This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

PhLock: A Cache Energy

Saving Technique Using

Phase-Based Cache Locking

Tosiron Adegbija™, Member, IEEE, and Ann Gordon-Ross, Member, IEEE

Abstract— Caches are commonly used to bridge the processor-
memory performance gap in embedded systems. Since embedded
systems typically have stringent design constraints imposed by
physical size, battery capacity, and real-time deadlines much
research focuses on cache optimizations, such as improved
performance and/or reduced energy consumption. Cache locking
is a popular cache optimization that loads and retains/locks
selected memory contents from an executing application into
the cache to increase the cache’s predictability. Previous work
has shown that cache locking also has the potential to improve
cache energy consumption. In this paper, we introduce phase-
based cache locking, PhLock, which leverages an application’s
varying runtime characteristics to dynamically select the locked
memory contents to optimize cache energy consumption. Using
a variety of applications from the SPEC2006 and MiBench
benchmark suites, experimental results show that PhLock is
promising for reducing both the instruction and data caches’
energy consumption. As compared to a nonlocking cache, PhLock
reduced the instruction and data cache energy consumption by an
average of 5% and 39 %, respectively, for SPEC2006 applications,
and by 75% and 14 %, respectively, for MiBench benchmarks.

Index Terms— Adaptable computing, cache locking,
configurable caches, dynamic optimization, energy savings,
low-power embedded systems, persistent phases, phase-based
tuning.

I. INTRODUCTION AND MOTIVATION

ACHES are commonly used in embedded systems

to bridge the processor-memory performance gap by
exploiting the spatial and temporal locality of memory
accesses. However, caches can contribute significantly to
overall system energy consumption, especially in resource-
constrained embedded systems. As the cache’s actual power
consumption varies in different systems, the cache has been
estimated to consume from 16% to 50% of the total chip
power in a variety of processors [21], [22]. Therefore, much
research focuses on cache optimizations that minimize the

Manuscript received June 2, 2017; revised August 23, 2017; accepted
September 25, 2017. This work was supported in part by the National
Science Foundation under Grant CNS-0953447. (Corresponding author:
Tosiron Adegbija.)

T. Adegbija is with the Department of Electrical and Computer
Engineering, University of Arizona, Tucson, AZ 85721 USA (e-mail:
tosiron @email.arizona.edu).

A. Gordon-Ross is with the Center for High Performance Reconfigurable
Computing, University of Florida, Gainesville, FL 32611 USA (e-mail:
anngordonross @ufl.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSL.2017.2757477

energy consumption—without degrading the performance—
and satisfy the system’s design constraints. Embedded systems
are especially viable candidates for these optimizations, since
they have intrinsic design constraints imposed by physical size,
battery capacity, real-time deadlines, and consumer market
competition.

Cache locking is a popular cache optimization that loads and
retains/locks selected memory blocks (regions of instruction
and/or data addresses) from an executing application into the
cache. Cache locking can be done either at system startup (sta-
tic cache locking) or dynamically during runtime (dynamic
cache locking), and is available in modern embedded proces-
sors, such as the ARM Cortex A* series processors [1]. These
cores support special lock subroutines that lock the selected
contents into the cache such that locked contents cannot be
evicted by the cache’s replacement policy. Since accesses
to locked contents will always produce a cache hit, these
addresses’ access times are predictable.

Cache locking research has traditionally focused on improv-
ing the cache’s execution time predictability, especially in real-
time systems where the worst case execution time (WCET)
must be estimated [29]. In real-time systems, the cache con-
tents are typically known statically and cache locking ensures
that the memory access times and cache-related preemption
delays are predictable for the locked contents, allowing tighter
WCET estimation. Previous work [16] showed that cache
locking benefits also include improved cache performance
in general-purpose embedded systems by eliminating conflict
misses and guaranteeing a hit for the locked contents. Addi-
tionally, cache locking can reduce dynamic energy since cache
locking can reduce cache misses, and thus reduce the energy
consumed from accessing lower memory levels and associated
stalls.

However, cache locking also reduces the cache’s overall
utilization. Since portions of the cache are exclusively used for
the locked contents, the effective cache capacity is reduced and
conflict misses may increase for the memory blocks that are
not locked. For cache locking to be effective, the locked con-
tents must represent application regions that significantly affect
overall cache performance and energy consumption. If the
contents are poorly selected, cache locking can significantly
degrade the performance [34] and/or energy.

Anand and Barua [5], Liang and Mitra [16], and
Liu et al. [18] used cache locking to optimize instruction
cache performance in general-purpose embedded systems.
However, none of these works evaluated the energy

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2800-4834

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

benefits of cache locking. Additionally, most current cache
locking techniques target one cache—either the instruction
cache or the data cache—and involve techniques specific
to the targeted cache’s access characteristics. A technique
developed specifically for the instruction cache, for example,
would be ineffective for the data cache.

Instruction and data caches exhibit different access char-
acteristics during runtime. Even though applications typically
have phases of execution during which the execution character-
istics [e.g., cache miss rates (CMRs), branch mispredicts, and
instructions per cycle (IPC)] are relatively stable, the instruc-
tion and data characteristics of these phases vary. The pattern
of instruction variability remains stable throughout the exe-
cution, since instructions remain fixed during execution. Data
streams, on the other hand, may vary during runtime, changing
the application’s execution characteristics. In addition, since
an application typically processes much more data than the
number of instructions executed, an instruction cache locking
technique, if applied directly to the data cache, would require
a large data cache and/or potentially result in runtime overhead
in terms of performance and/or energy. These overheads result
from the complex runtime analysis required due to the inherent
runtime variability of data caching [34]. Thus, our goal is a
dynamic cache locking technique that is low overhead and can
be used for both instruction and data caches in general-purpose
embedded systems.

In this paper, we propose a new method for using cache
locking to achieve energy savings, with minimal perfor-
mance degradations, in general-purpose embedded systems.
We propose PhLock'—Phase-based Cache Locking as a
low-overhead dynamic cache locking technique for both the
instruction and data caches. PhLock is motivated by the obser-
vation that even though applications typically have several
phases during runtime, a few of the phases are usually persis-
tent. Persistent phases feature instructions that are frequently
executed or data blocks with high reuse.

PhLock leverages application phase changes and data reuse
to dynamically determine and change the locked contents
at runtime. PhLock is based on the premise that cache
energy consumption can be optimized if persistent memory
blocks—high-reuse instructions and data blocks—are locked
in the cache, guaranteeing that all accesses to those blocks
are cache hits. PhLock locks those persistent phases’ instruc-
tions or data in the cache, thereby eliminating the conflict
misses for those phases. Using PhLock, the locked cache
contents are dynamically selected, loaded, and retained at
runtime based on the application’s intrinsic runtime variable
characteristics.

Although the key goal of PhLock is to reduce the cache’s
energy consumption, especially in general-purpose embedded
systems, PhLock also improves the cache’s performance. Our
contributions are summarized as follows.

1) We propose PhLock, which dynamically determines the

locked contents based on applications’ persistent phases.

2) PhLock reduces the energy consumption, with minimal

performance degradation, for both the instruction and

IPronounced “flock”

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

data caches as compared to a nonlocking cache. PhLock
also dynamically determines the benefits of cache lock-
ing and only locks the cache when such benefit exists.

3) Using PhLock, we analyze the benefits of cache locking

in instruction and data caches for improving cache
energy consumption and performance, and show that
these benefits are dependent on the kind of applications
being executed.

To illustrate PhLock’s benefits in different execution scenar-
ios and for a variety of applications, we perform experiments
using SimpleScalar simulator [10] and benchmarks from the
SPEC CPU2006 [3] and MiBench [14] suites. Results reveal
that as compared to a nonlocking cache, PhLock reduces the
average instruction and data cache energy by 5% and 39%,
respectively, for SPEC2006 applications, and by 75% and
14%, respectively, for MiBench benchmarks.

II. BACKGROUND AND RELATED WORK

Much prior work has studied the WCET estimation benefits
of cache locking. In addition, much work has studied phase
classification for exploiting an application’s runtime variabil-
ity. Our cache locking technique, PhLock, uses application
phases and the phases’ persistence to determine the locked
contents during runtime in order to dynamically optimize
the cache’s energy without degrading the performance. Addi-
tionally, our technique caters to general-purpose embedded
systems, where the applications are unknown a priori and
typically execute multiple times throughout the system’s life-
time. In this section, we present a general related work and
background on cache locking and phase classification, which
we leverage for dynamically selecting the locked contents.

A. Cache Locking

Cache locking was primarily developed for hard real-time
systems. Cache locking can be full [7], [18], [35] or par-
tial [12], [19], [25]. In full cache locking, the whole cache is
locked, such that all accesses to unlocked cache blocks result
in misses. Even though full cache locking may be beneficial for
higher predictability when the applications are known a priori,
the performance can be significantly degraded due to increased
cache misses. Alternatively, partial cache locking only locks
a fraction of the cache; the unlocked portion of the cache
works with normal cache replacement enabled. In this paper,
we employ partial cache locking, since it has performance
benefits as compared with full cache locking.

The chief goal of cache locking is to improve the cache’s
predictability and to facilitate tighter WCET estimations as
compared to a system with a nonlocking cache [23]. Since
cache locking reduces the effective cache utilization, one of
the major challenges of effective cache locking is determining
the locked contents.

In general, cache locking can be broadly classified, with
respect to how and when the locked contents are determined
and/or changed: static cache locking [13] and dynamic cache
locking [26]. In static cache locking, application character-
istics are statically analyzed a priori, the locked contents
are determined and remain constant throughout the execution.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ADEGBIJA AND GORDON-ROSS: CACHE ENERGY SAVING TECHNIQUE USING PHASE-BASED CACHE LOCKING 3

Although static cache locking works well when application
characteristics are known at design time [27], these character-
istics may change during execution due to changing execution
conditions or input data. Assuming a priori knowledge of
applications makes these methods’ inapplicable to general-
purpose embedded systems (e.g., smartphones, tablets, and so
on), which typically execute a large variety of applications
that are unknown at design time. In such systems, static cache
locking can significantly degrade the overall performance,
energy, and even the WCET estimation.

Puaut and Decotigny [27] proposed greedy algorithms
for selecting the locked contents in hard real-time systems.
Vera et al. [34] combined compile-time cache analysis with
data cache locking to enable tight WCET estimation in real-
time systems. Since these methods targeted real-time embed-
ded systems where the executing applications are typically
known a priori, and required design-time analysis of the
applications, the proposed methods are inapplicable to general-
purpose embedded systems. Furthermore, even though these
methods improved cache predictability, they did not explicitly
focus on improving the cache’s energy; they could poten-
tially degrade the cache’s energy consumption as a result of
increased conflict misses and lower level memory accesses for
the unlocked blocks [34].

In contrast, dynamic cache locking [12], [26], [34]
selects the locked contents during runtime. In some cases
(see [6], [12]), the locked contents are determined statically,
and locked at runtime to account for variable execution
conditions. This technique adjusts the locked contents at
runtime in order to further improve cache predictability and
reduce dependence on a priori application analysis and the
prior knowledge of cache content. In addition, dynamic cache
locking can account for changes in working set size and enable
better utilization than static cache locking [23]. Thus, dynamic
cache locking is especially useful for general-purpose systems
where the applications are unknown a priori.

Apart from improving the real-time systems’ cache pre-
dictability, cache locking can also benefit general-purpose
systems for improving the cache’s energy consumption without
much performance degradation. To improve the cache perfor-
mance, Liang and Mitra [16] and Liang er al. [17] presented
an instruction cache locking heuristic to select the locked
contents in order to realize the performance benefits of cache
locking by reducing the conflict misses. The proposed heuristic
reduced the CMRs by up to 24%. Similarly, to improve the
instruction cache performance, Anand and Barua [6] proposed
a cache locking technique that first analyzed the program
code to determine potential program regions for locking, and
then used a heuristic to select the appropriate locked contents
during runtime, based on changes in program locality.

Anand and Barua [5] used detailed, iterative cache sim-
ulations to evaluate the performance benefits for locking
different memory blocks. However, due to the detailed cache
simulations and number of iterations involved, this method
would incur significant runtime overhead if used for dynamic
cache locking. Additionally, since the authors used static
cache locking, this method is not applicable to systems
where the executing applications are unknown a priori.

Liu et al. [18] proposed an algorithm that dynamically deter-
mined the instruction cache’s locked contents to improve the
average-case execution time. However, these works did not
evaluate the energy benefits of cache locking, and since these
works focused on the instruction cache, the inherent runtime
variability of data caches were not considered.

Using simulations, Asaduzzaman et al. [7] showed that
cache locking could potentially improve cache performance
and reduce power consumption. Asaduzzaman et al. [8] pre-
sented a cache locking technique that locked cache lines that
caused the highest number of misses in order to improve
the cache’s performance. Kang et al. [33] used a dynamic
programming algorithm to predetermine the locked contents in
order to improve the cache’s power consumption and perfor-
mance. However, since the locked contents are predetermined,
the proposed method is constrained to systems where the
executing applications are known a priori.

Our work differs from the previous cache locking methods
by using dynamic cache locking in both the instruction and
data caches to optimize the cache’s energy consumption, with-
out degrading the performance. We propose PhLock, a phase-
based methodology, that dynamically selects the locked con-
tents, incurs minimal runtime overhead, and makes our work
applicable to general-purpose embedded systems, where the
executing applications may be unknown a priori.

B. Phase Classification

Since dynamically leveraging phase characteristics can sig-
nificantly increase optimization potential by specializing the
optimizations to different phases of execution [15], [32],
much prior work explored different phase classification tech-
niques. Sherwood et al. [32] showed that phase classification
using basic block distribution was highly correlated with
application characteristics, such as CMRs, IPC, and branch
mispredictions. Hamerly ez al. [15] created SimPoint, which
used machine-learning techniques to identify an application’s
phases by analyzing basic block vectors that were annotated
with the block’s execution frequency. Shen et al. [30] showed
a strong correlation between data locality and an application’s
phase characteristics, and showed that data reuse patterns
could be used to classify phases. Since phase characteristics
are strongly correlated with the phases’ data reuse patterns,
our work leverages phase classification and the phases’ data
reuse to select an application’s locked contents to optimize the
data cache’s performance and energy consumption.

III. PHASE-BASED CACHE LOCKING

Fig. 1 presents an overview of our phase-based cache
locking methodology, PhLock, which selects the locked con-
tents such that the cache’s energy consumption are improved
compared to a default nonlocking cache. When an application
A; is first executed, using the unlocked cache, the applica-
tion’s phases are classified to determine the phases’ persis-
tence, CMRs, and base energy consumption (Section III-C).
The PhLock algorithm (Section III-E) then determines if the
application will benefit from cache locking based on the
most persistent phases or phases with the highest CMRs.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS
ettt ettt N _
Application 4; 1 Phase PhLock algorithm | : :
executed ! classification Persistence; - 1 | Processing core 1 |<_> L1 >
! . | | Persistence benefit || ! | ; H
H miss rates; H Instruction cache
' energy determination ' : :
E ¢Energy i | ¢ |
' n ' | |
\ PhLock Miss rates benefit || | PhLock module I
: determination : : : B
: Energy o Phase dassification module (PCM) | é
i ; | ! Locked
H E T Store locked ! 11| Phase history table || Phase dlassification | || Phlock algorithm &} ms;’;;ﬁ;’ rgzﬁm : g
E xecute A; wit e i LCTET E | (PHT) algorithm | =
1| locked contents : : :
e . i I |
| § |
. . . | |
Fig. 1. High-level overview of PhLock’s workflow. I |
| Processing core 2 L1 >
i i1
Index e ——— /4=
Fig. 3. High-level overview of the PhLock architecture.
D|V|S L Tag Data & g
Fig. 2. Cache line with a locking bit. D = dirtybit; V = validbit;

S = sharingbit; L = locking bit.

These two options are compared to the nonlocking cache,
so that PhLock never degrades the energy consumption com-
pared to the nonlocking cache. The locked contents that
achieve lowest energy consumption are then stored in a locked
contents history table—LCHT—for subsequent executions of
A; (Section III-B).

In this section, we describe the details of PhLock: the
architecture and implementation, an analysis of persistent
phases that motivates our work, our methodology for selecting
the locked contents based on phases’ persistence, and the
PhLock algorithm.

A. PhLock Architecture and Implementation

Cache locking can be implemented as line lock-
ing [12] or way locking [7]. Line locking enables individual
lines to be locked for different cache sets, as opposed to way
locking, where all the lines in a particular cache way are
locked. Line locking is more widely implemented, and can
easily be implemented with low overhead; an additional lock-
ing bit is added to the cache block to indicate whether or not
the block is locked. Thus, the cache’s replacement algorithm
skips any blocks with the lock bit set. In this paper, we assume
line locking, which is supported in some members of the ARM
processor family. Fig. 2 illustrates a cache line with a dirty
bit D (we assume a write-back cache), a valid bit V, a sharing
bit S, and a locking bit L.

Fig. 3 depicts a high-level overview of the PhLock architec-
ture for a sample dual-core system, where each core has private
level one (L 1) instruction and data caches. The PhLock module
connects directly to each core’s L1 instruction and data cache;
thus this architecture can be extended to any n-core system
by connecting the locking module to each core’s L1 caches.
Depending on the system, there could be a dedicated
PhLock module for each core—at the expense of area and
power overheads—or a single global PhLock module—at the
expense of time overhead, especially in a system with several
cores.

The PhLock module contains a phase classification mod-
ule (PCM), comprising of the phase classification algorithm
and a phase history table (PHT) (Section III-C). The phase
classification algorithm classifies the applications’ phases and
determines the phases’ persistence, which are then stored
in the PHT. The PhLock module also contains the PhLock
algorithm, which determines the locked contents, and an
LCHT, which stores the locked contents.

The PhLock module can be implemented in software, hard-
ware, or a combination of both. If implemented in software,
PhLock can use the system’s processor to execute phase classi-
fication and the PhLock algorithm, while the LCHT is stored
in SRAM. However, a software implementation may affect
the functional applications’ caches and runtime behavior due
to context switching. These effects could degrade PhLock’s
optimization potential. To mitigate the software implemen-
tation overheads, while maintaining ease of implementation,
we propose a combination of software and hardware, wherein
low-overhead hardware structures implement the PHT and
LCHT, while the rest of the PhLock module—phase classifi-
cation algorithm and PhLock algorithm—can be implemented
in software.

B. Locked Contents History Table

The LCHT is a small data structure with per-application
entries that retain information (memory addresses) of an appli-
cation’s locked phases’ instructions and/or data for subsequent
executions of that application. The size of LCHT can be
dynamic or fixed depending on the memory constraints of
the system, and a replacement policy, such as least recently
used (LRU), can be used when the table is full. When a new
application is executed, an entry is added to the LCHT for that
application.

Fig. 4 depicts the LCHT entry’s basic structure, which
includes: application A;’s identification ID; the memory
addresses of A;’s locked contents lockedContents(A;) as
selected by the PhLock algorithm; noLockedContents and
profile flags, which default to 0’ and indicate if A; benefits
from cache locking and if A; has been profiled, respectively;
and two fields to store A;’s CM R and energy consumption

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ADEGBIJA AND GORDON-ROSS: CACHE ENERGY SAVING TECHNIQUE USING PHASE-BASED CACHE LOCKING 5
noLockedContents a new phase. The threshold provides a tradeoff between the
11’"{"16 number of phases and the accuracy of phase classification.
A higher thresh value would result in fewer phases, but phases
===piD |lockedContents(A)| 0 | 0 i energy with disparate characteristics may be classified as one phase,
while a smaller thresh value would result in more phases.
Fig. 4. LCHT entry basic structure.

I=0...n
max _insts

App A, executed

n Lsize

n: number of intervals

I_size: interval size l
max_insts: maximum number of instructions

m: current number of phases
CMR: cache miss rate

Yes

Run interval

!

foreach P;in P;

AddIto P;
I++

AddlIto P,
I++

m+1

Fig. 5. Runtime phase classification algorithm.

while executing with a nonlocking cache for determining if
A; benefits from cache locking (Section III-E). The CM R is
measured using the microprocessor’s hardware performance
counters, while the energy is calculated using the energy model
in Fig. 7. We analyze the overhead of LCHT in Section IV.

C. Runtime Phase Classification

The PCM profiles the application with a nonlocking cache
during the application’s first execution, and uses (1) and (2)
to determine the phases’ persistence. For our work, we used
CMRs as the execution characteristic for classifying the
phases, since our optimization target is the cache. Prior work
has shown that the CMRs are sufficient for such classifica-
tions [4], [9], [28].

Fig. 5 illustrates the phase classification algorithm imple-
mented by the PCM. When a new application A; is executed,
the PCM partitions the application into intervals [= 0...n,
each of size [_size instructions, a designer-specified variable.
For our work, we empirically determined that [_size =
1000000 instructions allowed for balance of fine-grained,
low-overhead, and accurate phase classification. A smaller
[_size would result in more unnecessary classifications, while
a larger [_size may reduce the classification accuracy.

For each application, there are n intervals. The PCM com-
pares each interval’s CMRs [CM R(I)] with CMRs of phases
stored in a PHT. The PHT is a data structure in the PCM
that stores classified phases’ program counters. If the interval’s
CMR is within a threshold (thresh, e.g., 5%) of any of the
stored phases, the PCM adds that interval’s head program
counter to the PHT. Otherwise, the PCM creates a new PHT
entry and designates the interval’s head program counter as

We assume that phase classification is performed without
cache locking; thus, the base energy is also recorded for each
application and stored in the PHT. When an application’s
phases have been classified, each phase’s persistence, p is then
calculated using 2 and stored in the PHT.

D. Persistent Phases

To select the locked contents, PhLock leverages application
execution locality; the majority of an application’s execution,
measured by the number of dynamic instructions executed,
typically occurs within a few persistent phases that access
the same data. The key idea of PhLock is that cache lines
that represent an application’s most frequently referenced data
and/or instructions are locked in the cache.

To ascertain the extent of application execution locality,
we analyzed several applications in the SPEC2006 benchmark
suite and their phases to evaluate the benefits of locking
these phases’ cache blocks. Our analysis revealed that for
cache locking to provide cache locking benefits, a phase P;’s
execution must comprise at least 10% of application A’s total
execution. Based on this observation, we define a phase P; as
persistent if

PieA:Ip;i >0.1x Lol (1

where A represents all of the phases in application A, Ip;
is P;’s number of instructions, and ;o) 1S A’s total number
of instructions. We quantify P;’s persistence p using the
percentage of A’s total execution that belongs to P;, where
p is given as

I .
p =21 % 100%. 2)

total

We note that persistence is a necessary, but not sufficient
condition for locking P; to provide cache locking benefits.

Fig. 6 analyzes phase persistence for an arbitrary sub-
set of five applications each from SPEC CPU2006 [3] and
MiBench [14] benchmark suites. The x-axis depicts the appli-
cations’ distinct phases (the number of phases per applica-
tion varies) and the y-axis depicts the percentage of each
application’s execution that belongs to each phase (total phase
execution percentage for each application totals 100%).

Fig. 6(a) shows that, for the SPEC2006 benchmarks,
the majority of applications have a few phases that are
significantly more persistent than the other phases, suggest-
ing that these application’s phases are amenable to cache
locking. For example, 56% of calculix’s execution is spent
in two phases, while the remaining 44% of the execution
is spent in the remaining six phases—7% on average for
each remaining phase with a 0.03 standard deviation. Fifty
one percent of gromacs’s execution is spent in two phases,
while the remaining 49% of the execution time is spent in
the remaining 14 phases—3% on average for each remaining

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6
45%
—@—astar ——— calculix h264ref gromacs e mcf
40%
35%
30%
o
ol
£ 25%
B 20%
o}
& 15%
10%
5%
0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Phases
(@)
70%
—@—sha ———rawcaudio fft CIC i rijndael
60%
50%
8
£ 40%
z
£ 30%
i
~
20%
10%
0%
1 2 3 4 5 6 7
Phases
(b)
Fig. 6. Phase persistence for (a) SPEC2006 and (b) MiBench benchmarks.

phase with a 0.02 standard deviation. Since only two phases
represent nearly half of calculix’ and gromacs’s execution,
these applications would benefit the most from cache locking
if these two most persistent phases were locked in the cache.
Alternatively, since h264ref’s execution is relatively evenly
spread across all of the application’s eight phases, h264ref
has less potential to benefit from PhLock since no phase has
a prominent persistence.

Fig. 6(b) shows a similar trend for MiBench. In general,
MiBench workloads have fewer phases and less variation
between the phases than SPEC2006. However, the MiBench
applications also showed a few phases that were more persis-
tent than others. For example, sha’s phases 1 and 4 comprise
31% and 54% of the total execution, while the remaining 16%
of execution is evenly distributed between phases 2 and 3.
Similarly, 44% of rijndael’s execution is spent in phase 2,
with the remaining execution distributed among the other
phases.

PhLock prioritizes the phases with the highest persistence
for cache locking. From prior analysis, we also observed that
while locking the most persistent phases achieved the most
energy savings benefits, some phases benefited more from
locking phases with the highest CMRs. Thus, PhLock contains
two locking modes—Ilocking based on phases’ persistence and
CMRs—and dynamically determines which mode achieves
the maximum energy saving benefits. PhLock also identifies
phases that will not benefit from locking, and executes those
with the base nonlocking cache to prevent performance and/or
energy degradation. Results in Section V verify these hypothe-
ses regarding the proposed PhLock technique.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

E. PhlLock Algorithm

Without loss of generality and considering general-purpose
embedded systems, we assume a system without preemption.
However, PhLock can easily incorporate preemption by saving
the profiling state of LCHT on application preemption, and
restoring the profiling state on resumption.

Algorithm 1 depicts our PhLock algorithm. The algo-
rithm uses two executions to determine which locking mode
achieves maximum benefits: locking based on phase per-
sistence or CMRs. The algorithm takes as input an array
of application A;’s phases (at P;) and the phases’ persis-
tence (p) and CMRs [CM R(P;)], as determined by the PCM
(Section III-C). The algorithm outputs an array of A;’s locked
contents’ memory addresses, @lockedContents(Ai).

For each application A;, if the LCHT contains no entry
for A;, PhLock indexes the application’s phases in descending
order of persistence and CMRs (lines 1-5), and selects phases
for locking in descending order until the size of the selected
memory blocks exceeds max LockedCache (lines 6—13). The
size of the selected memory blocks is calculated by the
number of unique 64-B blocks accessed by the selected phases.
max LockedCache is the maximum percentage of the cache
that can be locked, and defaults to 50%. We empirically deter-
mined that at least 50% of the cache must remain unlocked
to minimize conflict misses for the memory blocks that are
not locked for an application to benefit from cache locking.
We found this to be truer for SPEC2006 applications than the
MiBench applications since the SPEC2006 applications have
much larger working set sizes than the MiBench applications.
However, we kept the value at 50% to cater to the different
application working set sizes.

On the A;’s first execution, PhLock locks phases based
on the phases’ persistence (@lockedContents_pers), and
stores the energy achieved, energy_pers (lines 11-22).
Similarly, on the second execution, PhLock locks phases
based on the phases’ CMRs (@lockedContents_miss), and
stores the energy achieved, emnergy_miss (lines 23-27).
If both energy_pers and energy_miss increase the energy
as compared to a nonlocking cache, PhLock determines
that the cache locking does not benefit the application,
and sets noLockedContents_Ai to 1 (lines 28-30).
Otherwise, PhLock determines which locking mode
achieves the maximum benefits, stores the locked con-
tents (@lockedContents_pers or @lockedContents_miss)
indicating the best locking mode, and sets the profile
flag to 1 to indicate that A;’s locked contents have been
determined (lines 31-37).

If the LCHT contains an entry for A;’s locked contents
and profile is set (i.e., profiling is complete for A;),
load And Lock() triggers the processor’s cache locking sub-
routines (Section III-A), which load and lock A;’s locked
contents in the cache for the duration of A;’s execution
(lines 38-41). The loadAndLock() function looks up the
LCHT for the memory addresses of the locked contents, and
sets the locking bit L for the cache lines corresponding to
those addresses. Alternatively, if noLockedContents is set,
A; is executed with the nonlocking cache (lines 42—44).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ADEGBIJA AND GORDON-ROSS: CACHE ENERGY SAVING TECHNIQUE USING PHASE-BASED CACHE LOCKING 7

Algorithm 1 PhLock Algorithm

Input: QF;, p, CMR(FP;)
Output: @lockContents(Ai)
1: if !(lockedContents(Ai)) in LCHT then

2: #index the phases in descending order of persistence

3 @lock_phases_pers = sort {p{$b} < p{$a}} QP;

4: #index the phases in descending order of cache miss rates

5 @lock_phases_miss = sort {CMR(P;){$v} & CMR(P;){$a}} QF;
6: for all P;(@lock_phases_pers) do

7: while sizeOf(lockedContents_pers(Ai)) < sizeOf(maxLockedCache) do
8: push(@lockedContents_pers(Ai), F;);

9: end while

10: end for

11: for all P;(@lock_phases_miss) do

12: while sizeOf(lockedContents_miss(Ai)) < sizeOf(maxLockedCache) do
13: push(@lockedContents_miss(Ai), P;);

14: end while

15: end for

16: execution_Ai = 1;

17: else if lockedContents(Ai) in LCHT && execution_Ai = 1 then

18: #0n first execution, lock phases based on persistence

19: loadAndLock(@lockedContents_pers);

20: execute(Ai);

21: execution_Ai = 2;

22: energy_pers = energy(locking)

23: else if lockedContents(Ai) in LCHT && execution_Ai = 2 then

24: #0n second execution, lock phases based on cache miss rates

25: loadAndLock(@lockedContents_miss);

26: execute(Ai);

27: energy_miss = energy(locking)

28: if energy_pers > energy(non — locking) && energy_miss > energy(non-locking) then
29: #No locking benefits

30: noLockedContents_Ai = 1;

31 else if energy_pers < energy_miss then

32: @lockedContents(Ai) = @lockedContents_pers

33: else if energy_pers > energy_miss then

34: @lockedContents(Ai) = @lockedContents_miss

35: end if

36: storeLockedContents LCHT(A1);
37 profile = 1;

38: else if lockedContents(Ai) in LCHT && profile = 1 then

39: #locked contents have been determined
40: loadAndLock(@lockedContents(Ai));
41: execute(Ai);

42: else if noLockedContents_Ai = 1 then

43: #Ai has no locked contents

44: break;

45: end if

IV. COMPUTATIONAL COMPLEXITY AND
HARDWARE OVERHEADS
The PhLock algorithm sorts the N phases’
persistence and CMRs with worst case time complexity
O(NlogN), and selects the locked contents with
worst case time complexity O(N). Given that these
operations dominate the algorithm, the algorithm results

in minimal overhead and has
scalability.

PhLock’s hardware overheads comprise mainly of the area
and power overheads from the LCHT (Section III-A). PhLock
also includes a PHT as part of the PCM (Section III-C). The
structure of PHT can be easily implemented as a software-

or hardware-based lookup table. The table’s size depends on

computational good

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

the total number of distinct phases across all applications
running on the system. Much prior work [31], [32] has studied
the PHT’s structure and shown that these structures have
minimal impact on overall system area, performance, or energy
consumption. PhLock will not increase these overheads with
respect to the prior work.

We note that the LCHT can also be implemented in software
for easy system integration. However, a software implementa-
tion can adversely impact the application’s cache and runtime
behavior due to context switches. Thus, we detail a hardware
implementation of the LCHT.

To adhere to system memory constraints, the size of
LCHT can be fixed, and a replacement policy, such as
LRU, can be used when the table is full. To show that
PhLock constitutes minimal hardware area and power over-
head, we estimate the LCHT’s hardware/memory requirements
for a 32-entry LCHT. In this LCHT, 5 b store the ID, 32 b store
lockedContents(Ai), 1 b each stores the noLockedContents
and profile flags, and 16 b each store the CMR and energy.
Using these assumptions, we estimate from a synthesizable
VHDL implementation and synthesis using Synopsys Design
Compiler [11] that the 32-entry LCHT constitutes an area
of 2.48 um? and the power consumption of 56.72 uW.
Relative to a MIPS32 M 14K [2] 90-nm processor, which has
an area of 0.21 mm? and consumes 12 mW of power at
200 MHz, the 32-entry LCHT constitutes only 1.3% and 0.5%
area and power overheads, respectively.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

We quantified PhLock’s energy savings and performance
improvement using 20 benchmarks in total: 15 from the SPEC
CPU2006 benchmark suite, and executed using the reference
input sets, and 5 from the MiBench suite. All benchmarks
were compiled to Alpha/OSF binaries. In order to rigorously
test our methodology, we used SPEC benchmarks to represent
applications with high compute and memory intensity, and
significant runtime execution variability (i.e., more distinct
phases); we used MiBench to represent embedded systems
applications, which typically have fewer phases and less
interphase variability. We ran the MiBench benchmarks to
completion, and used the first 10 billion instructions from each
SPEC benchmark. We used SimPoint [15], with an interval
size of 1 million instructions, to classify the benchmarks’
phases and calculated the phases’ persistence using 2.

We modeled cache locking using Simplescalar-
AlphaLinux’s sim-outorder. We modeled an embedded
system microprocessor with base cache configurations
similar to the ARM Cortex Al15 [1] microprocessor with
32 KB, 4-way set associative private L1 instruction and data
caches with 64-B line sizes. We used sim-profile to collect
information about the phases memory accesses and data reuse.
We interfaced SimpleScalar with a software implementation
of the PhLock algorithm using Perl.

Fig. 7 depicts the energy model used to calculate the
L1 caches’ energy consumption. The model calculates the
cache’s dynamic and static energy, the energy required to fill
the cache on a miss, the energy consumed during a cache write

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

totalEnergy = dynamicEnergy + staticEnergy +fillEnergy +
writebackEnergy + cpuStallEnergy;

dynamicEnergy = totalAccesses * accessEnergy;

staticEnergy = (((totalMisses * penalty) +
(totalHits * hitCycles)) * staticEnergyPerCycle

staticEnergyPerCycle = dynamicEnergy * 0.25;

fillEnergy = (totalMisses * (linesize/wordsize) *
readEnergyPerWord) ;

writebackEnergy = (totalWritebacks * (linesize/wordsize) *
writeEnergyPerWord);

cpuStallEnergy = (((totalMisses * penalty) + (totalWritebacks *
writebackPenalty)) * cpuldleEnergy);

Fig. 7. Energy model.

back, and the energy consumed when the processor is stalled
during cache fills and write backs. We assumed instruction and
data cache access latencies of 1 cycle and a main memory
access latency of 80 cycles [20]. We used Simplescalar to
gather cache statistics, such as totalMisses, totalAccesses, and
totalWritebacks. We assumed the static energy per cycle to be
25% of the cache’s dynamic energy and the CPU idle energy
to be 25% of the MIPS M14K processor’s active energy [2].
We used CACTI [24] to determine the cache’s dynamic energy
for 90 nm technology.

B. Energy Savings for Instruction and Data Caches

1) SPEC2006: Fig. 8 depicts the instruction and data
caches’ energy savings achieved by PhLock for the
SPEC2006 benchmarks as compared to a nonlocking cache.
We also evaluated the overall cache impact of locking the
instruction and data caches individually. The results depict
the system after PhLock has selected the locked contents and
evaluated the cache locking benefits for the applications (i.e.,
after the first two executions have completed). Note that
these first two executions do not constitute any overhead,
since both executions achieve overall energy savings as com-
pared to the nonlocking cache. PhLock’s goal, however, is to
determine the best cache locking mode—based on phases’
persistence or CMRs—that achieves maximum benefits.

Fig. 8(a) shows that on average over all the SPEC appli-
cations, PhLock reduced the instruction cache and total
cache (instruction + data) energy consumption by a modest
5% and 3%, respectively, with savings as high as 35% and
16% for gobmk. The modest average overall energy savings
resulted from the fact that PhLock determined that cache
locking offered no benefits for most of the applications;
thus, the applications were executed using the nonlocking
cache. Most of the applications have an instruction footprint
that fits into the unlocked portion of the cache, while a
few applications (e.g., mcf and gromacs) exhibit extremely
low instruction reuse that made a locked cache unviable for
efficient execution.

With the SPEC2006 applications, PhLock showed a lot
more promise for the data cache than the instruction cache.
This observation was due to the applications’ relatively large
working set sizes and the high rate of data reuse. Fig. 8(b)
shows that on average over all the applications, PhLock
reduced the total and data cache energy consumption by 20%
and 39%, respectively, with data cache energy savings as high
as 79% for soplex. PhLock had the least total and data cache
energy savings for bzip2 at 3% and 5%, respectively, due to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ADEGBIJA AND GORDON-ROSS: CACHE ENERGY SAVING TECHNIQUE USING PHASE-BASED CACHE LOCKING 9
40% - h 90%
m total cache instruction cache [total cache data cache

35%
30%
25%
20%
15%
10%

5%

0%

Locked cache energy savings compared to
non-locking cache

Fig. 8.

bzip2’s small working set size, which allowed most of the
data to fit into the locked cache’s unlocked portion.

We also observed a difference in how data cache locking
affected the total cache energy savings for different applica-
tions. The total cache energy savings was higher for applica-
tions for which PhLock used the phases’ CMRs (rather than
persistence) for determining locked contents. For example,
even though PhLock achieved a much higher data cache energy
savings for soplex (79%) than for gobmk (59%), the impact
of these savings on the total cache energy was less for soplex
(19%) than for gobmk (32%). PhLock used persistent phases
to determine locked contents for soplex, while CMRs was
used for gobmk because gobmk had a few phases that, though
not persistent, had high CMRs. For gobmk, locking phases
with high CMRs reduced execution stalls resulting from lower
level memory accesses; this reduction in lower level memory
accesses directly impacted the flow of the instruction stream,
and improved overall energy savings. Overall, to determine
the locked contents for the instruction and data caches,
PhLock used persistent phases for six and seven applications,
respectively, while the CMRs was used for the rest of the
applications.

We also investigated PhLock’s energy impact for different
cache sizes. Fig. 9 compares the energy improvement achieved
by PhLock as compared to the nonlocking cache for 8, 16,
and 32 KB caches, while running the SPEC applications, with
all other configurations constant. We observed that for the
instruction caches, the energy improvement decreased as the
cache size increased. Fig. 9(a) shows that on average across all
the applications, PhLock reduced the energy by 21%, 10%, and
5% for the 8, 16, and 32 KB instruction caches, respectively.
In contrast, PhLock’s energy improvement increased as the
data cache size increased. As shown in Fig. 9(b), PhLock
reduced the energy by 16%, 19%, and 39% for the 8, 16,
and 32 KB data caches, respectively.

2) MiBench: Fig. 10 depicts the instruction and data
caches’ energy savings achieved by PhlLock for the MiBench
benchmarks as compared to a nonlocking cache. Unlike for
the SPEC2006 benchmarks, PhLock achieved much higher
energy savings for the instruction cache than the data cache.
Fig. 10 (a) shows that on average over all the applications,
PhLock reduced the total and instruction cache energy con-
sumption by 61% and 75%, respectively, with savings as high

80%
70%
60%
50%
40%
30%
20%
10%

0%

Locked cache energy improvement
compared to unlocked cache

PhLock energy improvement compared to the nonlocking cache for (a) instruction cache and (b) data cache, for SPEC2006 applications.

80%
W8KB @16KB H32KB
70%

60%
50%
40%
30%
20%
10%

0%

&

90%

compared to unlocked cache

=
pooooe |
ool

Locked cache energy improvement

30% W8KB E16KB O32KB
o o

70%
60%
50%
40%
30%
20%

Locked cache energy improvement
compared to unlocked cache

IRERRRNT
0% i
S5 & N R F S
&~ @‘& {\& & (@& eo@ &L g ?SQ, OQ\Q, @&e Qy(o
NN & & TS
o > O v
N ¥
(b)

Fig. 9. PhLock instruction and data cache energy improvement compared
to nonlocking cache for different cache sizes. (a) Instruction cache. (b) Data
cache.

as 81% and 85% for rawcaudio. In general, even though
MiBench applications have a small instruction footprint, cache
misses still occur in a nonlocking cache due to address
conflicts. In addition, MiBench applications exhibit a high
amount of reuse; thus, PhLock achieved significant energy
savings by locking high-reuse phases in the cache, thereby
significantly reducing the conflict misses.

Fig. 10(b) shows that PhLock achieved data and total cache
energy savings of 14% and 4%, respectively, with savings as
high as 28% and 9% for crc. For most of the applications,
locking the data cache had no impact on the instruction
cache accesses; thus, the total cache energy savings were
modest. PhLock achieved much lower energy savings for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10
0%
? mtotal cache [ginstruction cache
k) 80%
% 70%
&
g 60%
8 £
&5 50%
£ 8
E .%D 40%
? ;§ 30%
g s
s g 0%
ki 10%
3
3 0%
E rawcaudio fft cre rijndael AVERAGE
(a)
Fig. 10.

120%

m8KB E16KB B32KB
100%

i
80%
60%

40%

compared to unlocked cache

20%

Locked cache energy improvement

0%

rawcaudio fft AVERAGE

(@)

rijndael

70%
m8KB E16KB [32KB
60%
50%
40%

30%

20%

compared to unlocked cache

10%

Locked cache energy improvement

« I

AVERAGE

fft crc

0%

rawcaudio

(b)

rijndael

Fig. 11. PhLock instruction and data cache energy improvement compared
to nonlocking cache for different cache sizes. (a) Instruction cache. (b) Data
cache.

the data cache than instruction cache because the MiBench
applications’ data exhibit much less runtime variability and
reuse than the instructions. The instructions, on the other hand,
had a few common kernels that were repeatedly executed;
thus locking instructions resulted in more substantial savings
than locking data. In general, PhLock used persistent phases to
determine three applications’ instruction cache locked contents
and one application’s data cache locked contents; the rest were
determined using the CMRs.

Similar to the SPEC applications, Fig. 11 shows that PhLock
also achieves energy savings for different cache sizes while

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

30%

=}
z mtotal cache [jdatacache
5 25%
9
g
o 2 20%
%S
£ 8
% 2 15%
B 2
)
2 & 10%
g
bR
2 =
3
8 5%
3 I
3
'§ 0% | — z I]
=
sha rawcaudio fft cre rijndael AVERAGE
(b)

PhLock energy improvement compared to the nonlocking cache for (a) instruction cache and (b) data cache, for MiBench applications.

- 100%
2090%
o =
> 9 80%
8
& 2 70%
e g 60%
528
;gso%
E S 40%
s 2
5 g 30%
® =
-‘éé.zo%
TS 1% I
>3
3 0%
. N IS
SASTF ST T e s
TS ESF TSI
§F o g~ g $5°/5~<> N
g 5 N

Fig. 12. PhLock data CMR improvement compared to nonlocking cache for

SPEC2006 applications.
crc

120%
100%
80%
60%

40%

compared to non-locking cache

20%

Locked dCache miss rate improvement

0%

sha fft AVERAGE

Fig. 13. PhLock data CMR improvement compared to nonlocking cache for
MiBench applications.

rawcaudio rijndael

running MiBench applications. Fig. 11(a) shows that PhLock
reduced the energy by 85%, 81%, and 75% for the 8, 16,
and 32 KB instruction caches, respectively. For that 8, 16,
and 16 KB data caches, PhLock reduced the energy by 22%,
12%, and 14%, respectively.

C. Cache Miss Rates

Even though PhLock’s major goal is to save energy, we also
analyzed PhLock’s ability to reduce the instruction and data
CMRs for the SPEC2006 and MiBench applications. Due to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ADEGBIJA AND GORDON-ROSS: CACHE ENERGY SAVING TECHNIQUE USING PHASE-BASED CACHE LOCKING 11

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

[instruction cache

data cache

PhLock energy improvement over prior
work

Fig. 14.

the generally low instruction footprints, PhLock had minimal
impact on SPEC2006 and MiBench applications’ instruction
CMRs; PhLock set noLockedContents = 1 for several
applications from both benchmark suites (especially SPEC)
and offered no reduction in instruction CMRs, as compared to
the nonlocking cache, for those applications.

For both SPEC2006 and MiBench applications, how-
ever, PhLock achieved significant data CMR reduction.
Fig. 12 depicts PhLock’s data CMR improvements, for the
SPEC2006 applications, as compared to the nonlocking cache.
On average over all the applications, PhLock reduced the
CMRs by 46%, with reductions as high as 90% for soplex.

Fig. 13 depicts PhLock’s data CMR improvements for the
MiBench applications. Similarly, PhLock reduced the CMRs
by an average of 75%, with up to 100% for sha and crc.
We note, however, that even with the nonlocking cache,
the miss rates were very low. For example, PhLock reduced
sha’s miss rate from 0.0024 to 0.

In general, these results illustrate that the impacts and ben-
efits of cache locking vary for different kinds of applications.
Applications with low compute and memory complexity bene-
fit more from instruction cache locking than more complex and
data-rich applications. Thus, cache locking techniques must be
able to efficiently select locked contents for both instruction
and data caches, with minimal overhead. Overall, the results
demonstrate PhLock’s ability to determine the locked contents
at runtime to efficiently reduce the cache energy consumption
through cache locking.

D. Comparison With Prior Work

We compared PhLock with prior work that used the CMR
to select the locked contents. This technique locked memory
blocks with the highest CMRs [8]. To provide a basis for
comparison, we simulated this method for both instruction and
data caches using SimpleScalar.

Fig. 14 depicts PhLock’s instruction and data cache
energy improvement compared with prior work [8] for (a)
SPEC2006 and (b) MiBench applications. Fig. 14(a) shows
that on average across all the SPEC2006 applications, PhLock
improved instruction and data cache energy savings by 9% and
15%, respectively. PhLock outperformed prior work in most
applications, with improvements as high as 49% and 85% for

60%

[instruction cache data cache

50%
40%

30%

work

20%

10% I
. = i

AVERAGE

PhLock energy improvement over prior

sha rawcaudio fft cre

(b)

rijndael

PhLock instruction and data cache energy consumption compared to prior work.

namd. PhLock performed similar to prior work in applications
for which PhLock determined the locked contents using phases
with the highest miss rates.

Fig. 14(b) shows that for the MiBench applications, PhLock
improved the instruction and data cache energy savings,
as compared with prior work, by 12% and 1%, respectively.
Unlike for the SPEC2006 applications, PhLock’s improvement
over prior work was more modest for the data cache. PhLock
performed similar to prior work for four out of five MiBench
applications [hence, 0% improvement for those applications
in Fig. 14(b)]. For the instruction cache, however, PhLock
outperformed prior work in three out of five applications, with
improvements as high as 49% for rijndael, while PhLock
performed similar to prior work for the other two applications.

VI. CONCLUSION

In this paper, we proposed PhLock for improving the
instruction and data caches’ energy consumption in general-
purpose embedded systems where the executing applications
may be unknown a priori. PhLock leverages fundamentals
of phase classification to dynamically determine the cache’s
locked contents based on the applications’ phase persis-
tence and CMRs. PhLock’s goal is to improve the cache
energy consumption without introducing significant overheads.
We analyzed the impact of cache locking in different kinds
of applications, which we experimentally represented using
applications from the SPEC2006 and MiBench suites. Com-
pared to a nonlocking cache, PhLock improved the instruction
and data cache energy consumption by an average of 5%
and 39%, respectively, for SPEC2006 applications, and by
75% and 14%, respectively, for MiBench benchmarks. In the
future work, we will study the interplay of cache coherence
protocols that take cache locking into account and the energy
savings achieved by cache locking. We will also explore the
synergy of cache locking with other cache optimizations, such
as configurable caches.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions of recommenda-
tions expressed in this paper are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

[1]
[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REFERENCES

Arm. Accessed: Dec. 2016. [Online]. Available: http://www.arm.com
Mips32 ml4k. Accessed: Apr. 2017. [Online]. Available:
https://imagination-technologies-cloudfront-assets.s3.amazonaws.
com/documentation/MD00668-2B-M14K-SUM-02.04.pdf

Spec cpu2006. Accessed: Jan. 2016. http://www.spec.org/cpu2006

T. Adegbija and A. Gordon-Ross, “Exploiting dynamic phase distance
mapping for phase-based tuning of embedded systems,” in Proc. [EEE
31st Int. Conf. Comput. Design (ICCD), Oct. 2013, pp. 363-368.

K. Anand and R. Barua, “Instruction cache locking inside a binary
rewriter,” in Proc. Int. Conf. Compil., Archit., Synthesis Embedded Syst.,
2009, pp. 185-194.

K. Anand and R. Barua, “Instruction-cache locking for improving
embedded systems performance,” ACM Trans. Embedded Comput. Syst.,
vol. 14, no. 3, p. 53, 2015.

A. Asaduzzaman, 1. Mahgoub, and F. N. Sibai, “Impact of L1 entire
locking and L2 way locking on the performance, power consumption,
and predictability of multicore real-time systems,” in Proc. IEEE/ACS
Int. Conf. Comput. Syst. Appl. (AICCSA), May 2009, pp. 705-711.

A. Asaduzzaman, F. N. Sibai, and M. Rani, “Improving cache lock-
ing performance of modern embedded systems via the addition of a
miss table at the L2 cache level,” J. Syst. Archit., vol. 56, nos. 4-6,
pp. 151-162, 2010.

R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas, “Memory hierarchy reconfiguration for energy and
performance in general-purpose processor architectures,” in Proc. 33rd
Annu. ACM/IEEE Int. Symp. Microarchit., 2000, pp. 245-257.

D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,”
ACM SIGARCH Comput. Archit. News, vol. 25, no. 3, pp. 13-25, 1997.
Compiler, Design and User, RTL and Guide, Modeling, Synopsys,
Synopsys Inc., Mountain View, CA, USA, 2001. [Online]. Available:
http://www.synopsys.com

H. Ding, Y. Liang, and T. Mitra, “WCET-Centric dynamic instruc-
tion cache locking,” in Proc. Conf. Design, Autom. Test Eur. Exhib.,
Mar. 2014, p. 27.

H. Falk, S. Plazar, and H. Theiling, “Compile-time decided instruction
cache locking using worst-case execution paths,” in Proc. 5th IEEE/ACM
Int. Conf. Hardware/Softw. Codesign Syst. Synthesis, 2007, pp. 143-148.
M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in Proc. IEEE Int. Workshop Workload
Characterization (WWC), 2001, pp. 3-14.

G. Hamerly, E. Perelman, J. Lau, and B. Calder, “SIMPOINT 3.0: Faster
and more flexible program phase analysis,” J. Instruct. Level Parallelism,
vol. 7, no. 4, pp. 1-28, 2005.

Y. Liang and T. Mitra, “Instruction cache locking using temporal reuse
profile,” in Proc. 47th Design Autom. Conf., 2010, pp. 344-349.

Y. Liang, T. Mitra, and L. Ju, “Instruction cache locking using temporal
reuse profile,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 34, no. 9, pp. 1387-1400, Sep. 2015.

T. Liu, M. Li, and C. J. Xue, “Instruction cache locking for multi-
task real-time embedded systems,” Real-Time Syst., vol. 48, no. 2,
pp. 166-197, 2012.

M. Loach and W. Zhang, “Exploring hybrid cache locking to balance
performance and time predictability,” in Proc. SoutheastCon, Apr. 2015,
pp. 1-4.

A. Lukefahr et al., “Composite cores: Pushing heterogeneity into a core,”
in Proc. 45th Annu. IEEE/ACM Int. Symp. Microarchit., Dec. 2012,
pp. 317-328.

A. Malik, B. Moyer, and D. Cermak, “A low power unified cache
architecture providing power and performance flexibility,” in Proc. Int.
Symp. Low Power Electron. Design (ISLPED), Jul. 2000, pp. 241-243.
S. Mittal, “A survey of architectural techniques for improving cache
power efficiency,” Sustain. Comput., Inform. Syst., vol. 4, no. 1,
pp. 33-43, 2014.

S. Mittal, “A survey of techniques for cache locking,” ACM Trans. Des.
Autom. Electron. Syst., vol. 21, no. 3, p. 49, 2016.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP Lab., Palo Alto, CA, USA,
Tech. Rep. HPL-2009-85, 2009, pp. 22-31.

F. Ni, X. Long, H. Wan, and X. Gao, “Combining instruction prefetching
with partial cache locking to improve WCET in real-time systems,” PLoS
ONE, vol. 8, no. 12, p. 82975, 2013.

I. Puaut and A. Arnaud, “Dynamic instruction cache locking in hard
real-time systems,” in Proc. 14th Int. Conf. Real-Time Netw. Syst., 2006,
pp. 1-10.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[27] 1. Puaut and D. Decotigny, “Low-complexity algorithms for static cache
locking in multitasking hard real-time systems,” in Proc. 23rd IEEE
Real-Time Syst. Symp. (RTSS), Dec. 2002, pp. 114-123.

M. Rawlins and A. Gordon-Ross, “An application classification guided
cache tuning heuristic for multi-core architectures,” in Proc. 17th Asia
South Pacific Design Autom. Conf. (ASP-DAC), Jan. 2012, pp. 23-28.
A. Sarkar, F. Miieller, and H. Ramaprasad, “Static task partitioning for
locked caches in multicore real-time systems,” ACM Trans. Embedded
Comput. Syst., vol. 14, no. 1, p. 4, 2015.

X. Shen, Y. Zhong, and C. Ding, “Locality phase prediction,” ACM
SIGOPS Operat. Syst. Rev., vol. 39, no. 11, pp. 165-176, 2004.

T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder,
“Discovering and exploiting program phases,” IEEE Micro, vol. 23,
no. 6, pp. 84-93, Nov. 2003.

T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,”
ACM SIGARCH Comput. Archit. News, vol. 31, no. 2, pp. 336-349,
2003.

K. Kang, K.-J. Park, and H. Kim, “Functional-level energy characteriza-
tion of xC/OS-II and cache locking for energy saving,” Bell Labs Tech.
J., vol. 17, no. 1, pp. 219-227, 2012.

X. Vera, B. Lisper, and J. Xue, “Data cache locking for higher program
predictability,” ACM SIGMETRICS Perform. Eval. Rev., vol. 31, no. 1,
pp. 272-282, 2003.

X. Vera, B. Lisper, and J. Xue, “Data cache locking for tight timing
calculations,” ACM Trans. Embedded Comput. Syst., vol. 7, no. 1, p. 4,
2007.

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

Tosiron Adegbija (M’11) received the B.Eng.
degree in electrical engineering from the Univer-
sity of Ilorin, Ilorin, Nigeria, in 2005, and the
M.S. and Ph.D. degrees in electrical and com-
puter engineering from the University of Florida,
Gainesville, FL, USA, in 2011 and 2015, respec-
tively.

He is currently an Assistant Professor of electrical
and computer engineering with the University of
Arizona, Tucson, AZ, USA. His current research
interests include computer architecture, with an
emphasis on adaptable computing, low-power embedded systems design and
optimization methodologies, and microprocessor optimizations for the Internet
of Things.

Dr. Adegbija was a recipient of the Best Paper Award at the Ph.D. forum
of the IEEE Computer Society Annual Symposium on VLSI in 2014.

Ann Gordon-Ross (M’00) received the B.S. and
Ph.D. degrees in computer science and engineering
from the University of California, Riverside, CA,
USA, in 2000 and 2007, respectively.

She is currently an Associate Professor of electri-
cal and computer engineering with the University of
Florida, Gainesville, FL, USA, where he is also a
member of the NSF Center for High Performance
Reconfigurable Computing. She is also a Faculty
Advisor of the women in electrical and computer
engineering and the Phi Sigma Rho National Society
for women in engineering and engineering technology, and an active mem-
ber of the women in engineering proactive network. Her current research
interests include embedded systems, computer architecture, low-power design,
reconfigurable computing, dynamic optimizations, hardware design, real-time
systems, and multicore platforms.

Dr. Gordon-Ross was a recipient of the CAREER Award from the National
Science Foundation in 2010, the Best Paper Awards at the Great Lakes
Symposium on VLSI in 2010, the IARIA International Conference on Mobile
Ubiquitous Computing, Systems, Services, and Technologies in 2010, and the
Best Ph.D. Poster at the IEEE Computer Society Annual Symposium on VLSI
in 2014. She is very active in promoting diversity in STEM fields, and has
been a Guest Speaker at several international workshops/conferences on this
topic, organizes workshops, and participates in local outreach programs at
local K-12 schools.

