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Abstract—Caches have significant impact on an embedded
system’s performance and energy consumption. As a result, much
prior research has focused on cache optimizations to minimize
energy consumption and improve performance. Caches are also
highly susceptible to side channel attacks, wherein an attacker
analyzes leaked information from side channels to extract private
information. A key challenge of security mechanisms is that
they incur overheads, which can potentially impede optimization
goals. Since configurability has been widely studied as a viable
and effective cache optimization, we explore using configurability
as a moving target defense against cache side channel attacks,
while minimizing the attendant overheads of designing secure
caches. We present experimental results to show that using
configurability as a defense mechanism is very promising, and
present future research directions towards enabling secure caches
through configurability.

Index Terms—Configurable memory, hardware security, cache
memories, low-power design, low-power embedded systems,
adaptable hardware, side-channel attacks.

I. INTRODUCTION AND MOTIVATION

Data encryption is often used to secure sensitive informa-
tion in modern embedded systems. Typically, cryptography
methods encrypt sensitive data so that the data can only be
accessed using a secret key. Even though data encryption
provides a high amount of security, attackers can still monitor
leaked information from side channels, such as execution time,
power consumption or heat, to decipher secret keys in order to
decrypt sensitive information. Caches are a common target of
these side channel attacks because secret keys and private data
are usually stored in the cache, especially shared caches (e.g.,
last level caches, LLCs). An attacker can monitor the cache
accesses performed by a critical process (e.g., cryptography),
in order to obtain leaking information, which is then analyzed
to extract private information. These attacks are especially
effective since attackers do not require physical access to ob-
serve the side channels; the attacks can be launched remotely
using non-privileged operations [8], [10].

Much prior work has studied cache side channel attacks,
and defense mechanisms for thwarting these attacks [11],
[18], [19]. These defense mechanisms typically introduce
overheads, such as energy consumption or execution time. In
several cases, the overheads are overlooked as long as secu-
rity is achieved [14], [18], [19]. Additionally, several cache
security approaches require that the caches be redesigned to

support the defense mechanisms [18]. In resource constrained
embedded systems, these overheads may be prohibitive.

Side channel attacks typically require that a victim’s pro-
cesses be monitored through the side channel for a given
period of time. During this period, the attacker must analyze
the information obtained through the side channels, such as the
mapping of memory accesses to cache sets, in order to deduce
useful information about the victim process. The attacker’s
ability to successfully gather this information relies on a
stable cache configuration and a pattern of memory accesses
[10]. Given this observation, we propose that cache side
channel attacks can be effectively thwarted by dynamically,
and frequently, changing the runtime cache configurations.
Changing the cache configurations alters the memory access
patterns and introduces noise into the side channel information
(e.g., energy/power profile); this noise prevents the system
stability required for the attacker to successfully gather usable
side channel information for accurate analysis.

In this paper, we explore a novel and low-overhead tech-
nique for securing the cache’s side channels, without the
concomitant overheads. We exploit cache configurability as
a moving target defense (MTD) [22] against side chan-
nel attacks. Configurability allows the cache’s configurations
(cache size, line size, associativity) to be dynamically spe-
cialized/tuned to executing applications’ resource requirements
in order to minimize dynamic energy [9], [20]. Therefore,
using configurability as a security mechanism also offers the
advantage of achieving other optimization goals (e.g., cache
access energy) if the configurations are carefully selected.

To this end, we present techniques for selecting appro-
priate cache configurations from a cache design space, and
dynamically changing the configurations at runtime. We em-
ploy configurability as a defense against a recently proposed
high-resolution LLC side channel attack [10], and show that
our approach effectively prevents the attacker from gathering
usable information for carrying out successful attacks. We also
evaluate our proposed approach using the Cache Side-channel
Vulnerability (CSV) metric [21] to quantify the amount of
noise introduced by the proposed work. Furthermore, we show,
through experimental results, that apart from defending against
attacks, the proposed approach also achieves substantial gains
in cache access energy and time, without incurring significant
overheads. We show that configurability offers much promise
as a security mechanism, and present future research directions978-1-5090-6762-6/17/$31.00 c©2017 IEEE



for enabling configurability as a defense mechanism against
cache side channel attacks.

II. BACKGROUND AND RELATED WORK

A. Cache Side Channel Attacks

In general, caches (specifically the LLC) are especially
susceptible to two key types of side channel attacks: timing
analysis [17] and power analysis [13] attacks. In timing
attacks, an attacker observes and analyzes the time it takes
to respond to various cache accesses (or a process’ overall
execution time) in order to extract secrets stored in the victim’s
cache. Similarly, power attacks monitor the power profile of
the cache to identify the occurrences of cache accesses and
misses, which can be analyzed (e.g., through differential power
analysis [6]) to infer private information. These attacks are
easy to implement, do not require special instruments, and are
especially effective on embedded systems [18].

Several hardware solutions have been proposed to secure
the cache side channel. Wang et al. [18] proposed a partition-
based cache design (PLcache) and the random permutation
cache (RPcache) for thwarting side channel attacks. The
PLcache preloads critical cache lines into the cache and locks
those lines, such that an attacker is unable to evict those
lines or exploit timing variations from caching those lines.
The RPcache randomizes the cache-to-memory mapping by
storing the mapping in a permutation table and swapping
entries to randomize. Similarly, Domnitser et al. [8] proposed
the non-monopolizable cache—another partitioning scheme—
which dynamically reserves cache lines for active threads and
prevents other co-executing threads from evicting the reserved
lines.

Our proposed approach is motivated by the fact that cache
side channel attacks (specifically, timing and power analysis
attacks) rely on the attacker’s ability to consistently monitor
the cache’s access patterns, and timing and power behaviors
through the cache side channels [19]. Thus, introducing noise
into the cache access patterns, and timing and power profiles
can successfully thwart these attacks. Dynamically tuning the
cache configuration at runtime introduces noise by continu-
ously changing the cache access patterns, thereby undermining
the attacker’s ability to obtain usable side channel profiles.

B. Configurable Caches

Configurable caches have been widely studied as a viable
optimization for minimizing the cache’s energy consumption
[20]. Configurability allows the cache’s configurations to be
dynamically tuned to executing applications’ (or application
phases’) runtime resource requirements, thereby reducing the
energy overheads from over-provisioned caches.

For our work, we use a highly configurable 2 MB L2 cache
with 32 KB banks, and a 16 byte physical line size. The
cache provides dynamic configuration of the total cache size,
associativity, and line size using small bit-width configuration
registers, similar to the configurable cache proposed in [20].
The cache has physical ways implemented in individual cache
banks that can be shutdown to configure the cache size
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Fig. 1: Illustration of configurability as a defense

(way shutdown) or concatenated to configure the associativity
(way concatenation). Given a base physical line size, multiple
physical lines can be fetched to logically configure larger
line sizes (multi-line fetch). Using this configurable cache, the
overall cache energy consumption can be significantly reduced
compared to a non-configurable cache [9].

Details of the configurable parameters are presented in
Section IV. Augmenting the cache to support this configura-
bility imposes minimal overheads on the cache’s hardware and
critical path, making it a viable option for resource-constrained
embedded systems [20].

III. CONFIGURABILITY AS A DEFENSE

Configurable caches provide a new opportunity for thwart-
ing side channel attacks. The proposed work has the key
advantage of using a well-studied and effective low-overhead
cache optimization technique as a defense mechanism. The
goal is to dynamically change cache configurations in order
to introduce noise and obfuscate the LLC’s timing and power
profile, without introducing cache access overheads with re-
spect to the base configuration.

A. Attack Model, Assumptions, and Defense Mechanism

Figure 1 illustrates the attack model considered in this
work, and how the proposed approach thwarts the attack. To
represent state-of-the-art cache side channel attacks, we use an
active attack model recently proposed in [10], which is based
on the Prime+probe [11] attack model. The attack comprises of
three stages: pre-attack, active attack, and post-attack. In the
pre-attack stage, which relies on a stable cache configuration,
the attacker first reverse engineers the index mapping of the
cache, finds conflict sets for all cache lines, and then finds the
page with the lookup table that the victim uses. In the active
attack stage, which also depends on a stable configuration, the
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Fig. 2: Major components of the target system



attacker uses information from the pre-attack stage to prime
some cache sets with data, and then probe the sets to measure
the runtime, in order to determine cache hits or misses. Finally,
in the post-attack stage, the attacker uses heuristics to clean
up the collected data, and performs analysis to reconstruct the
secret key. We direct the reader to [10] for details on this
attack model.

Figure 2 depicts the major components of our target system:
on-chip microprocessors with separate level one (L1) instruc-
tion and data caches with static configurations, a hardware
cache tuner, and a shared configurable L2 cache (the LLC).
The tuner is a low-overhead hardware structure [4] that orches-
trates the tuning process for thwarting side channel attacks.
The tuner also contains the configuration table, which stores
configuration subsets for each application/application domain
(Section III-B). We assume that the executing applications (or
application domains) are known a priori, as it is common to
use benchmarks to evaluate the cache design space; however,
for future work, we intend to extend our approach to a more
generalized system with unknown applications. Similar to the
attack model, we also assume that the attacker and victim do
not share a core. Allowing simultaneous multi-threading of
untrusted processes exacerbates security issues, as it enables
the spy to interfere synchronously with the victim [15] and
exposes other side channels [3].

Unlike conventional systems where a single configuration is
used throughout the attack, our defense approach changes the
cache configurations during the attack, in order to introduce
noise to the side channel information and obfuscate the cache
access patterns and timing/energy profile. Our proposed de-
fense targets the LLC since the LLC is shared between all
cores of the system, enabling active attacks [10]. Given a
last level cache with a known configuration design space, the
proposed approach determines a subset of configurations that
the LLC will be randomly reconfigured to at runtime. The
reconfiguration will occur at intervals that are less than the
minimum amount of time required by the attacker to complete
the analysis of the side channel information, i.e., the pre-attack
and active attack stages in our attack model (Figure 1).

By changing the cache configuration more often than the
minimum required time to complete cache behavior analysis,
the attacker is unable to determine collision groups and the
critical cache accesses. Furthermore, even if the attacker
manages to guess the correct cache configuration, the MTD
model causes changes in collision groups and critical cache
sets, rendering the attacker’s collision groups outdated.

Our proposed approach also mitigates passive timing attacks
and power analysis [18], which rely on the difference in timing
of cache hits or misses, and the power difference in the bits of
an encryption key being 0 or 1. With enough observed traces,
the differences become statistically significant and narrows the
attacker’s search space for the key. Our proposed approach
changes the hit and miss behavior of the cache at irregular
intervals, and adds noise to the observed traces, thus making
these attacks difficult.
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Fig. 3: Overview of design time cache configuration subsetting
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B. Determining the configuration subsets

We empirically found that only a small subset of configura-
tions is required to introduce sufficient noise to the observed
traces. Thus, we developed a design-time technique for de-
termining cache configuration subsets that do not degrade the
access energy/time as compared to the base configuration.

Figure 3 illustrates the design-time technique, called cache
configuration subsetting, for determining the cache configu-
rations for runtime use. Given the L2 cache design space
and the target metric (e.g., energy consumption), we first
generate all x possible combinations/subsets of configurations
c1...cn, where n is the total number of configurations in the
cache design space. x is the number of configurations in each
subset, and represents the configuration variability that will be
achieved during runtime. For our experiments, we empirically
determined that x = 5 provided sufficient variability among
the different configurations; larger values of x did not provide
much additional variation among the different configurations.

For each configuration subset, we then calculate the average
energy consumption achieved by the cache configurations
within each subset for a given application or application
domain. The average energy consumption is then compared
to a predefined energy threshold to determine the candidate
subsets that have average energy ≤ threshold (the candi-
date subsets contain candidate configurations). The threshold
represents the allowed increase in energy consumption as
compared to an optimization goal. For example, the threshold
could be the base configuration’s energy consumption; that is,
the average energy must be less than or equal to the base
configuration’s energy consumption.

Given the subsets with average energy ≤ threshold, we
populate the configuration table entry for each application with
the subset that has the largest standard deviation among the
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configurations’ energy values. Selecting the subsets with large
standard deviations ensures that the maximum noise possible
is introduced, while minimizing the overheads of ensuring
security.

C. Runtime cache reconfiguration

Figure 4 depicts the runtime process for changing the
cache configurations to thwart side channel attacks, as or-
chestrated by the tuner. When an application Ai is executed,
the tuner searches for the application’s configuration subset,
Configs[Ai] in the configuration table, which contains all
applications’ configuration subsets. The tuner then randomizes
the configurations in Configs[Ai], and executes Ai in each
of the configurations for a duration max time. Max time
represents a duration of time that is less than the minimum
amount of time that the attacker requires to collect information
about the cache characteristics (Figure 1). For example, the
attack presented in [10] takes at least 155 seconds to complete.
Thus, for this attack, using any arbitrary max time < 155sec
will suffice. When all the configurations have been used, the
tuner re-randomizes Configs[Ai], and continues the iterations
until Ai is completely executed.

IV. EXPERIMENTS

A. Evaluation Methodology

We implemented the proposed approach using GEM5 [5]
simulations to model a quad-core embedded system micro-
processor with base cache configurations similar to the ARM
Cortex A15 microprocessor [1]. We used an ARM architecture
to illustrate the ability of our approach to minimize overheads
in resource-constrained systems; however, the proposed ap-
proach applies to other architectures as well.

TABLE I: Cache configurations.
Configuration Parameters

Static L1 i/d caches 32 KB, 4-way, 64 byte line size
8 KB banks

Configurable L2 cache
128 KB → 2 MB, 4- → 16-way,

16 → 128 byte line size,
32 KB banks

Table I depicts the configurations modeled in our exper-
iments. We modeled a system featuring static private L1
instruction and data caches with 32 KB size, 4-way set
associativity, and 64 byte line sizes. The configurable L2
cache featured a base configuration of 2 MB size, 16-way
set associativity, 128 byte line size, and 32 KB banks. The L2
cache configuration design space ranged from 128 KB to 2 MB
size, 4- to 16-way set associativity, and 16 to 128 byte lines.
We used CACTI [12] to determine the cache access energy
and latencies for the different configurations shown in Table
I.

To evaluate our approach with a variety of applications,
we used nine arbitrary benchmarks from the SPEC CPU2006
benchmark suite [2], while ensuring that different kinds of ap-
plications (memory and compute intensive) were represented.
We assumed that all the applications were critical and required
the security mechanism. We cross-compiled the benchmarks
for the ARM instruction set architecture, and executed the
reference input sets for the first 300 million instructions.

We developed a program to perform the cache configuration
subsetting as described shown in Figure 3 (Section III-B).
We used the optimal cache configuration (determined through
exhaustive search) as the baseline for the threshold. We
defined the threshold as threshold = optimal+ optimal ∗ δ,
where optimal is the access energy achieved by the optimal
configuration, and δ is a fraction that represents the increase in
energy consumption from the optimal. We also ensured that the
threshold value was always less than the base configuration’s
energy consumption; thus, our approach never degraded the
energy configuration as compared to the base configuration.
We experimented with several values of δ for each application,
and determined the lowest values of δ that yielded candidate
subsets. Thus, δ ranged from 0.2 to 0.7 for the different
applications. Since an application may have multiple candidate
subsets (for example, bzip2 had 81 candidate subsets for
δ = 0.4), our program calculates each candidate subset’s
standard deviation, and selects the subset with the highest
standard deviation for runtime use in the configurable L2
cache.

B. Results

1) Security Analysis: To enable detailed analysis, and for
brevity, we only show the security analysis for mcf and
bzip2 to represent memory- and compute-intensive workloads,
respectively. Since side channel attacks rely on an attacker’s
ability to recover traces of the cache’s behavior [14], we first
evaluated the security of the proposed approach by gathering
cache traces and observing the changes in cache access pat-
terns when using the candidate subsets as compared to the
base configuration. Figure 5 depicts a snapshot of the cache
access pattern for the proposed approach (configSecurity in the
figure), using different candidate subsets, as compared to the
base configuration. For illustration, we only show a snapshot
of 100 cache accesses, wherein the configuration is changed
after every 20 accesses (the vertical dashed lines represent the
configuration transition points).
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Fig. 5: Snapshot of cache access patterns for different configurations in the candidate subsets as compared to the base
configuration. Vertical dashed lines represent points of configuration change; 1 denotes a cache miss; 0 denotes a cache
hit

As shown in Figure 5, unlike the base configuration, which
yields a relatively stable pattern that can be exploited by an
attacker, our approach obfuscates the cache access patterns
due to the different cache configurations. Thus, using our
approach, the attacker is unable to infer the access behavior
of critical cache lines (our experiments assume all cache lines
are critical).

To further evaluate and quantify the security achieved by
the proposed approach as compared to a base cache, we used
the Cache Side-channel Vulnerability (CSV) metric. Previous
work [21] has shown that the CSV is an improvement over
the Side-Channel Vulnerability Factor (SVF) for measuring
side channel security (we direct the reader to [21] for details
on the CSV). To calculate the Pearson’s correlation coefficient
[21], which provides a measure of the CSV, we collected 5000
accesses in the execution trace from the base cache and the
trace of the configurable cache. The Pearson’s correlation, in
our experiments, quantifies how much noise configurability
introduces into the cache trace, where 0 means no correlation
between the traces (i.e., most difficult to attack) and 1 is
completely correlated (easiest to attack).

Let v1,···, vn be the configurable cache’s execution trace
(victim’s actual trace) and a1,···, an be the attacker’s execution
trace. For any access i, vi and ai are 0 if the access hits in the
cache and 1 if the access misses. We computed the Pearson’s
correlation coefficient R between the two traces as follows:

R =

∑n
i=1 (vi − v)(ai − a)

σv × σa
where v, a are the average of victim and attacker traces and
σa, σv are the standard deviations.

We found that for mcf and bzip2, R was 0.0440 and 0.4141,
respectively. Even though bzip2 had a much larger R than mcf,
both values were small enough to ensure that the actual side
channel trace was obfuscated from the attacker’s view. We
attribute the significant difference in R to the disparity in mcf’s
and bzip2’s memory access characteristics—mcf features a
much higher runtime variability in memory accesses.

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Im
p

ro
v

em
en

t 
o

v
er

 t
h

e 
b

as
e 

co
n
fi

g
u
ra

ti
o
n

access energy access time

Fig. 6: L2 cache access energy and time achieved by candidate
configurations as compared to the base configuration

We also analyzed the changes in energy profile achieved by
the different candidate cache configurations (graphs omitted
for brevity). We observed that there was significant variation
in the energy profiles between different configurations; this
variation undermines an attacker’s ability to gather stable
information from the cache side channel.

2) Access Energy and Time: As expected, employing con-
figurability also benefited the L2 cache’s access energy and
time as compared to the base configuration. All the candidate
subsets significantly improved over the base configuration. We
also observed, however, that our approach traded off achieving
the optimal configuration for security.

Figure 6 depicts the access energy and time improvement
achieved by our proposed approach as compared to the base
configuration for all nine benchmarks. The graph represents
the average access energy and time when using all five candi-
date configurations for each benchmark. The configurations
were randomly used throughout execution, while the base
configuration remained stable in the base system.

On average over all the benchmarks, our approach improved
the L2 cache access energy and time by 80% and 43%
respectively. Such high improvements were possible due to the
a priori knowledge of the applications, which allowed careful
configuration subset selection (Section III-B). In addition,
this improvement is localized to the L2 cache, and does not



necessarily represent such a magnitude of improvement for the
whole memory hierarchy or the whole system. However, these
results show the promise of the proposed approach to prevent
side channel attacks without introducing cache access energy
and time overheads.

3) Hardware and Runtime Overheads: The major sources
of overhead imposed by the proposed approach are the hard-
ware overheads resulting from the cache tuner (Section III-A),
which stores the candidate configurations and orchestrates
the cache configuration process (Figure 4), and the time it
takes to reconfigure the cache, which can be measured in
terms of the tuning stall cycles [16]. We have estimated,
using synthesizable VHDL and Synopsys Design Compiler
[7] simulations, that the proposed work introduces minimal
overheads. The hardware tuner comprises less than 1% area
and power overheads, as compared to the ARM Cortex A15
processor. On average, each configuration change accrued 258
tuning stall cycles, which translates to 0.136 µs.

V. FUTURE RESEARCH DIRECTIONS

The work presented herein involves some caveats and
assumptions that present opportunities for future research.
First, we assumed that the executing applications are known a
priori. This assumption limits the applicability of the proposed
approach to general purpose embedded systems that execute
a wide variety of applications, many of which may not be
known at design time. Thus, one key future research direction
is extending the proposed approach to systems with unknown
applications. Second, further exploration is necessary to con-
sider tradeoffs in changing the number of configurations, x,
within each candidate subset. In this work, we empirically
determined that x = 5 was sufficient, however, different kinds
of workloads may require a different number of configurations.
Additionally, it may be necessary to have a variable x to fully
capture a system’s runtime security needs.

Another key variable that necessitates further exploration is
how often the cache must be reconfigured in order to thwart
side channel attacks. While the proposed approach suffices
for a system with a known attack model, we intend to study
how configurability can be applied to systems where the attack
model is not known beforehand, or systems in which the attack
model changes during runtime. We intend to further explore
the configuration variability within each candidate subset, and
explore how much variability is required to ensure security.
Finally, we plan to explore the interplay between L1 and L2
cache configurability for achieving both energy optimization
and security, without introducing significant overheads.

VI. CONCLUSIONS

In this paper, we explored using configurability as a de-
fense against side channel attacks on the last level cache.
Configurability provides a moving target defense, wherein
cache configurations are dynamically changed at runtime to
obfuscate the cache’s behavior. Thus, an attacker is prevented
from obtaining sufficient information with which to analyze
the cache’s characteristics. We presented analysis to show

that security can be achieved using configurability, while
preventing the concomitant overheads of traditional hardware
security techniques (e.g., energy and time overheads). Since
we assumed a system where executing applications are known
at design time, we presented future research directions for
enabling the proposed approach in a system where the runtime
applications are not known a priori.
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