011.

[3] A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks, P. Bose, and P.
Cook, “A circuit level implementation of an adaptive issue queue for
power-aware microprocessors,” ACM Great Lakes Symposium on VLSI,
2001.

[4] A. Buyuktosunoglu, D. Albonesi, P. Bose, P. Cook, and S. Schuster,
“Tradeoffs in power-efficient issue queue design,” International
Symposium on Low Power Electronics and Design, 2002.

[5] Cortex A-9 Processor, http://www.arm.com/products/processors/cortex-
a/cortex-a9.php

[6] M. Domeika, “Software development for embedded multi-core systems: a
practical guide using embedded Intel architecture,” Edition 1, April 2008.

[7] D. Folegnani and A. Gonzalez, “Energy-efficient issue logic,”
International symposium on Computer Architecture, 2001.

[8] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “SimPoint 3.0: faster and
more flexible program phase analysis,” Journal of Instruction-Level
Parallelism, 2005.

[9] O. Khan and S. Kundu, “A model to exploit power-performance efficiency
in superscalar processors via structure resizing,” ACM Great Lakes
Symposium on VLSI, 2010.

[10] Y. Kora, K. Yamaguchi, H. Ando, “MLP-aware dynamic instruction
window resizing for adaptively exploiting both ILP and MLP,”
International Symposium on Microarchitecture, 2013.

[11] G. Kucuk, K. Ghose, D. Ponomarev, and P. Kogge, “Energy-efficient
instruction dispatch buffer design for superscalar processors,”
International Symposium on Low Power Electronics and Design, 2001.

[12] S. Li, et al, “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” International
Symposium on Microarchitecture, 2009.

[13] P. Petoumenos, G. Psychou, S. Kaxiras, J. Gonzalez, and J. Aragon,
“MLP-aware instruction queue resizing: the key to power-efficient
performance,” International Conference on Architecture of Computing
systems, 2010.

[14] T. Sherwood, E. Perelman, G. Hamerly, B. Calder, “Discovering and
exploiting program phases,” International Symposium on
Microarchitecture, 2003.

[15] SPEC CPU2006. http://www.spec.org/cpu2006.

Fig. 7. Execution time and energy consumption compared to 40-64

