
A Workload Characterization for the Internet of
Medical Things (IoMT)

Ankur Limaye and Tosiron Adegbija
Department of Electrical & Computer Engineering

University of Arizona, Tucson, AZ, USA
Email: {ankurlimaye, tosiron}@email.arizona.edu

Abstract—We perform an extensive study of medical appli-
cations that will potentially execute on the Internet of Medical
Things (IoMT), from an edge computing perspective. Using this
study, we perform a workload characterization of potential IoMT
applications and explore the microarchitecture implications of
these applications. Our study includes workloads spanning a
variety of medical applications including medical image pro-
cessing algorithms, inverse Radon transform, and implantable
heart monitors. We compare these workloads’ characteristics
to an existing embedded systems benchmark suite, MiBench, to
reveal their differences and similarities. The analysis presented
herein will enable the study and design of right-provisioned
microprocessors for the IoMT, and provide a framework for
studying the execution characteristics of workloads in other
emerging Internet of Things application domains.

Index Terms—Internet of Things, edge computing, Internet
of Medical Things, right-provisioned microprocessors, low-power
embedded systems, workload characterization, medical devices,
healthcare.

I. INTRODUCTION

The Internet of Things (IoT) is an exciting and transfor-
mative emerging technology trend that is gaining popularity
in several application domains. In the IoT, a group of smart
devices, comprised of sensors, actuators, and computation,
can communicate and collaborate with each other for data
acquisition, visualization, and use, without the need for human
intervention [1]. The IoT has been described as a technology
trend that will potentially transform life, business, and the
global economy [2]. Gartner Inc. has projected that the IoT
will include 26 billion installed units and will be a $300 billion
industry by 2020 [3].

The IoT offers a wide range of application possibilities that
span several domains, including personal, smart environment
(home or office), transportation and logistics, and healthcare
[4], [5]. One key domain that will be strongly impacted by
the IoT is healthcare [6]. The application of the IoT in the
medical/healthcare domain is referred to as the Internet of
Medical Things (IoMT), or healthcare IoT. The IoMT is a
network of connected medical devices and applications whose
purpose is to provide better and more personalized healthcare
services. The IoMT is gaining traction due to the emergence
of innovative products, such as portable ultrasound and mag-
netic resonance imaging (MRI) devices, wearables, which will

enable the streamlining of medical processes, such as medical
diagnostics, remote patient tracking and monitoring, etc.

Similar to other application domains, the IoMT is also prone
to the concomitant overheads of the IoT. As devices increase
on the IoMT, the resulting increase in acquired/transmitted
data will pose significant bandwidth and latency overheads. In
a medical diagnostics use case, for example, the IoMT could
scale to a network of several portable medical devices that
gather and transfer data to medical personnel for data analysis.
Transmitting this data could potentially cause a bandwidth
bottleneck in the communication network, and pose challenges
for real-time scenarios, where the application latency must
adhere to stringent deadlines (e.g., in diagnostic emergencies).

To address these challenges, edge computing is currently
emerging as a viable IoT computing paradigm [7], [8]. Rather
than transmitting the gathered data to a high performance
central head node for data visualization and analytics, the
edge devices (e.g., portable medical devices) are equipped
with sufficient computational capabilities and algorithms to
process and interpret the generated data. Thus, only actionable
information, or significantly reduced data, is transmitted. This
results in a reduction in the network bandwidth and data
storage requirements, and faster data analysis at the head node.

However, a key challenge in IoMT edge computing is
understanding the necessary computational capabilities and
microprocessor architectures that satisfy IoMT applications’
execution requirements, while adhering to the devices’ re-
source constraints. To understand the microarchitectures that
will support IoMT edge computing, we must first understand
the execution characteristics of the applications that will
potentially execute on IoMT devices.

In this work, we perform an extensive study of potential
medical applications for the IoT, from an edge computing
perspective. Using our study, we present seven potential IoMT
applications and algorithms, and characterize these applica-
tions’ execution characteristics with respect to computational
and memory requirements. The applications span a variety
of medical applications including medical image processing
algorithms, inverse Radon transform, and implantable heart
monitoring algorithms. We analyze the applications using the
Raspberri Pi 3 [9], a common IoT prototyping platform,
and Linux-based performance profiling tools. We show that
the IoMT applications exhibit a variety of characteristics
that necessitate different computational resources. Finally, we978-1-5090-6762-6/17/$31.00 c©2017 IEEE

motivate the need for a new benchmark suite targeted towards
the IoMT by comparing the IoMT applications with MiBench
[10], a popular open-source embedded systems benchmark
suite. Our analysis show that MiBench applications’ char-
acteristics differ from the IoMT workloads, suggesting that
MiBench applications are insufficient for driving the design
of future IoMT microprocessors.

II. RELATED WORK

In order to enable the growth of the IoT, much prior research
[4], [5] has focused on understanding and discovering insights
into its various aspects. While most prior emphasis has been
placed on software and communication aspects of the IoT,
we must also understand the IoT edge nodes’ processing
requirements and workload execution characteristics, in order
to develop right-provisioned microarchitectures. However, the
vast number of potential applications and application domains
makes it impractical to consider every application domain in
workload characterization [8].

Several benchmark suites have been developed to enable
workload characterization for different application domains.
Some of the most popular ones include MiBench [10], PAR-
SEC [11], EEMBC [12], SPEC2006 [13]. These benchmarks
cater to a variety of application domains and architecture
analysis. For example, PARSEC targets parallel multi-threaded
and shared memory applications, and SPEC targets high per-
formance desktop/server applications. Perhaps, most relevant
and accessible to IoT microarchitecture research is the open-
source MiBench, which consists of workloads representing
various embedded system application domains.

Very few workloads or benchmark suites currently exist
for microarchitecture studies that specifically target IoT ap-
plications. ImpBench [14] provides a collection of applica-
tions targeted towards processors used in medical implants,
including compression, encryption, data integrity checks, mo-
tion detection algorithms, and drug delivery and monitoring
algorithms. IoTAbench [15] was developed to target IoT Big
Data scenarios, specifically focusing on a smart metering use
case. Citybench [16] was developed to evaluate the resource
description framework (RDF) stream processing engines in
smart city applications and with smart city data streams. To the
best of our knowledge, there is no existing work that studies
workload execution characteristics for the IoMT. The absence
of such a study is a critical gap, since the medical domain is
one of the most potentially transformative IoT use cases [4].

To address this gap, our work represents a first step in the
direction of understanding IoMT applications, from the context
of edge computing. While the workloads studied herein do
not exhaust medical applications, the workloads have been
carefully selected to provide a solid foundation for future
studies into IoMT application characteristics. To motivate our
studies further, we have compared the IoMT workloads to
MiBench. We chose MiBench since it is open-source and
represents the embedded systems domain. We present analysis
to show that IoMT applications exhibit disparate execution

characteristics from MiBench, and necessitate a new set of
workloads for IoMT-targeted microarchitecture research.

III. IOMT WORKLOADS

One of our key goals was to select a set of applications
that broadly represent emerging IoMT applications. Based on
extensive surveys, and interactions with medical personnel, we
selected a tractable set of seven applications that are common
to a wide range of medical applications or considered to be
high-impact for the IoMT. Specifically, the workloads are:
QRS detection in ECG, blood pressure monitoring, inverse
Radon transform, histogram equalization, K-means cluster-
ing, advanced encryption standard (AES), and Lempel-Ziv
compression. Since we approach our studies from an edge
computing perspective, two of the seven workloads represent
compression and security applications; we envision that these
two workloads will be common to most emerging IoMT
devices.

All the workloads/algorithms considered are open-source
and written in C++; they can be compiled easily on Linux-
based operating systems1. In this section, we briefly describe
the considered IoMT workloads.

A. QRS Detection in ECG

The QRS detection algorithm (sqrs) [17] is used from the
PhysioNet [18] repository. The PhysioNet repository consists
of a large database of physiologic signals and related open-
source software. The algorithm detects the QRS peaks and
troughs in an Electrocardiogram (ECG) signal. The algorithm
uses only the signal 0 of the ECG for the QRS detection, and
is optimized for adult human ECG. The input to this workload
is a test ECG signal in PhysioNet’s Data bank. The application
outputs an annotation file with labeled detected QRS points.

B. Blood Pressure Monitoring

We also selected the blood pressure monitoring algorithm
(wabp) from the PhysioNet repository. This algorithm calcu-
lates the arterial blood pressure (ABP) from a continuous ABP
signal. The algorithm analyzes the first derivative of the ABP
signal to determine the blood pressure. The workload takes as
input ABP signals (available in the PhysioNet data bank), and
outputs a blood pressure log file.

C. Histogram Equalization

Histogram equalization (imgHist) is an image processing
technique to increase the contrast of the input image. It is
a necessary pre-processing step for digital X-ray, medical
ultrasound and the MRI images. The histogram equalization
method stretches the dynamic range of pixel values; thus,
areas in the image with low contrast get a higher contrast.
The workload takes a grayscale image as input, and outputs a
grayscale image with better contrast.

1The workloads and inputs are publicly available at:
http://ece.arizona.edu/~tosiron/downloads.php

D. Inverse Radon Transform

The inverse Radon transform (iRadon) [19] is used in
Computerized Tomography (CT) Scan and Magnetic Reso-
nance Imaging (MRI) to reconstruct images for non-invasive
examinations of the human body. The iRadon workload used
herein reconstructs a 2D sinogram input data—a sinogram is
used to visualize abnormal opening (sinus) in the body—to
output images.

E. K-means Clustering

K-means clustering (kmeans) is one of the widely used
algorithms for medical image segmentation [20]. Region based
image segmentation is used to label the different organs
inside an MRI brain scan for better diagnostics. The k-means
algorithm partitions different parts of the image based on
pixel intensities into clusters. In our workload, each pixel is
clustered into a group depending on the nearest mean values.
The workload takes as input a grayscale image, and outputs a
text file with the pixel locations grouped together in 10 bins.

F. Advanced Encryption Standard (AES)

Medical device security is a critical issue in the healthcare
industry [21], making security an essential application for
medical devices. For our IoMT workloads, we have selected
Advanced Encryption Standard (AES) [22] for data encryp-
tion. The AES algorithm, which supports a block length of 128
bits and key lengths of 128, 192 and 256 bits, was obtained
from the Crypto++ Library [23]. In our workload, we use
a default block length of 128 bits and key length of 128
bits. The workload takes as input a text file, and generates
an encrypted file. The workload then decrypts the generated
file and validates it by comparing with the original text file.

G. Lempel-Ziv Compression

Even though edge computing reduces the amount of trans-
mitted data, data compression is still critical in IoMT devices
for reducing the bandwidth requirements of data transmission.
Lempel-Ziv Compression algorithm [24] (lzw) is attractive
for the IoMT because of its efficiency, losslessness, and ease
of implementation. The workload takes as input a text file,
and generates a compressed output file. For validation, the
workload decompresses the generated output and compares
the result with the original input file.

IV. EVALUATION METHODOLOGY

To analyze our workloads’ execution characteristics, we
used the Raspberry Pi 3—a common IoT prototyping platform
[9]. We used an actual IoT prototyping platform, instead of
simulations, in order to derive insights on how well pro-
visioned current microprocessor architectures are for IoMT
workloads’ characteristics on a real device. The Raspberry Pi
3 board features a powerful motherboard, input and output pe-
ripheral connections with USB, LAN, and WiFi connectivity.
The board is also priced cheaper than most other boards with
similar functionality, making it very attractive for IoT devices.

Fig. 1. IPC analysis. The figure also shows the branch and LLC miss rates
to illustrate the impacts of these characteristics on the IPC

The Raspberry Pi 3 Model B, which we used, features a
Broadcom BCM2837 SoC, equipped with a 1.2 GHz 64-bit
quad core ARM Cortex-A53 CPU. The CPU has 32 kB Level
1 caches (separate 16 kB instruction and data caches) with
2-way set associativity, 512 kB Level 2 cache, and 1 GB
LPDDR2 RAM. We installed the Ubuntu Mate 16.04 LTS
operating system with Linux kernel 4.4.38-v7+ on the board.
For instrumenting the hardware performance counters, we used
the perf events Linux utility. We compiled the IoMT work-
loads using gcc without any optimization flags. We ran each
IoMT workload to completion 50 times, to gather execution
statistics, and calculated the mean and standard deviations to
measure the variability between different runs. We compared
the IoMT workloads to MiBench, to represent existent embed-
ded systems benchmarks, using the same experimental setup
and methodology.

V. IOMT WORKLOAD CHARACTERISTICS

Table I presents an overview of the IoMT workloads and
their characteristics, including the instruction count, number
of cache references, branch instructions, and the instructions
per cycle (IPC). The sqrs and wabp workloads’ characteristics
were very similar, since they both worked on similar data
inputs. Compared to the other workloads, iradon was the most
compute and memory intensive, as evidenced by the low IPC
and high number of cache references. In general, we also
observed that aes’ and lzw’s execution requirements did not
supersede those of the functional workloads. This observation
is critical for ensuring that compression and security do not
incur significant runtime overheads or significantly reduce
resource availability for functional workloads. The rest of this
section details the workloads’ execution characteristics.

A. IPC Analysis

The instructions per cycle (IPC) provides insight into a
workload’s compute-intensity, and is a measure of hardware
performance for a workload. The IPC is affected by the
workload’s instruction mix and microprocessor hardware char-
acteristics, e.g., pipeline depth, execution paradigm (in-order
vs out-of-order), branch prediction accuracy, cache configura-
tions, etc.

Fig. 1 shows the IPC for different IoMT workloads. We
also investigated the impact of branch and last level cache
(LLC) miss rates—the L2 cache was our LLC—on the IPC.

TABLE I
OVERVIEW OF IOMT WORKLOAD CHARACTERISTICS

Workload Description Instruction Count Cache References Branch Instructions IPC

sqrs QRS Detection in ECG 18,581,266 6,146,785 1,216,416 0.760

wabp Blood Pressure Monitor 18,561,495 6,146,785 1,216,196 0.760

imgHist Histogram Equalization 6,886,959 2,989,541 556,070 0.653

iradon Inverse Radon Transform 174,419,063 58,586,880 12,927,117 0.251

kmeans k-means Clustering 4,545,424 1,819,155 434,851 0.523

aes Advanced Encryption Standard 3,471,322 1,240,650 327,100 0.562

lzw Lempel-Ziv-Welch Compression 5,671,513 2,135,652 636,136 0.570

Fig. 2. Cache accesses

High miss rates could result in pipeline stalls, which in effect,
also reduce the IPC. The sqrs and wabp workloads had the
highest IPC of 0.76, while iradon had the lowest IPC of 0.251.
This can be attributed to iradon’s high memory intensity, for
which the memory hierarchy was were not sufficient (details
in Section V-B). Iradon’s memory intensity resulted in a high
LLC miss rate of 34.6% and more pipeline stalls than the
other workloads. On the other hand, wabp’s LLC miss rate
was 8.2%, which is relatively low for the LLC (LLC miss rates
are typically much higher than L1 cache miss rates, since most
of an applications’ spatial and temporal locality is exploited
in the L1 cache).

We also observed that the LLC miss rate had a higher impact
on IPC than branch miss rates for the workloads. For example,
kmeans’ branch miss rate of 11.4% was similar to wabp’s and
sqrs’ branch miss rate of 11.8%. However, kmeans’ LLC miss
rate was slightly higher (13.0% vs. 8.2%), resulting in a lower
IPC of 0.523 as compared to wabp’s and sqrs’ IPC of 0.76—a
31% reduction in IPC.

B. Memory Characteristics

We analyzed the IoMT workloads’ memory characteristics
using the cache accesses per thousand instructions (pti) and
the cache miss rates. Fig. 2 and 3 depict the cache accesses
per thousand instructions and cache miss rates, respectively.
We analyzed these characteristics for all the caches in the
Raspberry Pi 3: L1 instruction cache (L1 I-Cache), L1 data
cache (L1 D-Cache), and L2 Cache (LLC).

1) Cache accesses: Fig. 2 depicts the cache accesses pti,
which illustrates how much the workloads stress the caches.
Across all the workloads, the average L1 I-Cache, L1 D-Cache
and LLC were 552.034, 732.952 and 65.284 accesses per
thousand instructions, respectively. imgHist had the highest

Fig. 3. Cache miss rates

L1 D-Cache accesses pti of 869.033, resulting from the large
input data. Kmeans and lzw also had higher than average L1 D-
Cache accesses pti of 799.726 and 752.714, respectively; the
high number of accesses for these two workloads, however,
resulted from the large amount of data generated during
execution, not from large data inputs. On the other hand, lzw
had the highest L1 I-Cache accesses pti of 603.378, while
imgHist’s value was the lowest at 494.784. For most of the
applications, the LLC accesses pti were relatively low—the
lowest was 35.016 for imgHist—except for iradon, which had
the highest LLC accesses pti at 118.225.

2) Cache miss rates: Fig. 3 depicts the cache miss rates,
which provide a measure of cache performance. Given a cache
configuration, the cache miss rate provides insight into a
workload’s cache resource requirement. Across all workloads,
the average L1 I-Cache, L1 D-Cache and LLC miss rates
were 1.643%, 2.288%, and 14.953%, respectively. Iradon’s
L1 I-Cache miss rate was the lowest at 0.356%, while aes
and kmeans had the highest I-Cache miss rates at 2.687%
and 2.176%, respectively. On the other hand, iradon had the
highest L1 D-Cache and LLC miss rates at 5.852% and 34.6%,
respectively. These results suggest that even though iradon has
a low instruction cache requirement, for which the Raspberry
Pi 3’s 16 kB cache is sufficiently provisioned, a larger L1
data cache would be required to satisfy its data needs. The
L1 D-Cache and LLC miss rates for iradon are 155.76%
and 131.40% above average, respectively. These characteristics
suggest that the edge device executing the iradon application
should either have a significantly larger data cache configura-
tion. Alternatively, the edge device could offload the execution
to a central processor capable of providing better performance.

Fig. 4. Branch instructions

Fig. 5. Branch miss rates

C. Branch Characteristics

Branches, otherwise known as control instructions, could
be a major limiting factor to achieving optimal performance,
especially in pipelined microprocessors. Thus, branch pre-
dictors are important for improving the flow of instructions
in the pipeline. We analyzed the IoMT workloads’ branch
characteristics as a function of the number of branch in-
structions per thousand instructions (pti) and the branch miss
rate. The branch instructions pti is an architecture-independent
characteristic that illustrates the frequency of branches and
provides insight into the instruction mix. The branch miss rate
illustrates how sufficient the branch prediction resources are
for the executing application. For example, the ARM Cortex
A53, which is featured in the Raspberry Pi 3, has a single-
entry branch target instruction cache, a 256-entry branch target
address cache, and uses a global branch predictor, with a 3072-
entry pattern history prediction table [25].

Fig. 4 depicts the branches per thousand instructions. On
average across all the workloads, there were 84 branches
pti, representing an 8.4% frequency of branches, and 7.272
branch misses pti. The relatively few misses per thousand
instructions suggests that the workloads have a large number of
integer ALU operations. We also observed that there was not
much variation in branch frequency among the different work-
loads. For example, lzw had the highest frequency at 112.163
branches pti, representing an 11.2% frequency, while sqrs had
the lowest frequency at 65.465 branches pti, representing an
6.5% frequency.

Fig. 5 depicts the branch miss rates. On average across
all the workloads, the average branch miss rate is 8.692%,
with miss rates as low as 1.678% for iradon, and as high
as 11.86% for wabp. Typically, the branch miss rates also
reflect the trend towards conditional branches vs loops in the

workload’s instruction mix. Conditional branches are usually
more difficult to predict, and result in higher miss rates, than
loops, especially loops with a large number of iterations.
For example, iradon’s low branch miss rate suggests that
the workload contains more loops than conditional branches,
unlike wabp which has a fairly high miss rate due to a higher
number of conditional branches than loops.

D. Comparison with MiBench

To evaluate the similarity or disparity between currently
existent embedded systems benchmarks and IoMT workloads,
and the appropriateness of these benchmarks for IoMT mi-
croarchitecture research, we compared the IoMT workloads
to MiBench [10]. From the MiBench suite, we used: basic-
math, bitcount, qsort, susan, jpeg, typeset, dijkstra, patricia,
stringsearch, blowfish, sha, adpcm, crc32, fft, and gsm, all with
the large input data sets.

Table II depicts the comparison of hardware characteristics
between MiBench and IoMT workloads. For brevity, we only
show the means and standard deviations for the different
characteristics. In addition, we used a statistical method—
the Wilcoxon rank-sum test [26]—to quantify the similarity
of the MiBench and IoMT workloads. Using this method for
each execution characteristic considered, we calculated the p-
value, which is a commonly used statistical significance value
for evaluating the similarity between two data sets. A p-value
of less than 0.05 indicates that the data sets are substantially
dissimilar [27].

As seen in Table II, nine of the sixteen characteristics were
substantially different between IoMT workloads and MiBench.
Specifically, we observed that the MiBench performed much
better on the Rasperry Pi 3 than the IoMT workloads. The
MiBench workloads’ mean IPC was 1.6X better than the IoMT
workloads’ IPC (0.938 vs 0.583). In addition, the memory
characteristics were significantly different, especially with
respect to the instruction and data caches. For example, the
IoMT workloads’ average instruction and data cache miss rates
were 2X and 5.6X higher than than the MiBench workloads.
These results reveal that the workloads differ significantly, and
new workloads are required for researching new microarchi-
tectures for the IoMT.

VI. CONCLUSION AND FUTURE WORK

In this work, we characterized the execution behavior of
potential Internet of Medical Things (IoMT) workloads, and
discussed some their microarchitecture implications. Our com-
parisons with MiBench, a general purpose embedded system
benchmark suite, revealed that the IoMT applications differ
significantly from MiBench. These analyses motivate the need
for new benchmark suites for IoMT microarchitecture re-
search. Our studies also suggest that further research is needed
in other IoT application domains to evaluate the workloads’
execution characteristics. These workload characterizations are
necessary for developing microarchitectures that sufficiently
meet the workloads’ resource requirements, while incurring
minimal overheads.

TABLE II
COMPARISON OF IOMT WORKLOADS WITH MIBENCH

Hardware Characteristics
IoMT Workloads MiBench Workloads Wilcoxon Rank-sum Test

Mean Std. Dev. Mean Std. Dev p-Value

Instruction Count 33162434.571 57972752.015 849213126.125 998664983.475 0.0019

IPC 0.583 0.161 0.938 0.251 0.0019

Branch instructions pti 83.986 16.157 89.573 35.141 0.7637

Branch misses pti 7.272 3.089 5.672 3.918 0.4423

Branch miss rate 8.692 3.612 6.755 4.066 0.3671

L1 D-Cache accesses pti 732.952 73.382 700.221 229.044 0.8151

L1 D-Cache misses pti 16.041 9.993 3.378 5.981 0.0009

L1 D-Cache miss rate 2.288 1.558 0.407 0.549 0.0009

L1 I-Cache accesses pti 552.034 38.484 521.237 113.382 0.6163

L1 I-Cache misses pti 9.237 4.066 5.001 6.345 0.0426

L1 I-Cache miss rate 1.643 0.665 0.805 0.930 0.0353

LLC accesses pti 65.284 25.071 20.267 20.728 0.0024

LLC misses pti 11.393 12.180 1.479 1.758 0.0009

LLC miss rate 14.953 8.366 11.452 9.309 0.1926

Page faults pmi 17.495 5.074 3.221 5.592 0.0015

Context switches pmi 0.729 1.414 0.338 0.566 0.4423

Another important observation from our analysis is that the
Raspberry Pi 3, which is considered one of the most powerful
IoT prototyping platforms, is insufficient for optimal execution
of IoMT workloads. This observation motivates our plan to
study microarchitectural optimizations that will satisfy IoMT
workloads’ resource requirements, without accruing overheads
as compared to currently existent IoT platforms.

Finally, we plan to extend the analysis presented herein to
include more workloads within the IoMT space, and other IoT
application domains.

REFERENCES

[1] Ashton, Kevin, “That ‘Internet of Things’ thing,” RFiD Journal, vol. 22,
no. 7, pp. 97–114, 2009.

[2] McKinsey, “Disruptive technologies: Advances that will transform
life, business, and the global economy,” 2016. [Online]. Available:
http://www.mckinsey.com

[3] “Gartner says the internet of things will transform the data center,” 2014.
[Online]. Available: http://www.gartner.com/newsroom/id/2684616

[4] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[5] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[6] Y. Yuehong, Y. Zeng, X. Chen, and Y. Fan, “The Internet of Things in
Healthcare: An overview,” Journal of Industrial Information Integration,
vol. 1, pp. 3–13, 2016.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[8] T. Adegbija, A. Rogacs, C. Patel, and A. Gordon-Ross, “Enabling Right-
Provisioned Microprocessor Architectures for the Internet of Things,” in
Proc. Int. Mechanical Engineering Congr. and Expo. (ASME), 2015, pp.
V014T06A001–V014T06A001.

[9] M. Maksimović, V. Vujović, N. Davidović, V. Milošević, and B. Perišić,
“Raspberry Pi as Internet of things hardware: performances and con-
straints,” Design Issues, vol. 3, p. 8, 2014.

[10] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. 4th Annu. IEEE Int. Workshop Workload
Characterization, Dec 2001, pp. 3–14.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proc. 17th Int.
Conf. Parallel Architectures and Compilation Techniques, Oct 2008.

[12] “The Embedded Microprocessor Benchmark Consortium.” [Online].
Available: http://www.eembc.org/

[13] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[14] C. Strydis, D. Dave, and G. N. Gaydadjiev, “ImpBench revisited: An
extended characterization of implant-processor benchmarks,” in Proc.
Int. Conf. Embedded Computer Systems: Architectures, Modeling and
Simulation, July 2010, pp. 126–135.

[15] M. Arlitt, M. Marwah, G. Bellala, A. Shah, J. Healey, and B. Vandiver,
“IoTAbench: An Internet of Things analytics benchmark,” in Proc. 6th
ACM/SPEC Int. Conf. Performance Engineering, 2015, pp. 133–144.

[16] M. I. Ali, F. Gao, and A. Mileo, “Citybench: A configurable benchmark
to evaluate rsp engines using smart city datasets,” in Proc. Int. Semantic
Web Conf., 2015, pp. 374–389.

[17] W. Engelse and C. Zeelenberg, “A single scan algorithm for QRS-
detection and feature extraction,” Computers in cardiology, vol. 6, no.
1979, pp. 37–42, 1979.

[18] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a
New Research Resource for Complex Physiologic Signals,” Circulation,
vol. 101, no. 23, pp. e215–e220, 2000.

[19] P. A. Toft and J. A. Sørensen, “The Radon transform-theory and
implementation,” Ph.D. dissertation, Technical University of Denmark,
Department of Informatics and Mathematical Modeling, 1996.

[20] H. Ng, S. Ong, K. Foong, P. Goh, and W. Nowinski, “Medical image seg-
mentation using k-means clustering and improved watershed algorithm,”
in Proc. IEEE Southwest Symp. Image Analysis and Interpretation, 2006,
pp. 61–65.

[21] D. Halperin, T. S. Heydt-Benjamin, K. Fu, T. Kohno, and W. H. Maisel,
“Security and privacy for implantable medical devices,” IEEE Pervasive
Computing, vol. 7, no. 1, 2008.

[22] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[23] “Crypto++ Library 5.6.5.” [Online]. Available:
https://www.cryptopp.com

[24] M. J. Knieser, F. G. Wolff, C. A. Papachristou, D. J. Weyer, and D. R.
McIntyre, “A technique for high ratio LZW compression,” in Proc. Conf.
Design, Automation and Test in Europe, vol. 1.

[25] “ARM.” [Online]. Available: http://www.arm.com
[26] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics

bulletin, vol. 1, no. 6, pp. 80–83, 1945.
[27] M. J. Crawley, Statistics: An introduction using R, 2nd ed. John Wiley

& Sons, 2014.

