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Abstract—Cache tuning has been widely studied in
CPUs, and shown to achieve substantial energy sav-
ings, with minimal performance degradations. How-
ever, cache tuning has yet to be explored in General
Purpose Graphics Processing Units (GPGPU), which
have emerged as efficient alternatives for general pur-
pose high-performance computing. In this paper, we
explore autonomic cache tuning for GPGPUs, where
the cache configurations (cache size, line size, and
associativity) can be dynamically specialized/tuned to
the executing applications’ resource requirements. We
investigate cache tuning for both the level one (L1) and
level two (L2) caches to derive insights into which cache
level offers maximum optimization benefits. To illus-
trate the optimization potentials of autonomic cache
tuning in GPGPUs, we implement a tuning heuris-
tic that can dynamically determine each application’s
best L1 data cache configurations during runtime. Our
results show that application-specific autonomic L1
data cache tuning can reduce the average energy delay
product (EDP) and improve the performance by 16.5%
and 18.8%, respectively, as compared to a static cache.

Indexr Terms—Graphics processing unit, GPGPU,
GPU cache management, configurable caches, high
performance computing, cache tuning, cache memo-
ries, low-power design, low-power embedded systems,
adaptable hardware

I. INTRODUCTION AND MOTIVATION

A processor’s memory hierarchy contributes substan-
tially to the processor’s overall energy consumption. In
some cases, such as embedded systems’ CPUs, the memory
hierarchy (specifically, the caches) can contribute more
than 40% of the system’s total energy [19], [20]. As a
result, much optimization research has focused on reducing
the cache’s energy consumption, without degrading the
performance.

The cache is increasingly becoming a source of energy
overhead in general purpose graphics processing units
(GPGPUs). GPGPUs used to rely solely on massive par-
allelism and shared memory to hide memory latency.
However, due to the proliferation of applications with
irregular memory accesses and large amounts of data,
modern GPGPUs rely on caches to help mitigate the
intrinsic delay incurred from memory accesses [25].

Unfortunately, GPGPU cache management and design
has not evolved as rapidly as CPU caches, due to decreased

cache capacity per thread and cache line lifetime (the
amount of time a line goes without replacement in a cache)
[23]. Because of the high throughput of GPGPUs and
the inadequate performance of current GPGPU caches,
there can be a very large number of misses in a very
small amount of time, leading to overall performance
degradations and increased energy consumption.

GPU cache management becomes even more important
in a High-Performance Computing (HPC) system. 10.4%
of the top 500 HPC systems utilize a GPU model from
the NVIDIA Tesla family as an accelerator [24]. Thus,
the HPC’s overall energy efficiency and performance is
highly dependent on the GPU’s energy efficiency and
performance. As GPGPU applications’ data continue to
increase, storing all the data in the shared memory be-
comes infeasible. Thus, the GPGPU’s cache becomes more
important, as it reduces the memory access time for
frequently accessed data.

Most current GPGPU cache management research fo-
cus on energy reduction and performance optimization
through efficient cache bypassing and thread throttling.
Cache bypassing [6], [7], [13], [29] mitigates thrashing in
the L1 data caches by artificially extending the cache line
lifetime. Bypassing schemes allow frequently reused data
blocks to remain in the cache, while data requests for low-
reuse blocks are made to bypass the cache. However, as the
number of bypass requests increases, on-chip resource con-
gestion increases, eventually causing the memory pipeline
to stall. Thread throttling [6], [13], [29] increases the
hit rate of a system’s cache(s) while decreasing potential
resource congestion by dynamically or statically limiting
the number of warps/threads that can be run on a given
streaming multiprocessor (SM). Decreasing the number of
threads increases the cache capacity per thread, which in
effect increases the amount of locality in the cache. As a
result, multiple GPGPU cores are not utilized to their full
potential.

In this paper, we explore the potentials of leveraging
autonomic cache tuning for GPGPU cache management.
Cache tuning, otherwise known as cache optimization, uses
a configurable cache [28], with total size, associativity, and
line size that can be dynamically adjusted during runtime
to specialize the cache’s configurations to executing appli-
cations’ needs. Cache tuning exploits the fact that different



applications have different configuration requirements for
energy efficiency and optimal performance [9]. Thus, based
on each application’s execution characteristics (e.g., cache
miss rates, instructions per cycle, branch mispredicts,
etc.), the cache can be tuned to minimize energy consump-
tion without degrading performance. While cache tuning
has been extensively studied in CPUs [12], [20], [22], this
paper is the first, to the best of our knowledge, to explore
cache tuning in the context of GPGPUs. Our goal in this
study is to derive insights to enable the implementation
of autonomous caches in emerging GPGPUs. To this end,
our contributions are as follows:

o We propose that autonomic cache tuning is a viable
approach to cache management in GPGPUs, and
extensively analyze the potentials for improving the
energy efficiency and performance of GPGPU L1 and
L2 data caches.

o We analyze autonomic cache tuning in L1 and L2 data
caches to derive insight into which cache level offers
the most benefits for optimal performance and energy
efficiency.

o We illustrate the benefits of runtime autonomic cache
tuning using a tuning heuristic that dynamically
determines execution GPGPU applications’ L1 data
cache configurations.

Through detailed experiments using GPGPU-Sim [4], a
common GPGPU architectural simulator, we show that
an autonomously tuned configurable L1 data cache can
reduce the average energy delay product and improve the
performance (with respect to IPC) by 16.5% and 18.8%,
respectively, as compared to a static non-configurable
cache. Our results also reveal that tuning the L2 data
cache can reduce the average EDP and improve the perfor-
mance by 18.1% and 13.4%, respectively, as compared to
a static L2 cache. Finally, our results reveal a strong cor-
relation between GPGPU performance and L1 data cache
reservation failures [7], and provides a solid foundation for
future work enabling autonomous caches in GPGPUs.

The rest of the paper is organized as follows. In Section
IT we provide an overview of the related work on GPU
cache management strategies, configurable caches and
cache tuning. We describe our methodology, simulation
environment, and experimental setup in Section III. In
Section IV, we present the results and analysis generated
by exhaustively exploring the cache design space to eval-
uate the impact of different configurations on application
execution. We establish the methodology and present the
results from our autonomous cache tuning experiment in
Section V. Finally, in Section VI, we present our conclu-
sions and future work.

II. BACKGROUND AND RELATED WORK

Due to the poor performance of caches in GPGPUs,
there has been extensive research on GPU cache man-
agement schemes. This section provides an overview of
current GPU cache management schemes and background

on configurable caches and cache tuning, which we leverage
in this work.

A. GPU Cache Management

The main reason why caches are less effective for GPUs
than for CPUs is that GPUs’ high throughput is mis-
matched with the architecture of general purpose caches
[13]. Our work represents a step in the direction of making
caches more viable for GPUs, and is orthogonal to current
GPU cache management techniques. We review three main
research directions that currently exist for optimizing
caches for GPUs.

The first involves schemes forcing low-reuse memory
accesses to bypass the cache in order to not evict high-
reuse cache blocks. Chen et al. [6] proposed a scheme that
forces memory requests to bypass the L1 data cache based
on the reuse distance theory. This scheme also dynamically
throttles the number of warps to prevent occupancy of
too many resources when the cache is getting bypassed
frequently. Dai et al. [7] introduced a model to calculate
the ideal number of requests to bypass the cache as a
function of the estimated number of reservation failures. Li
et al. [18] observed that the number of times cache blocks
are reused is very small in certain GPGPU applications
and propose a scheme that bypasses the cache if a memory
request associated with a block is not going to be reused.

The second popular research area involves optimizing
cache indexing to efficiently populate the cache. Kim et
al. [14] studied the effects of multiple indexing techniques
on performance and energy consumption within GPU
caches. These indexing functions include static schemes
such as XORing different bits of the instruction address
and polynomial modulus mapping. Additionally, they ex-
perimented with one dynamic indexing function, which
uses different bits of the instruction address to index
into the cache. Kim et al. [15] proposed using polynomial
modulus mapping as a means of interleaving set indexes
within the cache.

A third approach optimizes cache management on a
warp level in order to best account for each application’s
specific characteristics. Khairy et al. [13] proposed a warp
throttling scheme that throttles the number of active
warps based on the current misses per kilo instructions
(MPKI) in order to reduce the contention seen in the L1
data cache. Zhao and Wang [29] observed that irregular
memory accesses are the most detrimental aspect of an
application due to memory divergence and a loss of local-
ity. In order to combat this, they devised a scheme that is
present in both the memory level and the instruction level
to determine the degree of irregularity of memory requests
across the threads within a warp. If those memory requests
surpass a certain threshold, the entire warp is forced to
bypass the L1-Data cache.

B. Configurable Caches

A configurable cache [28] is a multi-banked cache that
allows the cache size to be configured to specialize the



cache’s configurations to executing applications. Given a
physical cache, where each cache way is implemented as
a different bank, the ways can be shutdown to reduce the
cache size or concatenated to configure the associativity.
To configure the block size, multiple physical blocks can
be fetched and concatenated to logically configure larger
block sizes. This configurability can be achieved using
small bit-width configuration registers, and augmenting a
state-of-the-art cache to support configurability results in
negligible design, power and area overheads. In addition,
incorporating configurability to caches has no impact on
the critical path, thus making configurable caches a viable
option for low-overhead cache optimization. We direct
the reader to [28] for details on the configurable cache’s
circuitry and design.

C. Cache Tuning

Cache tuning determines the cache configurations that
best satisfy an application’s execution requirements. Due
to potentially large design spaces (possible combination
of configurations), exhaustively exploring the full cache
design space is typically unrealistic. Thus, various cache
tuning heuristics and algorithms [3], [11], [22] have been
developed to prune the design space, in order to reduce
cache tuning overheads (energy and time spent during
tuning). Zhang et al. [27] presented a heuristic that au-
tomatically tunes the cache in an embedded system to
a pseudo-optimal configuration when considering energy,
execution time, or a combination of the two depending
on the priority of the system. Gordon-Ross et al. [10]
expanded upon this heuristic and introduced the Two-level
Cache Tuner (TCaT), a method to automatically tune two
levels of cache in an embedded system.

Cache tuning heuristics/algorithms are usually imple-
mented using a software or hardware tuning mechanism,
known as the cache tuner. Adegbija et al. [2] developed
low-overhead cache tuners for multicore systems, and an-
alyzed different cache tuner architectures for effectively
tuning caches in multicore embedded systems. The authors
analyzed the energy and hardware footprint of the differ-
ent architectures in order to identify which architectures
resulted in minimum overheads. This work illustrated the
extensibility and scalability of low-overhead cache tuning
to large multicore systems, and provides a foundation for
the work proposed herein.

III. METHODOLOGY

This section describes our methodology for evaluating
the potentials of autonomic cache tuning in GPGPU
caches. We first describe our simulation environment, and
thereafter, present details of our experimental setup.

A. Simulation Environment

To evaluate the effect of varying cache configurations
within a GPGPU, we used the GPGPU-Sim simulator [4]
to emulate a system based on the NVIDIA Fermi GTX480

TABLE I: Simulated base configurations

SM config 15 SM, width = 32, 700 MHz,

48 Warps/SM, 1536 threads

Cache hashing Linear set function

Shared memory/SM 6kB

Warp scheduling 2 GTO (Greedy-then-oldest)

warp schedulers/SM

Memory model 6 GDDRb5 memory controllers, FR-FCFS

scheduling, 924 MHz

GDDR5 timing tCL = 12, tRP = 12, tRC = 40,

tRAS = 28, tRCD = 12, tRRD = 6

[26]. We used the GPU-WATTCH simulator [17] to collect
the GPU’s average power for each application. To take into
account both energy and delay in the evaluations, we used
the energy delay product (EDP) and instructions per cycle
(IPC) as our evaluation metrics. We calculated the EDP
as follows:

EDP = system_power * (total application cycles /
system__frequency)?

Table I depicts the static base configuration parameters
used for our evaluations. We modeled the GTX480 GPU
because its memory hierarchy and associated performance
sufficiently represent state of the art GPUs [8] [21]. There-
fore, analysis and conclusions made through experimenta-
tion on the GTX480 can easily be extended to other GPU
models.

The GTX480 memory hierarchy architecture has a ded-
icated L1 data (L1D) cache for every SM, and a unified L2
data (L.2D) cache that is split into multiple partitions used
by every SM in the GPGPU. Each simulation requires a
configuration file in which different system parameters can
be manipulated. This includes number of sets, the associa-
tivity, the block size of both L1D and L2D caches, and the
number of memory partitions for the unified L2 data cache.
In conjunction with the configuration information, the
actual benchmark/application is input into the simulator
as well. GPGPU-Sim then collects IPC, total number of
instructions, and reservation failures; these statistics are
also used to calculate execution time of the program.
Subsequently, the average power statistic is generated post
GPGPU-Sim simulation using GPU-WATTCH. We then
collated and analyzed the execution and power statistics
of the different cache configurations for the benchmarks to
determine the impact of cache tuning in GPGPUs.

TABLE II: Ranges of the L1D parameter values

Parameter Name | L1D Range | L1D Base Value
Number of sets 16, 32, 64 16
Associativity 1,2, 4 4
Line size (bytes) 128, 256 128




TABLE III: Ranges of the L2D parameter values

Parameter Name L2D Range | L2D Base Value
Number of sets 64, 128, 256 64
Associativity 8, 16, 32 16
Line size (bytes) 128, 256 128
Number of partitions 6 6

N Sets VectorAdd ScalarProduct
M-way associativity
L Byte blocksize
K L2 partitions

A

Breadth-First Search
SRAD
NwW

Pathfinder

Hotspot

Generate cache performance statistics

Generate power/energy statistics

Fig. 1: Flowchart describing exhaustive search, and simu-
lation environment and setup

B. Experimental Setup

To investigate the impact of autonomic cache tuning
on GPGPU energy efficiency and performance, we first
conducted an exhaustive search of the L1D and L2D cache
configurations and evaluated the improvements achieved
by optimal cache configurations (with respect to power
consumption, IPC, and EDP) as compared to the base
configuration.

Tables IT and III depict the L1D and L2D cache con-
figuration design spaces, respectively. The design space
comprises 18 L1D cache configurations, with L.2D cache set
to the base configuration, and 18 L2D configurations, with
the L1D set to the base configuration, resulting in 36 total
configurations. We determined the base configurations
using the most common values found in literature for the
L1D ( [13] [7] [29] [14]) and L2D ( [13] [7] [29] [18]) caches.
We assume that the caches are configured as described
in Section II-B. For future work, we plan to investigate
the interleaved exploration of both the L1D and L2D
cache configurations, which will exponentially increase the
design space.

The range for each configuration parameter is chosen
to explore cache sizes larger than the base configuration,
since increasing the cache size has been shown to improve
performance [6]. The L1D cache associativities are smaller
than the L2D cache associativities, because the L2D cache
is much larger than the L1D cache. We observed that

the L1D and L2D caches yield diminishing returns at
associativities larger than 4 and 32, respectively.

Figure 1 depicts the sequence of steps we used to
perform the exhaustive search of L1D and L2D cache con-
figurations. We run every benchmark using GPGPU-sim
in order to generate the performance statistics. GPGPU-
sim then outputs a file used as an input to GPU-WATTCH
in order to simulate the power statistics of the GPGPU.
Then, the configuration changes to the next configuration
within the configuration space. This process continues
until all cache configurations are explored for every bench-
mark.

We tuned both the L1D and L2D caches to derive
insights into which level derives the most benefit from
cache tuning. Since GPGPUs typically have multiple L1D
caches [8], we assume that each L1D cache is globally
tuned with the same configuration, i.e., the configurations
are homogeneous across the L1D caches. Thus, we assume
a low-overhead hardware cache tuner that can simultane-
ously change the caches’ configurations, without incurring
significant power and area overheads. This tuner has been
extensively analyzed for CPUs by prior work [2]; for future
work, however, we plan to further evaluate these tuners in
the context of GPGPUs. We assume a single unified L2D
cache, as is the case in the GTX480 [8].

To represent a variety of GPGPU applications, we used
seven benchmarks from the Rodinia 3.1 Benchmark Suite
[5] and the NVIDIA Toolkit [1]. From the Rodinia 3.1
Benchmark Suite, we used BFS, HotSpot, NW, SRADv2,
and Pathfinder, and from the NVIDIA Toolkit, we used
VectorAdd and ScalarProd.

IV. EXHAUSTIVE SEARCH EXPERIMENTAL RESULTS

Our first set of experiments involved an exhaustive
search of the L1D and L2D cache design spaces to evaluate
the benefits of tuning the GPGPU’s caches. The L1D
caches are usually much smaller than the L2D cache,
making the L1D caches more susceptible to thrashing.
This observation leads us to hypothesize that the perfor-
mance gain of tuning the L1D caches in the GPGPU will
be greater than tuning the unified L2D cache. After our
exhaustive search, we made three key observations with
respect to tuning GPGPU caches. In what follows, we
present each observation, and then detailed results that
support the observation.

1) Different applications require different L1D and L2D
cache configurations for optimal energy efficiency and per-
formance.

To verify that cache tuning is a viable GPGPU cache
optimization technique, we investigated the frequency with
which different L1D and L2D cache configurations were
deemed best for different evaluation metrics. Figure 2
shows a histogram displaying the frequency with which
different L1D (Figure 2a) and L2D (Figure 2b) configura-
tions were determined to be best for the different metrics.
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Fig. 2: Distribution of best L1D (a) and L2D (b) cache
configurations based on IPC, EDP, and Average Power
of both. Configurations identified as CacheSize-BlockSize-
Associativity

The frequency of configurations with the optimal IPC,
EDP, and average power are indicated with blue, red and
green bars, respectively. For the cases where two or more
configurations tie for the most optimal performance within
a specific benchmark, both configurations are awarded a
point.

As seen in Figure 2a, when the average power is taken
into account, the best configurations tend to be small,
direct mapped caches. This is to be expected because
cache modules with fewer sets and ways typically consume
less power. When considering the IPC, larger configu-
rations (size and associativity) tend to be the optimal
configurations for the different benchmarks. Again, this
observation is expected because IPC is highly related to
the total throughput of the GPGPU; larger caches with
large associativities typically result in fewer misses, and
enable faster accesses. Finally, with EDP as the focus,
the optimal cache configurations are far more spread out
among the different configurations in the design space, but
still favoring large caches. This can be attributed to the
fact that GPGPUs are throughput-oriented devices, and
small caches result in a large number reservation failures
which lead to massive cache thrashing.

Figure 2b shows a more even distribution of L2D con-
figurations that achieve the best average power and IPC.

However, there were fewer configurations that achieved
the best EDP across all 7 benchmarks. This implies that
the performance gain from tuning the L2D cache is much
smaller than tuning the L1D cache. Despite the large
variation of best configurations for average power and IPC,
the deviation between the statistics for each configuration
is much smaller than that of the L1D cache. We also
observed that EDP has a smaller distribution of best L2D
cache configurations than the L1D cache. Overall, these
observations indicate that tuning the L2D cache offers
less optimization benefits than tuning the L1D cache; to
minimize runtime overheads, the L2D cache configuration
should be a single static configuration determined through
extensive a priori analysis.

The key takeaway from these results is that different ap-
plications have different L1D and L2D cache configuration
requirements for optimal execution. Our results show, for
example, that the best configuration for minimum EDP
varies significantly for the different applications. These
observations, using a set of test applications, motivates
us to perform analysis for a larger set of applications in
future work.

2) L1D cache tuning provides significant improvement as
compared to a base static cache configuration. L2D cache
tuning provides much smaller improvement.

We performed further experiments and analysis to de-
termine which cache level offers the most improvement
from cache tuning. To illustrate the potential variation of
results achieved using the best, worst, and base configu-
rations, we used exhaustive search to determine the best
and worst configurations, and compared them to the base
configuration.

Figure 3a compares the L1D cache configurations with
respect to EDP (the best and worst configurations are
normalized to the base). The optimal cache configuration
on average reduced the EDP by 16.5% as compared to
the base cache. The EDP savings were as high as 25%
and 35.5% for Hotspot and SRADv2, respectively. On
the other hand, the worst cache configuration for EDP
was 402% higher than the EDP of the base configuration
on average. This can be attributed predominantly to two
large outliers—ScalarProduct and SRADv2—whose worst
configurations increased the EDP by 1110% and 613%,
respectively, as compared to the base configuration.

Figure 4a compares the L2D cache configurations with
respect to EDP. We observed that the optimal cache con-
figuration reduced the average EDP by 18.1% as compared
to the base configuration. The EDP savings were as high
as 36% and 34.9% for NW and SRADv2, respectively.
The worst configurations increased the average EDP by
8%, as compared to the base configuration. The worst
configurations increased the EDP by up to 33% and 17%
for BFS and NW, respectively.

The EDP savings of the optimal L1D cache configura-
tions were similar to those of the L2D cache configurations.



W Best M Worst W Best M Worst

L i

& ‘,Q S & Q«" o r.,Q v q«° o
8 N ¥
& ° N & o v* & ° 2 = &

&
4?5‘ 2% P \\®° 3% P

I
[ SIS

[

w
e
o0

= N
configuration
o o
= (o))

EDP normalized to base L1D
cache configuration
o
N

EDP normalized to base L2D cache

(a) EDP comparison of best, worst, and base L1D configuration. (a) EDP comparison of best, worst, and base L2D configuration.

M Best M Worst M Best M Worst

2 1.4 9 1.4
2 8
S = 12 o ¢ 12

o * o
T 5 1 g s 1
N e 8
'_EB go 0.8 ‘—Eu gn 0.8
5 € 06 5 € 06
es 0.4 s 0.4
= @ Y - @ U
[ 3
2502 R

c U © 0.
g ° 2 °

Q o Qo o
() ()
o o w N
g~ & S (\r ey vo“W & & i - o S g & & & &
H € P 2 X P
< K & & < QE© 2% 3

(b) Average power comparison of best, worst, and base L1D (b) Average power comparison of best, worst, and base L2D

configuration. configuration.
M Best M Worst M Best M Worst
o 7 o 12
@a ©n
©
e 6 3 1
o <
-2 = o
[T T 5 08
N = v ®©
T @4 = 5
£ € © op 0.6
5 03 € "E
c 2 S o
o 2 c 04
22
£ o g
8, E S o2
1) i 8
= 5
5-0 cQ o
1] X o < ‘3 g X a S
< J & K4 & J & K¢ be,
“ O@Q @& & %QYO ‘3\0 49'@ § c’;é—’Q @‘v ,bg‘ :339 \S‘Q 4@0
Ay & & v = RS & & S

(c) Execution time comparison of best, worst, and base L1D (c) Execution time comparison of best, worst, and base L2D
configuration. configuration.

W Best MW Worst HBest W Worst

oIIIIIiII

X
& &
o RV S
< % o »° 9 N v
Y of P Q@ 3% ?

o
NS

IPC normalized to base L1D cache
configuration
o o o o
o N » ()] (o] =
IPC normalized to base L2D cache
configuration
o o o o
N = o (o] -

(d) IPC comparison of best, worst, and base L1D configuration. (d) IPC comparison of best, worst, and base L2D configuration.

Fig. 3: Cache tuning potential to improve EDP, Average Fig. 4: Cache tuning potential to improve EDP, Average
Power, Execution Time, and IPC compared to base L1D  Power, Execution Time, and IPC compared to base L2D
cache configuration. cache configuration.



On average, tuning the optimal L1D cache configura-
tions achieved 16.5% EDP savings, while the optimal
L2D cache configurations achieved 18.1% EDP savings.
However, there was a more significant difference in the
EDP increase from the worst configurations. On average,
the worst L1D configuration for EDP increased the EDP
of the base by 402%, while the worst L2D configuration
for EDP only increased the EDP by 8%. These results
reveal that the GPGPU’s EDP is more sensitive to changes
in the L1D cache configuration than the L2D cache; a
suboptimal L1D cache can result in more significant EDP
degradation. Thus, optimization emphasis must be placed
on the L1D cache to prevent the potential EDP increases
from suboptimal L1D cache configurations.

Figure 3b demonstrates the comparison between the
best, base, and worst L1D configurations when considering
the average power consumption for each benchmark. On
average across the benchmarks, the best configurations
reduce the average power consumption by 50.7% as com-
pared to the base configuration. For ScalarProduct and
Hotspot, the best configuration reduced the power con-
sumption by 72.9% and 55.5%, respectively. The worst
configurations on average consume 17.7% more power than
the base configuration.

Figure 4b shows the difference in overall average power
consumed by the GPGPU between the best, base, and
worst L2D cache configuration for each benchmark. On
average across all the benchmarks, the best configurations
reduced the power consumption by 5.32% as compared
to the base configuration, with power savings as high
as 32.2% for BFS. On average, the worst configurations
increased power consumption by 14.4%. These results
show the significant disparity in the power savings ob-
tained from tuning the L1D and L2D caches. Tuning the
L2D cache reveals a smaller impact on the GPGPU’s
average power savings (5.32%) than changing the L1D
cache configuration (50.7%). We also observed that the
difference between the worst and base configuration were
more similar for both L1D cache and L2D cache, with
power increases of 17.7% and 14.4%, respectively.

Figure 3c compares the different L1D cache configura-
tions with respect to execution time of the different bench-
marks. Because the base configuration was relatively large,
the benefits of cache tuning for execution time savings
was much smaller for all the benchmarks than power and
EDP. Furthermore, we observed dramatic execution time
degradations with sub-optimal configurations. On average
across all the benchmarks, the best configurations reduced
the execution time by 14.6%, as compared to the base,
while the worst configurations increased the execution
time by 226%.

Figure 4c shows the comparison between the best, base,
and wost L2D cache configurations with respect to exe-
cution time. The best L2D cache configuration reduced
the average execution time by 10.3%, as compared to the
base configuration, with reductions as high as 32.3% and
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Fig. 5: Relationship between normalized reservation fail-
ures and average power, execution time, and EDP.

19.1% for SRADv2 and NW, respectively. The worst L2D
configuration increased the execution time by 1.61% with
respect to the base.

These results reveal that tuning the L1D and L2D
caches achieve similar execution time savings with respect
to the base configuration (14.6% and 10.3%, respectively).
However, we observed a significant difference in the ex-
ecution time degradation of the worst L1D and L2D
configurations: 226% and 1.61%, respectively.

Figure 3d compares the best and worst L1D configu-
rations to the base, with respect to IPC. Similar to the
results from average power consumption, the best config-
urations increase the average IPC by 18.8% as compared



to the base configuration, with increases as high as 29%
and 48% for Hotspot and SRADvV2, respectively. The worst
configurations decreased IPC by 63.0%.

Figure 4d looks at the same IPC comparison for the
L2D cache configurations. The best L2D configuration
increased the average IPC by 13.4%, as compared to the
base, with increases as high as 23.6% and 47.7% for NW
and SRADv2, respectively. The worst L2D configuration
only decreased the average IPC by 1.53% compared to
the base. These results reveal similar impacts of tuning
the L1D and L2D caches on IPC. However, the IPC
reduction resulting from the worst configurations was more
significant for the L1D cache (63%) than the L2D cache
(1.53%).

Figures 3 and 4 show that the GPGPU’s average IPC,
power, execution time, and EDP are highly sensitive to
both the L1D and L2D cache configuration. However,
in general, our results reveal that the L1D cache tuning
creates much larger deviations in the results than L2D
cache tuning. For example, while tuning the L1D cache,
the standard deviation of the IPC and average power
across all configurations was 63.46 and 15.78, respectively.
While tuning the L2D cache data, the average standard
deviation of TPC and average power across all configu-
rations was 6.936 and 3.692, respectively. These results
show that while both L1D and L2D cache tuning can
improve a GPGPU’s efficiency, tuning the L1D cache offers
more promise and warrants more optimization efforts than
tuning the L2D cache.

3) L1D cache reservation failures can be used for perfor-
mance prediction during cache tuning.

The GPU handles misses with the Miss
Status/Information Holding Registers (MSHR) [16].
There are multiple MSHRs per Streaming Multiprocessor
(SM); each MSHR can track one pending memory
request. However, if there are many misses in a small
period of time, a SM can run out of resources, which
include available MSHRs as well as miss queue entries and
available cache lines. This is referred to as a reservation
failure, and it requires stalling the entire memory pipeline
until sufficient resources are available to handle additional
cache misses [7].

Our results indicate that as L1D reservation failures
increase, the GPGPU’s overall average power consumption
decreases. We show this trend in Figure 5a using two
candidate benchmarks, NW and Hotspot, with respective
correlation coefficients (R) of -0.9222 and -0.9519. On
average, all benchmarks have a coefficient of determination
(R?) of 0.90169, indicating a strong correlation between
the power consumption and reservation failures for all
applications. This trend occurs because as the cache size
decreases the reservation failures increase, as there are
fewer resources available and the cache is unable to keep
up with the demands from the GPGPU [13]. GPGPUs
are designed to have high throughput, therefore, smaller

caches have more problems keeping all the necessary data
in the cache at a given time. This causes a large amount
of cache misses, resulting in poorer performance and sub-
sequently more reservation failures.

Figure 5b shows a linear correlation between execution
time and reservation failures. The correlation coefficients
(R) of NW and Hotspot are 0.9982 and 0.9942. We ob-
served a similar trend for all the benchmarks: on average,
the benchmarks have coefficient of determination (R?)
of 0.9907 (figures omitted for brevity). We also observed
similar trends for the EDP, as shown in Figure 5c. Given
these observations, we conjecture that the reservation
failures can be used for predicting L1D configurations
during runtime. We intend to exploit these correlations
for cache tuning in future work.

We found that, unlike the L1D cache, there was no cor-
relation between the L2D cache and reservation failures.
This can be attributed to the fact that there are many
more reservation failures for the L1D cache than the L2D
cache. The average number of L1D reservation failures
across all benchmarks and all configurations was 529.22x
the L2D reservation failures. There were more L1D cache
reservation failures because there are many more L1D
caches than L2D caches—15 L1D caches in the GTX480
vs one unified L2D cache—and the L2D caches are much
larger than the L1D caches. Thus, the L2D cache is able to
maintain the locality of several executing threads. For the
L2D cache, the coefficients of determination (R?) between
the reservation failures and average power, execution time,
and EDP were 0.32231, 0.47052, and 0.49035, respectively
(figures omitted for brevity).

V. AutonoMIiCc CACHE TUNING ANALYSIS

In addition to conducting an exhaustive search of all
possible L1D and L2D cache configurations, we used a
simple heuristic, similar to the one proposed in [27], to
dynamically predict the optimal L1D cache configuration
for executing applications. We assume that the heuristic
is implemented by a low-overhead hardware cache tuner
[2]. This tuner has been extensively analyzed to show
that it contributes minimal power and area overhead to
a resource-constrained embedded system. In addition, the
accrued tuning stall cycles do not result in any significant
runtime tuning overhead.

To take into account both energy and execution time,
the heuristic uses the EDP as the optimization metric;
however, the heuristic can easily be modified to optimize
for energy or execution time separately. The heuristic
operates as follows:

1) Begin with the smallest cache: 16 sets, 128 byte line
size, direct mapped. Increase the number of sets to
32 and keep the other two parameters constant. If
the change in number of sets decreases the EDP,
increase the number of sets to 64. Pick the number
of sets corresponding to the lowest overall EDP.
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Fig. 6: Heuristic EDP normalized to the base L1D cache
configuration.

2) With the number of sets and associativity constant,
increase the line size from 128 to 256 bytes. If the
increase in line size decreases EDP, choose 256 bytes
as the line size. If increasing the line size increases
EDP, choose 128 bytes as the line size.

3) With the number of sets and line size constant,
increase the associativity from direct mapped to 2-
way set associative. If this change decreases the EDP,
increase the associativity from 2-way to 4-way set
associative. Pick the associativity corresponding to
the lowest overall EDP.

Figure 6 shows that for every benchmark, the heuristic
determined the optimal configuration for EDP. Similar to
exhaustive search, the heuristic achieved average EDP sav-
ings of 16.5%, as compared to the base cache configuration,
with savings as high as 35.6% for SRADv2. The heuristic
achieved these EDP savings while exploring 31.75% of the
design space. We expect this percentage to reduce even
further with a larger design space.

VI. CONCLUSIONS

In this paper, we explored autonomic cache tuning for
optimizing the L1 and L2 data caches in general purpose
graphics processing units (GPGPU). Cache tuning adapts
the system cache configurations to executing applications’
resource requirements in order to reduce energy or improve
performance. We showed that different GPGPU appli-
cations require different runtime L1 and L2 data cache
configurations for optimal execution. Thus, using extensive
experiments, we showed that L1 data cache tuning can
reduce average power and EDP by 50.7% and 16.5%,
respectively, and increase the average IPC by 18.8%, as
compared to a static L1 data cache. We also showed that,
in general, the L1 data cache offers more promise for
GPGPU optimization than the L2 data cache. Our results
also revealed that the reservation failures may be used to
predict when to switch to a new cache configuration and
what that configuration may be. Finally, we implemented
a simple heuristic to autonomously tune the L1D cache,
showing optimal configuration predictions in all applica-
tions while significantly reducing the design space.

For future work, we intend to explore an interlaced
tuning of the L1 and L2 caches. This interlaced tuning
will significantly increase the design space, and potentially
lead to higher optimization potential. Given a larger design
space, we also intend to explore techniques for optimizing
the cache tuning heuristic to determine optimal configu-
rations while exploring a small subset of the design space.
We also intend to design a prediction scheme, leveraging
reservation failures, to predict the best cache configura-
tions for application phases in a GPGPU. Also, we plan
to extensively evaluate and explore additional techniques
for implementing configurable caches and cache tuning in
GPGPUs, while accruing minimal runtime overheads.
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