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Abstract—Even though much previous work explores adapting 

instruction queue (IQ) and reorder buffer (ROB) sizes to 

application requirements, traditional IQ/ROB optimizations may 

be prohibitive for resource-constrained embedded systems, due to 

the hardware/execution time overheads. We propose low overhead, 

phase-based instruction window optimization to dynamically vary 

IQ and ROB sizes for different execution phases based on the 

applications’ variable execution characteristics. Results show that 

our methodology reduces both the average execution time and 

energy consumption by 23%, compared to a base system with fixed 

IQ/ROB sizes. 
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I. INTRODUCTION AND MOTIVATION 

Due to consumer demands and technology advances, 
increasingly capable embedded systems (e.g., smartphones and 
tablets) have become ubiquitous and are expected to execute 
algorithmically complex and memory-intensive applications. 
Designing embedded system microprocessors that are equipped to 
execute these high-demand applications is challenging due to 
embedded systems’ intrinsic design constraints, such as low power, 
small area, real-time deadlines, etc. These challenges are 
exacerbated by the adversarial nature of different design objectives 
(e.g., minimizing power, area, and maximizing 
performance/reducing execution time). For example, improving 
performance by incorporating a more complex cache hierarchy 
could increase power consumption and area. 

Additionally, similar to general purpose processors, embedded 
systems are also impacted by the speed discrepancy between the 
processor and main memory—the well-known memory wall. An 
embedded system’s performance is significantly impeded when 
there is a last level cache (LLC) miss, which imposes delays due to 
long memory access latencies. Thus, much research emphasis has 
been placed on system optimizations that ameliorate the 
performance degradations imposed by LLC misses. 

Out-of-order (OoO) execution is an execution paradigm that 
enables the use of instruction cycles that would otherwise have been 
wasted due to execution delays, caused by long memory access 
latencies, execution of complex instructions, etc., by allowing an 
application’s instructions to execute out of program order. Unlike 
in-order execution where an execution delay would cause the 
application to stall until the delay is resolved, OoO instruction 
window resources, such as the reorder buffer (ROB), instruction 
queue (IQ), and load-store queue (LSQ), allow independent 
instructions to be executed while the delay is being resolved. These 
hardware resources reduce the effective memory latency by enabling 

                                                           
1SPEC2006 benchmarks exhibit greater runtime execution variability than 

typical embedded systems benchmarks (Section V) and provide a more rigorous 
evaluation of our methodology.  

parallel memory accesses in memory-intensive applications—
memory-level parallelism (MLP)—and facilitate parallel execution 
of independent instructions in compute-intensive applications—
instruction-level parallelism (ILP). 

However, the instruction window resources can constitute 
significant energy overhead due to these resources’ power 
consumption [7]. Since applications have varying execution 
requirements, these overheads can be minimized by 
specializing/optimizing the resources based on applications’ unique 
requirements. In addition, such resource specialization allows the 
resources to more closely adhere to system design objectives.  

To enable this specialization, dynamic instruction window 
resizing reduces the energy overhead imposed by instruction 
window resources by dynamically adapting the instruction window 
(IQ, ROB, and/or LSQ) sizes to varying application requirements. 
Since MLP and ILP have been shown [10] to be the most important 
application characteristics for dictating an application’s required 
instruction window resources, most previous work used a fine-
grained optimization approach that specialized the resources based 
on changes in the application’s ILP and/or MLP. ILP-based (e.g., 
[7]) and MLP-based (e.g., [13]) techniques adapt the instruction 
window resources to an application’s exhibited ILP and MLP, 
respectively. However, recent research reveals a new understanding 
of the applications’ MLP and the relationship between MLP and 
ILP. Thus recent work focuses on MLP-based techniques, since 
these techniques have been shown to also exploit the application’s 
ILP [10]. 

We present new analysis to show that, for embedded systems, a 
better alternative to application-based optimization and fine-grained 
optimization techniques, such as ILP and MLP-based techniques, is 
phase-based optimization. Application execution can be partitioned 
into execution intervals, and intervals with similar and stable 
characteristics (e.g., cache misses, instructions per cycle (IPC), 
branch mispredicts, etc.) can be grouped as phases. Since same-
phased intervals tend to have similar resource requirements, phase-
based optimization adapts the system resources to an application’s 
distinct phases. To facilitate phase-based optimization, phase 
classification clusters instruction intervals with similar 
characteristics using methods such as K-means clustering [14].  

Since MLP-based techniques impose significant overheads that 
make these techniques infeasible for embedded systems, we propose 
phase-based instruction window optimization as a viable alternative 
to MLP-based dynamic instruction window optimization techniques 
for embedded systems. First, the resizing frequency in traditional 
MLP-based techniques can impose significant execution time and 
energy overheads on embedded systems. For example, our analysis 
of various SPEC2006 [15]1 applications showed that different 
application phases can have similar MLP, such that resizing the 
instruction window resources based on MLP changes, rather than 
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phase changes, can significantly increase execution time and energy. 
Second, previous MLP-based techniques [10][13] used additional 
hardware to maintain an application’s MLP information, which 
contain how much MLP could be exploited in the application. While 
this hardware overhead may be acceptable in general purpose 
processors, the overhead is significant in resource-constrained 
embedded systems. For example, based on the reported area of the 
proposed hardware structure used to store the MLP information in 
[10], this hardware structure would constitute about 16% hardware 
overhead if used in the ARM Cortex A9 processor [5]. 

Our phase-based instruction window optimization methodology 
obviates the need for the MLP-based technique’s additional 
hardware by significantly reducing how much information is 
collected at runtime. Rather than resizing the instruction window 
based on MLP changes, our methodology profiles applications 
online to determine application phases. Our methodology then 
determines the instruction window size for each distinct phase using 
a simple optimization heuristic. The instruction window size is then 
used for subsequent occurrences of the phase. Since previous work 
[7] has shown that the ROB and IQ are the most impactful 
instruction window resources for performance and energy 
consumption, we focus on these resources in our work. Our phase-
based instruction window optimization methodology achieves finer 
optimization granularity than application-based optimization, but 
also eliminates the execution time and energy overhead accrued by 
MLP-based techniques. Additionally, our methodology allows 
instruction window optimization to be performed concurrently with 
other hardware optimizations (e.g., cache tuning) at runtime, since 
the phases classified in our work can be used as the basis for parallel 
optimization of other hardware resources.  

In this paper, we show that the instruction window resources can 
be optimized on the basis of phase changes, rather than MLP 
changes in order to minimize the attendant overheads of MLP-based 
optimizations, while achieving similar optimization benefits. We 
investigate the impact of the ROB and IQ sizes to give insight into 
which resource has higher optimization impact, and thus should 
have more optimization effort. Using insights from our studies, we 
formulate our phase-based instruction window optimization 
methodology, which requires minimal designer effort, requires no a 
priori knowledge of the executing applications, and maintains MLP 
awareness. Our experimental results reveal that our phase-based 
instruction window optimization methodology reduces both the 
average execution time and overall system energy consumption by 
23%, compared to fixed instruction window sizes. 

II. BACKGROUND AND RELATED WORK 

Phase-based optimization specializes system resources to an 
application’s execution phases in order to adhere to design 
objectives. To enable phase-based optimization, phase classification 
partitions application execution into instruction intervals, measured 
by the number of instructions executed, and intervals with similar 
characteristics are clustered into phases. The relationship between 
phases and execution characteristics (e.g., IPC, cache miss rates) is 
well known, however, in this work, we establish for the first time, to 
the best of our knowledge, the relationship between phases and the 
MLP, and leverage this insight for our phase-based instruction 
window resizing methodology. 

We broadly categorize previous instruction window resizing 
techniques as ILP-based and MLP-based techniques. In general, 
ILP-based techniques monitor an application’s ILP during execution 
and resize the IQ and/or ROB when a change in the ILP is detected. 
Folegnani et al. [7] proposed an IQ resizing technique that logically 
resized the IQ based on the contributions of the most recent 
instructions in the IQ to the ILP. Kucuk et al. [11] proposed a 
methodology that resized the IQ based on the number of instructions 

in the IQ. This methodology periodically measured the IPC and 
increased the size of the IQ whenever there was an IPC reduction. 
Similarly, Buyuktosunoglu et al. [3] used the number of ready-to-
issue entries in the IQ to determine the IQ size. However, these 
techniques had the potential for performance overheads due to the 
periodic monitoring of the ILP and the frequency of IQ resizing, 
since the IQ was resized whenever the ILP changed. Also, these 
works did not consider the performance impacts of resizing the 
ROB. Khan et al.’s work [9] is the most similar to ours. The authors 
proposed a resizing technique based on application phases, where 
application phases were classified based on the ILP and instruction 
mix. Even though the authors did not explicitly exploit the MLP, 
which more recent work has shown to be more important for 
optimizing instruction window resources, the proposed technique 
can be complementary to ours, and we intend to explore this synergy 
in future work. 

MLP-based techniques resize the IQ and/or ROB when a change 
in the MLP is detected. Kora et al. [10] showed the relationship 
between MLP and ILP, and showed that focusing on exploiting an 
application’s MLP was sufficient for optimizing the IQ and ROB 
size. Petoumenos et al. [13] proposed an MLP-based IQ resizing 
technique that resized the IQ based on the number of dispatched 
instructions between LLC misses. Even though these works 
exploited the MLP and achieved performance improvements 
compared to a system with static IQ and ROB sizes, these works 
were targeted towards general purpose computers, and required 
significant hardware overhead to facilitate the resizing decisions. 
Our work significantly reduces these overheads by leveraging the 
application’s execution phases, which also exhibit stable MLP, and 
dynamically determines the best IQ and ROB sizes for different 
phases for optimal execution. 

III. APPLICATION PHASE MLP ANALYSIS  

Recent studies [10][13] have shown the importance of MLP in 
instruction window resource performance, especially in the presence 
of cache misses. MLP allows sequential and independent long-
latency memory accesses to be performed in parallel, thus 
effectively halving the memory access time. To simply illustrate the 
impact of MLP on performance, consider two long-latency main 
memory accesses, MM1 and MM2, resulting from level two (L2) 
cache misses. Assuming a main memory access latency of T cycles, 
without exploiting MLP, the memory accesses occur sequentially 
and require 2T cycles. Alternatively, with MLP, the memory 
accesses occur in parallel and last T cycles (assuming there are 
sufficient hardware resources to fully exploit MLP). Thus, for 
instruction window optimization to be efficient, the optimization 
methodology must exploit MLP where available (i.e., where there 
exists independent main memory accesses). 

Our phase-based instruction window optimization methodology 
is based on the premise that the MLP for various application phases 
remains relatively stable for the duration of each phase. We detected 
MLP in each application phase using the occurrence of LLC misses 
[10], which are easily obtainable at runtime using hardware 
performance counters. Since LLC misses are typically clustered 
with respect to time, the occurrence of one miss indicates that more 
misses are likely to occur soon afterwards. We assumed the L2 cache 
to be the LLC and quantified the MLP in each phase using the 
average number of L2 cache misses per thousand instructions 
(L2MPK) in each phase. Thus, to analyze the MLP in application 
phases, we first classified the applications into phases using a 
traditional phase classification method (Simpoint [8]) and measured 
the L2MPK changes during each phase’s execution. 

Fig. 1 depicts the distinct phases’ MLPs in L2MPK for 
SPEC2006 mcf and bzip2, to represent memory and compute 
intensive applications, respectively (the trends are similar for other 



applications). As expected, mcf exhibits much higher MLP than 
bzip2. In addition, detailed analysis of the applications’ phases 
revealed that phases exhibited stable MLP during their executions. 
We observed that the MLP did not change as frequently as other 
execution characteristics (e.g., cache miss rates, branch mispredicts, 
etc.) across different phases. For example, even though mcf’s phases 
7 and 8 were classified as different phases due to the phases’ 
different execution characteristics, the MLP was relatively stable 
across both phases. Similarly, bzip’s phases 1 to 5 had relatively 
stable MLP, even though their execution characteristics were 
different. Thus, we leveraged these observations while developing 
our instruction window resizing approach to minimize the frequency 
of resizing, and minimize the amount of MLP information gathered 
during runtime.  

IV. PHASE-BASED INSTRUCTION WINDOW OPTIMIZATION 

We developed our phase-based instruction window optimization 
methodology using the insights from our application phase MLP 
analysis (Section III). Since phases exhibit similar MLP levels, and 
MLP is the most important characteristic for instruction window 
optimization, our methodology optimizes the IQ and ROB sizes at 
phase granularity, rather than MLP granularity. Fig. 2 depicts an 
overview of our phase-based instruction window optimization 
methodology, which dynamically determines the best IQ and ROB 
sizes for the application’s phases during profiling, and stores these 
sizes in the phase history table (PHT). The PHT, which can be stored 
in the SRAM for quick access, is a small data structure that stores 
previously determined IQ and ROB sizes for the phases’ subsequent 
executions, thus eliminating redundant optimization efforts and 
minimizing optimization overhead. When a new phase Pi is 
executed, our methodology uses the optimization algorithm (Section 
IV.B) to determine Pi’s IQ and ROB sizes. The IQ and ROB sizes 
are stored in the PHT for Pi’s subsequent executions, and Pi 
continues execution using these IQ and ROB sizes. For previously 
executed phases with similar MLP levels, the IQ and ROB are 
configured to previously determined sizes as stored in the PHT.  

To orchestrate our optimization methodology, we designed a 
simple hardware tuner that uses a hierarchical state machine to 

implement our algorithm and control the datapath that performs the 
energy calculations (details of the state machine and datapath are 
omitted for brevity). The tuner gathers an application’s phases’ 
execution statistics (e.g., IPC, L2 cache miss rates) from the 
microprocessor’s hardware counters [5]. The tuner then calculates 
each phase’s execution time and energy when using different IQ and 
ROB sizes, as determined by our phase-based instruction window 
optimization algorithm (Section IV.B), and stores the sizes that 
achieve the lowest execution time and/or energy in the PHT. The 
PHT also stores a phase_benefit flag to indicate whether or not an 
application benefits from phase-based optimization, to prevent 
redundant information from being stored in the PHT (details in 
Section IV.B). The remainder of this section describes the IQ and 
ROB resizing techniques we have adopted for our work, our phase-
based instruction window optimization algorithm, and our 
algorithm’s computational complexity. 

A. IQ and ROB Resizing 

To enable low-overhead and efficient IQ and ROB resizing, we 
assume multi-banked instruction window resources as described in 
[1][4], where the IQ and ROB’s sizes can be configured by gating 
individual banks. These multi-banked resources are easy to 
implement and afford low area, power, and access time overheads, 
which makes the resources suitable for constrained embedded 
systems. Additionally, to further reduce power consumption, we 
assume a non-compacting design, such that entries from an 
instruction issue are not immediately filled, until a new instruction 
is dispatched into the queue, thus reducing the number of shifts 
occurring in the queue.  We use a 64-entry IQ with eight 8-entry 
banks and an 80-entry ROB with two 40-entry banks. Thus, our 
instruction window resources offer 8-, 16-, 32-, and 64-entry IQ 
sizes, and 40- and 80-entry ROB sizes. Our analysis showed that 
additional banking for the ROB (i.e., 20-entry ROB) was 
unnecessary, since the 20-entry ROB did not offer any execution 
time or energy savings compared to the 40- and 80-entry ROBs. We 
direct the reader to [1] and [4] for additional details on the circuitry 
of the resizable IQ and ROB. 

B. Algorithm 

Algorithm 1 depicts the pseudocode for our phase-based 
instruction window resizing algorithm that is implemented by the 
tuner. The algorithm takes as input the array of IQ and ROB sizes, 
and the base IQ and ROB sizes (line 1), and outputs a phase Pi’s best 
IQ and ROB sizes (line 2). The initial IQ and ROB sizes default to 
the base IQ and ROB sizes at system startup (line 3-4). For each 
ROB size, our algorithm increases the IQ size as long as increasing 
the IQ size decreases the execution time and/or energy. For each 
configuration, our algorithm executes phase Pi for one tuning 
interval, and calculates the execution time and energy for the tuning 
interval to determine the next IQ and ROB sizes to explore (lines 5-
16). We used a tuning interval of 1 million instructions, which we 
empirically determined to be sufficient to obtain stable execution 
statistics for each phase. Additionally, this tuning interval allows our 
algorithm to determine each phase’s best IQ and ROB sizes within 
a single execution of that phase due to the execution length of the 
phases, however, this interval could be increased/decreased with 
future application requirements with no impact to our methodology. 
When the ROB size is changed, our algorithm begins with the most 
recently used IQ and cycles through the array of IQ sizes as long as 
changing the IQ size decreases the execution time and/or energy 
(lines 9-15). The best (lowest execution time) IQ and ROB sizes are 
then stored in the PHT for subsequent executions of that phase (line 
17). Since our algorithm targets embedded systems, any IQ/ROB 
sizes that increase the energy consumption are also discarded. In 
general, we observed that configurations that reduced the execution 
time also reduced the energy consumption. 

 

Fig. 1. Distinct phases’ MLPs in L2 cache misses per thousand 

instructions (L2MPK) 

 
Fig. 2. Overview of our phase-based instruction window 

optimization methodology 



At the end of an application’s complete execution, the tuner 
clears the phase_benefit flag if the algorithm selected the same IQ 
and ROB sizes for all the phases in the application (i.e., no change 
in these sizes resulted in decreases in execution time savings) and 
consolidates that application’s phases’ PHT entries to one entry (i.e., 
these phases have the same MLP level). Phase_benefit = 0 implies 
that the complete application requires only one set of IQ and ROB 
sizes, while phase_benefit = 1 implies that an application requires 
different IQ and ROB sizes for different phases. Thus, if 
phase_benefit = 0 for an application, the tuner sets the IQ and ROB 
sizes at the start of the application’s execution and maintains the 
sizes throughout the application’s execution. 

C. Algorithm Computational Complexity 

Our algorithm determines the best IQ and ROB sizes with worst-
case time complexity O(N), where N is the number of phases in the 
system, resulting in minimal computational overhead and scales 
well as the number of applications increases. We assume that the 
phases are previously classified since that is not the focus of our 
work, thus, this computational complexity does not include phase 
classification. The comparison of optimization performance to 
previous work is presented in Section V.C, and the area and power 
overheads are presented in Section V.D. 

V. EXPERIMENTAL RESULTS 

A. Experimental Setup 

We evaluated our phase-based instruction window 
optimization’s execution time and savings by comparing a system 
that resizes the IQ and ROB for different application phases (i.e., 
phase-based optimization) using our methodology to a base system 
with fixed IQ and ROB sizes. We used the largest IQ and ROB sizes 

as the base configurations for our evaluations, thus the base 
configuration was a 64-entry IQ and 80-entry ROB. We modeled an 
embedded system microprocessor with configurations similar to the 
ARM Cortex A9 processor in the GEM5 simulator [2] to generate 
execution statistics for systems with different IQ and ROB sizes. We 
calculated the energy consumption using McPAT [12], assuming a 
32nm TSMC technology with a temperature of 350K. Our energy 
calculations comprised of the energy consumed by the whole 
system, including the caches, peripheral component interconnect 
(PCI) controllers, network interface units (NIUs), etc. 

We used twelve benchmarks from the SPEC2006 benchmark 
suite, cross-compiled for the ARM instruction set architecture (ISA), 
to evaluate our methodology’s execution time and energy efficiency.  
We used SPEC2006 benchmarks because these benchmarks exhibit 
greater runtime execution variability than embedded systems 
benchmarks, which are typically small kernels performing a specific 
task, and modern embedded systems (e.g., smart phones) execute 
applications that are similar to general purpose applications.  
Additionally, previous work [6] has shown SPEC2006 benchmarks 
to be suitable for evaluating embedded systems due to the current 
complexity of embedded systems applications. We omitted some of 
the benchmarks due to cross-compilation errors. However, the 
evaluated benchmarks comprise a diverse representation of the 
complete benchmark suite, and thus omission of some of the 
benchmarks does not affect the quality of the results or our 
conclusions. We executed each benchmark using the reference input 
sets for 2 billion instructions after fast-forwarding for 2 billion 
instructions. We used instruction intervals of 1 million instructions 
for phase classification, such that intervals with similar 
characteristics (e.g., cache miss rates, branch mispredicts, IPC, etc.) 
were clustered to form phases. 

A. Impact of IQ and ROB Sizes on Phases 

To illustrate the potential impact of IQ and ROB resizing on 
different phases, we examined the IPC and energy consumed while 
executing different phases with different IQ and ROB sizes. For 
brevity, we only show details for mcf so that the impacts of IQ and 
ROB sizes can be clearly evaluated, but note that similar trends exist 
across all benchmarks.  

Fig. 3 depicts the IPC and energy when executing mcf’s phases 
with the 16-, 32-, and 64-entry IQs—denoted as 16_IQ, 32_IQ, and 
64_IQ, respectively—normalized to the 8-entry IQ (8_IQ) with a 
constant 40-entry ROB (the choice of the constant ROB size does 
not affect the analysis). Fig. 3 (a) shows significant differences in 
IPC across different phases and different degrees of impact when the 
IQ size is varied. For example, even though 16_IQ achieved the 
highest IPC for phase 2, 64_IQ improved phase 3’s IPC over 16_IQ 
by 38%. Similarly, phase 7 showed significant IPC variations with 
different IQ sizes. Compared to 8_IQ, 16_IQ, 32_IQ, and 64_IQ 
improved phase 7’s IPC by 27%, 42%, and 81%, respectively.  Fig. 
3 (b) also shows that different IQ sizes have different degrees of 
impact on different phases’ energy consumption. For example, for 

1 Inputs: Array of IQ sizes, ROB sizes; base IQ, 
ROB 

2 Outputs: Best IQ size, Best ROB size 
3 Initial IQ size ← base IQ; 
4 Initial ROB size ← base ROB 
5 i = 0 
6 foreach ROB size 
7    if i > 0 
8       IQ = IQMRU //IQMRU: most recently used IQ size 
9    foreach IQ //cycle starts with current IQ size 
10       Execute for one tuning interval 
11       Calculate execution time and energy 
12       if current_time > previous_time or 
13          Current_energy > previous energy 
14          IQMRU = IQi-1 //IQi-1: previous IQ 
15          break 
16       i = i + 1 
17  [store IQ size, ROB size in PHT]     

 

Algorithm 1. Phase-based instruction window optimization 

pseudocode   

 
     (a)                                                                                                      (b)  

Fig. 3. (a) IPC and (b) energy of 16-, 32-, and 64-entry IQ normalized to 8-entry IQ (baseline of one) when executing mcf’s phases 



phase 5, compared to 8_IQ, 16_IQ, 32_IQ, and 64_IQ reduced the 
energy by 16%, 20%, and 19%, respectively. However, for phase 6, 
16_IQ and 32_IQ only reduced the energy by 4% and 3%, 
respectively, while 64_IQ increased the energy by 27% compared 
to 8_IQ. We observed that for phase 6, there was no performance 
bottleneck resulting from the fetch throughput beyond 16_IQ, since 
phase 6 had fewer branch mispredicts than the other phases on 
average. Thus, 64_IQ increased the power consumption without a 
commensurate reduction in the execution time. These results show 
that the IQ sizes have significant impact on the phases’ executions. 
While smaller IQ sizes consume less power, smaller IQ sizes could 
result in significantly more energy consumption due to the 
significant increase in execution time that could occur when there is 
a performance bottleneck due to a small IQ size.  

Fig. 4 depicts the IPC and energy consumed when executing 
mcf’s phases with the 40- and 80-entry ROBs—denoted as 40_ROB 
and 80_ROB, respectively—normalized to the 20-entry ROB 
(20_ROB) with a constant 8-entry IQ (the choice of the constant IQ 
size does not affect the analysis). Fig. 4 (a) shows that while the IPC 
varies significantly across different phases, variable ROBs have 
considerably smaller impact on the individual phases than the IQ. 
For example, the maximum IPC improvement among all the phases 
occurred in phase 21, where 80_ROB increased the IPC by 9% 
compared to 20_ROB. Fig. 4 (b) shows a similar energy trend as the 
IPC. The maximum energy reduction was in phase 21, where 
80_ROB reduced the energy by 9%, compared to 20_ROB. These 
results reveal that when the designer must prioritize IQ or ROB 
optimization, methodologies that prioritize the IQ over the ROB will 
achieve better performance and energy efficiency. For all the phases, 
40_ROB and 80_ROB both improved the IPC and energy. 20_ROB 
did not provide any optimization benefit and could be eliminated in 
order to reduce the design space, thus reducing optimization 
overhead.  

B. Execution Time and Energy Savings of Phase-based 

Optimization 

Fig. 5 depicts the execution time and energy consumption of our 
phase-based instruction window optimization methodology as 
compared to the base system with a fixed 64-entry IQ and 80-entry 

ROB. On average over all the benchmarks, our methodology 
reduced both the execution time and energy by 23%, compared to 
the base IQ and ROB sizes. Our methodology outperformed the base 
system for all the benchmarks, and determined optimal IQ and ROB 
sizes for the majority of the application phases. The average 
execution time and energy consumptions were within 1% of the 
optimal. Our methodology achieved execution time and energy 
savings as high as 48% and 47%, respectively, for namd. For this 
benchmark, our methodology determined the best IQ and ROB sizes 
to be the same for all the phases and cleared the phase_benefit flag, 
such that subsequent executions of namd were executed with the 
same IQ and ROB sizes. We observed that even though namd had 
seven distinct phases, the MLP was relatively stable across all the 
phases. Thus, our methodology determined a single IQ and ROB 
size for executing all of namd’s phases. 

To illustrate the ability of our methodology to automatically 
determine the amenability of executing applications to phase-based 
optimization, we evaluated the percentage of different applications 
that were executed using the different possible configurations. Fig. 
6 depicts the percentage of the application executions that required 
different IQ and ROB sizes. The IQ and ROB sizes are depicted as 
x-y, where x and y represent the ROB and IQ sizes, respectively. The 
graph does not show 40-8, 40-16, and 80-8, since our methodology 
did not select these configurations for any of the applications’ 
phases. The figure shows that our methodology selected 40-64 most 
frequently among all the possible configurations, and some 
applications required just 40-64 for all the phases. However, some 
applications (e.g., mcf) required a variety of configurations for 
different phases in the applications, due to the variability in MLP 
levels in the applications’ phases. Our methodology was able to 
detect these variations and determine the appropriate IQ and ROB 
sizes.  

In general, we observed that compared to compute intensive 
applications (e.g., bzip2, calculix), memory intensive applications 
(e.g., mcf, libquantum) had a much higher variation in the exhibited 
MLP across different phases. This observation can be leveraged in 
augmenting the optimization algorithm to predict future phases’ 
configurations based on previously executed phases. For example, 

 
                                                              (a)                                                                                                             (b)  

Fig. 4. (a) IPC and (b) energy of 40 and 80-entry ROB normalized to 20-entry ROB (baseline of one) when executing mcf’s phases 

 

Fig. 5. Execution time and energy consumption compared to the base 

configuration (80-64) 

 
Fig. 6. Percentage of application executions that required different 

IQ and ROB sizes (sizes denoted as x-y, where x is the ROB size 

and y is the IQ size) 



when a compute intensive application’s first phase is executed, the 
algorithm could predict that the next phase will exhibit similar MLP 
to the current phase, and determine those phases IQ and ROB sizes 
to be the current sizes. Those sizes can then be adjusted if necessary 
after the phases have been executed. While this augmented 
algorithm may not necessarily improve the energy savings, it will 
likely reduce the frequency of resizing, thus reducing the 
optimization overhead. 

Since our methodology selected 40-64 for a majority of the 
phases, we also evaluated our methodology in comparison to a 
system with a fixed 40-entry ROB and 64-entry IQ. Fig. 7 depicts 
the execution time and energy consumption of our methodology as 
compared to a system with 40-64 as the base configurations. On 
average over all the benchmarks, our methodology reduced both the 
execution time and energy consumption by 11%, with savings as 
high as 42% and 43%, respectively, for leslie3d. Among all of the 
benchmarks that required more than one configuration, our 
methodology achieved average execution time and energy savings 
of 20%. In summary, our phase-based instruction window 
optimization methodology successfully identified the best IQ and 
ROB sizes for efficient execution time and energy optimization. 

C. Comparison to Prior Work 

We evaluated our work with respect to prior work by comparing 
our method to the MLP-based approach [10]. Results showed that 
our phase-based instruction window resizing methodology achieved 
similar energy optimization results to MLP-based optimization, 
since the MLP-awareness was also maintained by our technique 
(graphs omitted for brevity). However, our work significantly 
reduced the runtime optimization overhead as compared to MLP-
based techniques. We measured the runtime optimization overhead 
by the number of execution cycles required for optimization. Similar 
to previous work [10], we assumed a resizing penalty of 30 cycles. 
The resizing penalty is the number of cycles required to change the 
IQ and ROB sizes by shutting down or switching on individual 
banks (Section IV.A). We calculated the runtime optimization 
overhead as (number of configurations explored – 1) * resizing 
penalty. We assumed the worst-case scenarios for our phase-based 
optimization methodology, where the IQ and ROB sizes are changed 
for all distinct phases. Our phase-based methodology achieved a 
94X runtime optimization speedup on average over all the 
applications, compared to the MLP-based technique. This speedup 
was achieved because our approach significantly reduced the 
resizing frequency by only resizing the IQ and ROB on phase 
changes rather than on MLP changes. 

D. Area and Power Overheads 

We have designed the hardware tuner using synthesizable 
VHDL and Synopsys Design Compiler to quantify the area and 
power overheads imposed by our work. We evaluated the overheads 
relative to an ARM Cortex A9 processor, to represent state-of-the-
art embedded systems processors. Our tuner imposes 1.2% and 1% 
area and power overheads, respectively, which represents a 
significant overhead reduction from previous work. Thus, our phase-
based instruction window optimization methodology imposes 

minimal area and power overheads, and is practical for resource-
constrained embedded systems. 

VI. CONCLUSIONS 

In this paper, we presented a low overhead phase-based 
instruction window optimization methodology that leverages 
applications’ execution phases and dynamically determines the best 
IQ and ROB sizes for different phases for optimal execution. Our 
methodology significantly reduces the optimization overheads 
imposed by MLP-based techniques and involves low computational 
and implementation complexity, thus making our methodology 
practical for resource-constrained embedded systems. Experimental 
results show that our phase-based instruction window optimization 
methodology reduces both the execution time and energy 
consumption by 23%, compared to a system with static IQ and ROB 
sizes. Future work involves extending our methodology to multicore 
systems with data dependencies among the cores. 
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