HERMIT: A Benchmark Suite for the Internet of
Medical Things

Ankur Limaye, Student Member, IEEE and Tosiron Adegbija, Member, IEEE

Abstract—The growth of the Internet of Things (IoT) will
transform the healthcare industry, and enable the emergence of
the Internet of Medical Things (IoMT). In this paper, we present
and analyze HERMIT, a benchmark suite for the Internet of Med-
ical Things. The goal of HERMIT is to facilitate research into new
microarchitectures and optimizations that will enable efficient
execution of emerging IoMT applications. HERMIT comprises of
applications spanning various domains in the healthcare industry,
including Computerized Tomography (CT) scan, ultrasound,
Magnetic Resonance Imaging (MRI), implantable heart moni-
tors, wearable devices. HERMIT also includes supplementary
applications for security and data compression. We analyze
HERMIT on an IoT prototyping platform to derive insights into
IoMT applications’ compute and memory characteristics. We also
compare HERMIT to three commonly used benchmark suites,
MiBench, SPEC CPU2006, and PARSEC, and show that IoMT
applications’ characteristics differ from existing benchmarks.
Our results motivate the need for a new benchmark suite to
enable IoMT-targeted microarchitecture research.

Index Terms—Internet of Things, edge computing, Internet
of Medical Things, right-provisioned microprocessors, low-power
embedded systems, workload characterization, medical devices,
healthcare.

I. INTRODUCTION

The Internet of Things (IoT) is an emerging technology that
provides exciting opportunities for innovative solutions and
advancements in various industry sectors. In the IoT paradigm,
millions of connected smart devices, sensors, and actuators
collaborate to monitor and manage the physical environment
and human systems. The IoT’s goal is to achieve novel and
innovative solutions with minimal human interference [1]].
It has been projected that the IoT will constitute a $300
billion industry by 2020, and comprise of more than 26 billion
interconnected devices [2].

The IoT’s uses span a wide variety of application domains,
ranging from personal environments like smart homes or trans-
portation to large scale environments including smart offices,
logistics, and management [3[], [4]. One of the application
domains that will be most impacted by the [oT is the healthcare
industry [3]], which will give rise to the Internet of Medical
Things (IoMT) or medical IoT. The IoT is expected to have a
profound $1.1 — $2.5 trillion annual economic impact in the
healthcare domain by 2025 [6].

The authors are with the Department of Electrical and Computer En-
gineering, The University of Arizona, USA, e-mail: {ankurlimaye, tos-
iron} @email.arizona.edu.

Copyright (©2018 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending an email to pubs-permissions @ieee.org.

Healthcare Monitoring & Diagnostics

Fitness Trackers X-ray Scan

Body Sensors CT Scan

Medication MRI Scan

WiFi / LAN /
Bluetooth

] o)

Better Diagnosis /
Telemedicine

Data Storage
Server /
Hospital
Database

- A\
n—9
Fig. 1: Overview of the Internet of Medical Things (IoMT)

The IoMT, as illustrated in Fig. [T} will comprise of a
network of interconnected medical devices that share data
securely with the healthcare professionals to enable innovative
medical solutions and services. Several emerging devices,
such as pacemakers, portable Magnetic Resonance Imaging
(MRI) and Computerized Tomography (CT) scan machines,
and wearables will constitute the IoMT. While some of these
devices currently have large form factors, we envision that
miniature versions of medical devices, like portable ultra-
sounds [7]], will continue to emerge. These devices will provide
new opportunities for improved medical processes in various
healthcare domains, such as healthcare monitoring, remote
medical diagnostics, telemedicine, etc.

Our work is motivated by the need for tools to address
some of the critical gaps in the IoMT. The traditional IoT
paradigm comprises of low-power edge devices that collect
data that is transmitted to centralized high-performance head
nodes. The data is then analyzed and visualized on the
head nodes to generate results and actionable information.
This paradigm, however, can pose significant challenges and
overheads, arising from the transmission of data between the
edge and head devices. Due to limited bandwidth resources,
this paradigm can result in significant delays in retrieving the
required results, potentially leading to a bandwidth bottleneck.
These bandwidth bottlenecks could be prohibitive in some
use-cases, such as healthcare monitoring, where the latency
of data analysis and visualization must satisfy stringent real-
time constraints in order to prevent medical emergencies.
Furthermore, the data transmission between the edge and head
nodes can also result in significant energy overheads [8]], [9].

Edge computing [10], [11] is an emerging solution to

these problems associated with the traditional IoT. In edge
computing, the computation is moved closer to the edge
devices, using two options: 1) a gateway can be incorporated
between the edge and head devices, or 2) the edge devices are
equipped with sufficient computational capabilities to generate
actionable information from the data [12]. In this work, we
focus on the second scenario, since it reduces communication
overheads even further, as compared to the first.

Edge computing is especially critical for the IoMT due
to the potentially life-critical nature of IoMT applications.
IoMT edge devices must be equipped with right-provisioned
processor architectures that can satisfy IoMT applications’
computational demands, without introducing significant power
and area overheads to the device. However, to provision
medical edge devices with sufficient computational capabil-
ities, we must first understand the execution characteristics of
emerging IoMT applications, since these characteristics inform
the required microarchitecture resources.

In this work, we performed an extensive, forward-looking
study of IoMT applications. We also interacted with medi-
cal experts with foresight on potential applications that will
execute on the IoMT. Our studies and interactions revealed
that current benchmark suites do not sufficiently represent
emerging IoMT applications. The dearth of benchmark suites
that sufficiently captures IoMT application characteristics ac-
counts for a critical technology gap; this gap can hamper
microarchitecture research for emerging IoMT devices.

To address this gap, we present HERMITF_], a suite of
publicly availableE] benchmark applications chosen to represent
different IoMT applications. Our contributions in this paper are
summarized as follows:

1) We present an open-source and extensible benchmark
suite, HERMIT that spans a variety of medical appli-
cations, including medical image processing algorithms,
inverse Radon transform, implantable heart monitoring
algorithms, activity monitoring algorithms, etc.

2) We have characterized HERMIT on a state-of-the-art IoT
prototyping platform, the Raspberry Pi 3 [[13]], to derive
insights into how well-provisioned the current platforms
are for emerging IoMT applications.

3) We also extensively compare HERMIT to a range of
common microarchitecture benchmark suites, including
MiBench [14], SPEC CPU200¢]| [13], and PARSEC
[L6]. Our analysis shows that IoMT applications’ charac-
teristics (e.g., memory and branch characteristics) differ
from current benchmark suites, motivating the need for
a new representative benchmark suite.

II. BACKGROUND AND RELATED WORK

Most IoT research was focused on developing software and
communication protocols for IoT devices since the distributed
system model was considered as the baseline implementa-
tion. However, with the emergence of the edge computing

THERMIT stands for ‘HEalthcaRe Monitoring for the Internet of Things.’

2The applications and inputs can be found at: www.ece.arizona.edu/tosiron/,
downloads.php.

SHereafter, we refer to SPEC CPU2006 benchmark suite as CPUQ6.

paradigm, emphasis must also be placed on developing ef-
ficient microprocessor architectures for the edge devices. To
this end, emerging IoT applications must be characterized to
gain insights about the applications’ resource requirements
and the limitations of existing microarchitectures. Benchmarks
are a vital component to enabling the characterization of
emerging applications, and directly influence the design of
emerging devices and their microarchitectures [[14], [13]], [16].
The benchmark suite presented herein is motivated by our
observation that the currently existent benchmarks do not
sufficiently represent emerging IoMT applications’ execution
characteristics.

There are currently several general purpose benchmark
suites that enable microarchitecture research in different ap-
plication domains. MiBench [14] was developed as an open-
source alternative to EEMBC [17] to target embedded system
applications. Both MiBench and EEMBC are general purpose
benchmark suites that contain applications for different ap-
plication domains like automation, communication, and office
software. PARSEC [16] comprises of multithreaded applica-
tions and enables the evaluation of a microprocessor’s mul-
tithreading capabilities. SPEC CPU2006 and CPU2017 [15],
[L8] comprise of compute- and memory-intensive applications,
and aim to assess the system’s high-performance computing
capabilities.

Apart from these general purpose benchmark suites, there
are some application specific benchmark suites. MediaBench
[19] is a benchmark suite specifically created for multimedia
applications, and comprises of different audio, image, and
video processing applications. ImpBench [20] provides a col-
lection of applications targeted towards medical implants and
includes applications for drug delivery simulations, data com-
pression, encryption, and integrity checks. Another application
specific benchmark suite is loTAbench [21]], which focuses on
big data analysis for smart meters deployed in the city. To the
best of our knowledge, there are no current benchmarks that
directly target IoMT applications.

HERMIT represents a major step toward understanding
IoMT applications from the edge computing perspective. We
also believe that HERMIT is a step in the direction of
understanding the execution requirements of a wide variety
of emerging IoT applications. We have carefully selected a
few representative applications that will potentially execute
on the IoMT devices, and we plan to continue to expand
this suite. We have compared the HERMIT benchmark suite
to some of the most common benchmark suites: MiBench,
PARSEC and CPUO6—in order to demonstrate that IoMT
applications have different execution characteristics. Thus,
we hope that HERMIT will facilitate future IoMT-targeted
microarchitecture research.

III. HERMIT APPLICATIONS

Our goal in this work was to create a benchmark suite to
enable microarchitecture researchers in developing processor
architectures for next-generation IoMT devices. Since these
devices will typically be resource-constrained, over-the-shelf
or general purpose processors may be over-provisioned or
under-provisioned for the devices. IoMT processors must be

www.ece.arizona.edu/tosiron/downloads.php
www.ece.arizona.edu/tosiron/downloads.php

right-provisioned for the intended applications, in order to
adhere to the IoMT devices’ resource constraints.

Even though IoMT applications are only a subset of the IoT
application space, we observed that the healthcare application
space is very expansive. The healthcare domain is vast and
encompasses different sectors including health services and
facilities (e.g. hospitals, nursing and residential care facilities,
ambulatory services), medical devices and equipment, pharma-
ceuticals, drug manufacturing and delivery systems, etc. Thus,
one of our primary objectives in developing the HERMIT
benchmark suite is to provide a tractable and extensible
representation of applications in the medical and healthcare
domain.

We had a few criteria for the applications to be included in
the benchmark suite: 1) they must represent emerging IoMT
applications; 2) they must be perceived to be high-value by
medical personnel; 3) they must support microarchitecture
research; 4) they must be open-source; and 5) they must
be characteristically diverse, and as a whole, different from
existing benchmark suites. Thus, we began the process of
compiling the HERMIT applications by first exploring the vast
application space of the [oMT. We also interacted with medical
personnel to help us identify some of the high-impact applica-
tions in the IoMT domain, especially from an edge computing
perspective. Furthermore, we emphasized high compute- and
memory-intensive applications, since they will impose more
computational constraints on emerging medical devices.

HERMIT comprises of a carefully selected set of ten
applications, which we are currently expanding to feature more
applications. There are eight computation applications that
cover different applications in the medical field, while two ap-
plications are crucial parts of the communication protocol. The
current applications are: Physical activity estimation (activity),
Sleep apnea detection (apdet), Heart rate variability calcula-
tion (hrv), Histogram equalization (imghist), Inverse Radon
Transform (iradon), k-means clustering (kmeans), ECG-QRS
detection (sqrs), and Blood pressure monitoring (wabp). We
have also included two additional applications, Advanced
Encryption Standard (aes) and Lempel-Ziv compression (Izw)
to represent security and compression functions, respectively.
We expect that security and compression will be necessary
functions for all IoMT devices.

All the applications in the HERMIT benchmark suite are
open-source, written in high-level languages (C/C++), and
can be easily compiled on any Linux-based operating system.
This section briefly motivates and describes the HERMIT
benchmarks.

A. Physical activity estimation (activity)

Physical activity data plays a significant role in the diagnosis
and treatment of many chronic diseases. Various inertial sen-
sors (like accelerometers, gyroscopes, and pressure sensors),
bio-sensors (like ECG, skin temperature, and heart rate mon-
itor), wearable devices (like fitness bands) [22], or general
purpose devices (like smartphones [23], [24], [25]), have
facilitated robust ways to measure and estimate users’ physical
activities [26]]. The physical activity estimation algorithm [27]
included in HERMIT finds periods of activity based on heart

rate time series from a bio-sensor. The algorithm calculates
the ‘activity index’ based on: 1) the mean heart rate, 2) the
cumulative power of the instantaneous heart rate time series
over a given interval, and 3) a heart rate stationary index. This
application can potentially execute on fitness wearable devices
to determine the user’s activity levels. This algorithm takes a
4.5KB instantaneous heart rate time series file as input and
gives the duration of least physical activity during the time
series as the output.

B. Advanced Encryption Standard (aes)

The IoT is especially susceptible to attacks due to the
scale and mobility of IoT devices. These IoT characteristics
necessitate security functions to be integral components of IoT
devices. The security requirements in IoMT devices are even
more critical since medical devices handle sensitive patient
data and must maintain the data privacy [28]]. Some medical
devices, like pacemakers, are life-critical; a security breach
can have fatal consequences.

Thus, we have included a security application as an essential
application in HERMIT. We selected Advanced Encryption
Standard (AES) [29] obtained from the Crypto++ library [30].
It supports a block length of 128 bits and key lengths of 128,
192 and 256 bits. In our implementation, we used default block
and key lengths of 128 bits. The application performs both
encryption and decryption operations. The application takes
an 11KB plain text file as input, and generates an encrypted
file. The encrypted file is then decrypted to generate the final
output text file. Both of these files are compared to validate
correct encryption and decryption.

C. Sleep apnea detection (apdet)

Sleep apnea is a sleep disorder in which the patient’s
breathing is repeatedly interrupted during sleep. Since the
breathing is interrupted, it results in less oxygen supply to the
body. If left untreated, sleep apnea can cause severe health
issues, including high blood pressure, stroke, heart failure,
diabetes, depression, or even death.

The sleep apnea detection application apdet [31] detects
the periods of sleep apnea based on the periodic oscillations
in cardiac interbeat (NN) intervals. Hilbert transform is used
to calculate the instantaneous amplitudes and frequencies of
the time series, and applies certain thresholds on the averages,
standard deviations over a moving 5-minute window to detect
the sleep apnea periods. We use a 5.6MB ECG file from Phys-
ioNet’s [32] Apnea-ECG Database as input to the application,
which then prints the detected sleep apnea periods to an output
file. The PhysioNet repository comprises of different open-
source software and a database of related physiological signals.

D. Heart rate variability calculation (hrv)

Heart rate variability (HRV) is the measure of the varia-
tions in time intervals between adjacent heartbeats. Measur-
ing heartbeat variability has both clinical and psychological
significance. Lower long-term HRV has been found to be a
predictor of mortality after heart attacks [33]. It is also a
psychological marker for depression, anxiety, and stress. The
heart rate variability (hrv) algorithm [34] calculates the time

and frequency domain HRYV statistics. A 5.1MB ECG file from
PhysioNet’s database is input to this application. A text file
containing the HRYV statistics is generated after completing the
execution.

E. Histogram Equalization (imghist)

Medical imaging techniques provide visual representations
of internal organs and help doctors to provide an accurate
diagnosis. Most of these images require pre-processing steps
to correct for the sensor- and platform-specific distortions and
improve the visibility of the image. Histogram equalization
(imghist) is such an image processing technique used to
increase the contrast of the image. It is a necessary step for
digital X-ray, medical ultrasound, and MRI images. It stretches
the dynamic range of pixel values to increase the contrast of
the areas in the image with lower contrast. This application
takes a 54KB grayscale image as input and outputs a grayscale
image with better contrast.

F. Inverse Radon Transform (iradon)

This benchmark is motivated by the emergence of medical
devices such as portable ultrasound and MRI devices, which
will be major components of the IoMT. CT scan and MRI
devices acquire projection data at different angles around a
patient. Image reconstruction is the process that generates the
images from these projections. The inverse Radon transform is
used for reconstruction of the images. The iradon application
[35] used in HERMIT reconstructs the output image from a
159KB 2D sinogram input data file for visualizing abnormal
openings in the body.

G. K-means Clustering (kmeans)

Image segmentation techniques are used to partition an
image into different segments belonging to the same object.
In medical imaging, segmentation is necessary to classify and
label different tissues or organs for better diagnostics. k-means
clustering (kmeans) is one of the commonly used medical
image segmentation algorithm [36]. The k-means algorithm
implemented in HERMIT partitions different parts of the
image into clusters based on pixel intensities and the nearest
mean intensity values surrounding the pixel. A 54KB grayscale
image is input to the application and generates a text file with
the pixel locations grouped together in 10 bins.

H. Lempel-Ziv Compression (lzw)

The network bandwidth on the IoT will be limited, and
shared by all the connected devices. Efficient use of the
bandwidth is necessary when a large number of devices
are connected. Data compression techniques are employed
in these scenarios to reduce the amount of bandwidth used
while transmitting the data. We included the Lempel-Ziv
Compression algorithm [37] in HERMIT suite because it is
a fast, low-overhead and lossless compression algorithm ideal
for IoMT devices. The Izw benchmark takes an 11KB input
text file and generates a compressed output file. For validation,
the generated output is decompressed and compared with the
original input file.

1. ORS Detection in ECG (sqrs)

The QRS detection algorithm (sgrs) [38] detects the QRS
complex peaks and troughs in an Electrocardiogram (ECG)
signal. The QRS complex is the combination of Q, R and S
waves, and represents the right and left ventricular depolar-
ization. The QRS complex attributes like the amplitude and
time duration between intervals are used for diagnosing heart
conditions like cardiac arrhythmias, ventricular hypertrophy,
myocardial infractions, and other heart abnormalities. This
algorithm is replicated from the PhysioNet repository. The
algorithm only uses signal 0 of the ECG to detect the QRS
complex. A 63KB test ECG signal from the PhysioNet’s
data bank is input to this application, and it gives an output
annotation file with the detected QRS points.

J. Blood Pressure Monitoring (wabp)

Blood pressure is one of the most commonly measured
human body reading. It has a direct correlation with the strain
on the heart and arteries, and the blood flow to the organs. If
the blood pressure is low, there is poor blood flow to all the
organs and can cause organ failure. On the other hand, having
hypertension (high blood pressure) puts too much strain and
can lead to heart attack, stroke or hypertensive organ failure.
The blood pressure monitoring algorithm considered in the
HERMIT suite is also from the PhysioNet repository. This
algorithm calculates the arterial blood pressure (ABP) from a
continuous ABP signal. The algorithm uses the first derivative
value of the ABP signal to calculate the blood pressure. ABP
signals (from the PhysioNet’s data bank) are input to the
application, and a blood pressure log file is output.

1V. EVALUATION METHODOLOGY

We executed the HERMIT applications on the Raspberry
Pi 3 [13] platform and analyzed the applications’ execution
characteristics. We decided to use a physical platform, instead
of simulations, in order to better understand the applications’
execution on state-of-the-art IoT-targeted microarchitectures.
The Raspberry Pi 3 is one of the most common low-cost and
powerful IoT prototyping platforms on the market, and offers
a viable option for prototyping IoMT applications.

The Raspberry Pi 3 Model B uses a Broadcom BCM2837
SoC featuring a 1.2GHz quad-core 64-bit ARM Cortex AS53
CPU and a 400 MHz Broadcom VideoCore IV GPU. The
ARM Cortex CPU has separate 2-way set associative 16 kB
level one instruction and data caches, 512 kB unified level two
cache, 1 GB LPDDR2 RAM and microSD slot for expandable
storage. It also features Ethernet port and supports 802.11n
wireless LAN. We installed the Ubuntu Mate 16.04 LTS
operating system (Linux kernel 4.4.38-v7+) on the Pi 3.

For this paper, we focused on execution characteristics that
are observable from the hardware performance counters; thus,
we used the Linux perf utility to gather the execution statistics.
We compiled all the HERMIT benchmarks using gcc without
using any optimization flags. We executed the applications
to completion 50 times each, to account for the variability
between different runs, and analyzed the mean values of all
the runs for various execution characteristics.

To evaluate the similarities and differences between HER-
MIT and current benchmark suites, we compared the HER-
MIT applications to three popular general purpose benchmark
suites: MiBench, CPU06, and PARSEC. We used 15 applica-
tions from MiBench—basicmath, bitcount, gsort, susan, jpeg,
typeset, dijkstra, patricia, stringsearch, blowfish, sha, adpcm,
crc32, fft and gsm—all with the large input data set; 8 applica-
tions from PARSEC—blackscholes, bodytrack, facesim, ferret,
fluidanimate, freqmine, streamcluster and vips—with simlarge
input data set; and 20 applications from CPUQ6—astar, bzip,
gee, gobmk, h264ref, hmmer, libquantum, omnetpp, sjeng,
specrand, xalancbmk, calculix, gromacs, lbm, leslie3d, milc,
namd, povray, soplex, and tonto—with the reference input data
sets.

V. HERMIT APPLICATIONS’ CHARACTERISTICS

Table [[] presents an overview of the HERMIT benchmarks’
execution characteristics, including, the instruction count,
cache references, branch instructions, and instructions per
cycle (IPC). One of our first observations is the variety in
the applications’ characteristics. For example, the instruction
count ranges from about 3.5 million instructions to more than
8 billion instructions. Hrv is the largest application while
aes has the smallest instruction count. The supplementary
applications—aes and Izw—both have a very small instruction
count. This is critical to ensure that these supplementary
functions result in minimal overheads, and have fewer resource
requirements than the actual medical applications. Another
interesting observation is that sqrs and wabp had very similar
characteristics. These benchmarks have similar characteristics
because they both work on the same input data set, perform
similar data operations, but derive two different conclusions.
Hrv is the most compute and memory intensive application
in HERMIT, as it has the lowest IPC and highest number of
cache references and branch instructions. In what follows, we
discuss the applications’ execution characteristics in detail.

A. IPC Analysis

The instructions per cycle (IPC) is perhaps the most impor-
tant performance characteristic of the microprocessor. IPC is
the average number of instructions that are executed by the
processor in each clock cycle. The IPC is mainly impacted
by underlying microarchitecture characteristics like pipeline
depth, execution paradigm (in-order vs. out-of-order), branch
predictor efficiency, cache configuration, etc. The IPC is also
affected by application characteristics, such as instruction mix,
cache access patterns, branch instructions, etc. Higher IPC val-
ues suggest that the microarchitecture is right-provisioned for
the executing applications, whereas, low IPC values reveal the
need for performance optimizations to satisfy the applications’
requirements.

Fig. [shows the IPC values of the different HERMIT
benchmarks. We also included the branch and last level cache
(LLC) miss rates to illustrate the impact of these characteristics
on the overall performance. The average IPC of all the
HERMIT applications on the Raspberry Pi 3 was relatively
low at 0.598. Apdet had the highest IPC of 0.834, followed
closely by activity with an IPC value of 0.815. On the other

40 mmBranch LLC —IPC 0.9
35 0.8
30 0.7
R 25 06
8 0.5
& 20 g
“ 04 =
L2 15

=
10
5
0

Fig. 2: IPC analysis: impact of branch and LLC miss rates on
the IPC

0.3

0.2
I 0.1
0.0
«
XS

hand, Arv and iradon had the lowest IPC values of 0.248 and
0.251.

We also investigated the impact of branches and LLC miss
rates on the IPC (Fig. 2). In theory, a branch miss would
flush the pipeline, and a cache miss will result in pipeline
stalls. Both of these would increase the number of clock cycles
required to complete the execution, thus decreasing the IPC
value. The average LLC miss rate for all the applications was
14.451%. The two benchmarks with the lowest IPC values—
hrv and iradon—also had the highest LLC miss rates of
24.779% and 34.600%, respectively, illustrating that the low
IPC was because the benchmarks are memory-bound.

We observed that branch miss rates also significantly im-
pacted the IPC values. Similarly to the LLC miss rates,
benchmarks with higher branch miss rates exhibited lower
IPC values. For example, even though imghist and Izw had
similar LLC miss rates of 14.106% and 14.037%, respectively,
Izw had a higher branch miss rate of 7.420% compared to
imghist’s 5.779%. As a result, Izw had a lower IPC value of
0.570 compared to imghist’s 0.653.

Also, we observed that the LLC miss rates had a higher
impact on the IPC than the branch miss rates. For example,
kmeans’ branch miss rate of 11.412% was similar to sqrs’
and wabp’s branch miss rates of 11.831% and 11.860%, but
kmeans had a higher LLC miss rate of 13.021% compared to
sqrs’ 8.147% and wabp’s 8.097%, resulting in a 31% lower
IPC value for kmeans.

B. Memory Characteristics

We analyzed the memory characteristics of the HERMIT
benchmarks to derive insights into the cache access patterns of
the applications. Our analysis also provides insights into how
well provisioned the memory hierarchy in the Raspberry Pi 3,
representing the state-of-the-art, is for IoMT applications. We
analyzed the number of cache accesses per thousand instruc-
tion (pti) and the cache miss rates for the L1 I-cache, L1 D-
cache, and the LLC for all the benchmarks. The cache accesses
per thousand instructions illustrates the stress a benchmark
places on the cache, while the cache miss rates illustrate the
cache’s ability to handle the benchmark’s memory intensity.

1) Cache accesses per thousand instructions: Fig.[3|depicts
the cache accesses pti for all the benchmarks. The average
L1 I-Cache, L1 D-Cache and LLC accesses pti across all the
benchmarks was 572.482, 350.426 and 30.836, respectively.

TABLE I: HERMIT applications’ characteristics

Application Description H Instruction Count ‘ Cache References | Branch Instructions ‘ IPC ‘

activity Estimate Physical activity level 13,133,270 3,955,078 1,190,635 0.815

aes Advanced Encryption Standard 3,471,322 1,240,650 327,100 0.562

apdet Sleep Apnea detection 4,286,601,548 1,396,684,405 446,623,163 0.833

hrv Heart rate variability 8,920,730,779 2,846,359,793 707,628,576 0.248

imghist Histogram Equalization 6,886,959 2,989,541 556,070 0.653

iradon Inverse Radon Transform 174,419,063 58,586,880 12,927,117 0.251

kmeans k-means Clustering 4,545,424 1,819,155 434,851 0.523

lzw Lempel-Ziv-Welch Compression 5,671,513 2,135,652 636,136 0.570

sqrs QRS Detection in ECG 18,581,266 6,146,785 1,216,416 0.760

wabp Blood Pressure Monitor 18,561,495 6,146,785 1,216,196 0.760

700 W L1l-cache WL1D-cache WLLC 40 Wl1l-cache WL1D-cache WLLC

00 35
30

A U o
o O
o o

=N
o o
o o

Accesses per thousand instructions
w
o
o

0 |‘ |‘ “ |‘ || |‘ h |‘ |‘ |‘ |‘
& @ be & LS

-Q > AN X P ’b \’.L c,°~ fb y.
S & @ E S vgéz“

Fig. 3: Cache accesses

Apdet’s L1 I-Cache accesses pti was the highest at 656.299,
while imgHist had the lowest value of 494.784. Activity had the
second largest L1 I-Cache accesses pti (614.261) but had the
lowest L1 D-cache accesses pti at 294.426. This observation
shows that activity is a compute-intensive application with a
small input data size.

On the other hand, imghist exhibited the opposite trend
with the lowest L1 I-Cache access pti, but the maximum
434516 L1 D-Cache accesses pti. This suggests that the
imghist performs limited operations repeatedly over a large
input data, and generates large intermediate or output data.
Kmeans and Izw exhibited higher than average L1-D cache
accesses pti—399.863 and 376.357, respectively; however, this
was because of large intermediate data generated during the
execution, and not due to input data size. Iradon had the
highest number of LLC cache accesses pti at 59.113, closely
followed by hrv with 58.047 LLC accesses pti—91.701%
and 88.244%, respectively, above the average value. In the
next subsection, we discuss the caches’ provisioning for the
HERMIT benchmarks.

2) Cache miss rates: Fig. [] depicts the cache miss rates
for the HERMIT benchmarks. The average L1 I-Cache, L1
D-Cache, and LLC miss rates were 1.526%, 2.395% and
14.451% respectively, across all the benchmarks. Iradon ex-
hibited the lowest L1 I-Cache miss rate of 0.356% but had
the second highest L1 D-Cache miss rate of 5.852% and the
highest 34.600% LLC miss rate. These results suggest that
while the L1 I-Cache in the Raspberry Pi 3 is sufficiently
provisioned for iradon, a larger L1 D-Cache and LLC is
required to satisfy iradon’s data needs.

(%

Miss rate (%)
- N N
wv o

[
v O

o =N HNl w § = nll Eml wmal wBN «B8 ull
Q) Q X I) R & Q <
IS R S A I A S
'zf’ & ¢ & &
¥
Fig. 4: Cache miss rates
14 M Branch instructions W Branch miss rate
12
10
—~ 8
X
~ 6
4
2
0
Q & °
& ’b@ \‘ N A 9 rz; v
& ¥ \‘_@Q’ N v&&

Fig. 5: Branch instructions

We made a similar observation for Arv. Hrv’s L1 I-Cache
miss rate was slightly below average at 1.227%, but the L1
D-Cache miss rate was the highest at 7.424%—a 209.997%
increase over the average—and the LLC miss rate was the
second largest at 24.779%. For applications such as iradon
and hrv, a larger data cache is required. Alternatively, the edge
device could offload the execution to a more powerful central
node (server) to reduce the resource requirements on the edge
device.

C. Branch characteristics

Branch instructions, otherwise known as the control in-
structions, evaluate a logical condition, and depending on the
outcome of the condition the branch is taken or the next
instruction is executed. Branch instructions can be a major
limiting factor in achieving optimal performance, since they
can introduce control hazards in the pipeline. Thus, branch
predictors exist in microprocessors to reduce the performance
impact of branch instructions. The ARM Cortex A53 processor
present in the Raspberry Pi 3 features a single-entry branch

target instruction cache, a 256-entry branch predictor with a
3072-entry pattern history prediction table [39].

We analyzed the HERMIT benchmarks’ branch characteris-
tics as a function of the percentage of branch instructions and
the branch miss rates. The percentage branch instructions is
an architecture-independent characteristic as it only depends
on the instruction mix, and reveals the frequency of branch
instructions in an application. However, the branch miss rate
provides insights on the branch predictor’s efficiency and
accuracy.

Fig. [5] depicts the percentage branch instructions and the
branch miss rates for all HERMIT benchmarks. On average,
the benchmarks had 8.621% branch instructions, and the
average branch miss rate was 9.333%. We observed that there
was not much variation in the frequency of branch instructions
among the different benchmarks. Lzw had the highest branch
frequency at 11.216%, while sqrs had the lowest branch
frequency of 6.547%.

Iradon exhibited the lowest branch miss rate of 1.678%—
82.018% below average—while apdet had the highest at
13.060%. The branch miss rate is also an indicator of the
applications’ instruction mix, reflecting a trend towards con-
ditional branches vs. loops. In general, conditional branches
are harder to predict than loops; thus, higher branch miss rates
reveal a greater number of conditional branches than loops.
Thus, it can be estimated from the results that iradon has
more loops than conditional branch instructions, while apdet
has more conditional branches than loops.

VI. COMPARISON OF HERMIT WITH EXISTING
BENCHMARK SUITES

Table [II| presents the comparison of the hardware charac-
teristics between the considered benchmark suites. We com-
pared each HERMIT benchmark with 15 applications from
MiBench, 8 applications from PARSEC, and 20 applications
from CPUO6. However, for brevity, Table [[Ij only shows the av-
erage values for different characteristics of all the benchmarks
in the different suites.

The CPUO6 benchmark suite consists of compute-intensive
high-performance applications; the benchmarks exhibit the
highest instruction count and maximum execution time. On
the other hand, MiBench, which targets embedded system
applications, has the shortest execution time and highest
average IPC value of 0.911. In general, we observed that the
most similar characteristics between HERMIT and the other
benchmark suites are the branch instruction frequency, L1 I-
Cache accesses pti, and L1 D-Cache access pti. However, we
observed differences in other characteristics that warranted
further analysis to quantify these differences.

To evaluate HERMIT’s difference from the other benchmark
suites, we used a statistical method—the Wilcoxon rank-sum
test [40]—to test HERMIT’s statistically significant difference
from the three benchmark suites. Using the Wilcoxon rank-
sum test method, we calculated the p-value for the data sets.
A p-value of less than 0.05 indicates that the data sets are
significantly different from each other [41].

Table [[T] shows that HERMIT exhibits significant statistical
difference from MiBench, PARSEC and CPUO06 in 12, 5,

and 7 of the 19 characteristics considered (the shaded fields
in the table represent characteristics with a high statistical
difference). For example, while HERMIT and MiBench were
similar in some respects (e.g., execution time, percentage
branch instructions), they were substantially different in other
characteristics (e.g., cache miss rates, page faults, TLB misses,
etc.). We observed similar trends in the comparisons with
both PARSEC and CPU06. We also observed that HERMIT
applications, despite their small sizes (in instruction count)
compared to PARSEC and CPUO06, exhibited high branch,
L1-D, and LLC miss rates that were similar to PARSEC and
CPUO06.

Overall, we observed that HERMIT was substantially dif-
ferent from the other three benchmark suites in the instruction
count, L1 I-Cache miss rate, and L1 I-Cache misses pti.
Interestingly, HERMIT was most different from the MiBench
benchmark suite, which illustrates the fact that state-of-the-
art embedded systems benchmark suites may not sufficiently
represent emerging IoMT applications’ characteristics. These
results also suggest that while specific benchmarks from the
different suites may suffice for representing different loMT ap-
plications; no one benchmark suite suffices, further motivating
the need for the HERMIT benchmark suite.

Principal Component Analysis. To further analyze the dif-
ferences between the different benchmark sutes, we also
performed Principal Component Analysis (PCA) [42] on the
hardware characteristics of all the benchmark suites. PCA is
a statistical data analysis technique that helps in interpreting
multivariate data, and converts a set of possibly correlated p
variables { X7, X5, ..., X;,} into a set of linearly uncorrelated p
variables {Z1, Zs, ..., Z, }, known as the principal components

(PCs), such that: p
Zi = Z ainj
j=1

The PC transformation has the following useful properties:

1) The total variance in the data remains same and the
transformation does not result in any information loss:

Z Var[X;] = Z Var|Z;]

2) There is no information overlap between the PCs, and
the PCs are uncorrelated to each other:

CO’U[ZZ‘,ZJ‘] = O,Vi 7éj

3) Z; has the most information (variance), and each sub-
sequent Z; has less information than previous Z;_;.
This property is useful in reducing the dimensionality
of the data. The components with lower variance can
be removed from the analysis without significant loss of
information:

Var(Zi] > Var(Zs] > ... > Var[Z,]

As highlighted in 3), PCA is useful in reducing the data
dimensionality without significant loss in information. In our
analysis, we considered 19 different application characteristics
as discussed in Table Using PCA, we reduced the [42 X

4
3t
2t
k=
29 - C 0
S a iradon
g . SN
('_; imghistsC -
% 4 activityx
=
= wabp
o ¥sqrs
5 o G X X
1= X lzw hrv
N apdet
3l C
_ aes
0 %
-4 -
@ x
kmeans
5 . \ . . .
4 2 0 2 4 6 8

1st Principal Component

(a)

kmeans
2 X
aes
X
Isz @ C
imghist < ;9"5

L wabp
0 iradon C
X

4th Principal Component

hrv

-3 -2 -1 0 1 2 3 4 5
3rd Principal Component

(®)

Fig. 6: Scatter-plot of all applications’ PC values

19] data to [42 x 4] by considering only the first four PCs,
accounting for 68.99% variance.

Fig. [6] depicts the scatter plot of PC values for the applica-
tions from HERMIT, MiBench, PARSEC and CPU0O6 bench-
mark suites. We have highlighted the HERMIT benchmarks
with blue crosses, while the rest of the benchmarks are shown
in orange circles. The benchmarks with similar PC values, will
show similar hardware performance characteristics. For exam-
ple, consider the benchmarks sqgrs, wabp and kmeans. Sqrs and
wabp have closer PC values, as seen in Fig. [6a and Fig. [6b]
while kmeans has PC values significantly different from the
other two. Table [l1]] gives the application characteristic values
of these benchmarks, and validates that benchmarks with
similar PC values (sqrs and wabp) have similar application

characteristics. Another observation made from Fig. [f] is that
almost all HERMIT benchmarks have different PC values than
the benchmarks from other benchmark suites.

To determine if any specific benchmarks from the other
benchmark suites can represent HERMIT benchmarks, we
compared each HERMIT benchmarks with all 42 bench-
marks considered from MiBench, PARSEC, and CPU06. We
observed that there was no one benchmark from the other
suites that accurately represented HERMIT in all execution
characteristics. We then grouped the execution characteristics
into five categories: performance characteristics (IPC and
execution time), branch characteristics (branch instruction fre-
quency, branch miss rate, and branch misses pti), L1 I-Cache
characteristics (L1 I-Cache accesses pti, L1 I-Cache miss rate,

TABLE II: Comparison of HERMIT benchmarks with MiBench, PARSEC and CPU06

Hardware Characteristics Average Values Wilcoxon Rank-sum Test p-Values
HERMIT ‘ MiBench PARSEC ‘ CPUO6 MiBench | PARSEC CPU06

Instruction Count 1,345,260,263 | 919,583,759 | 22,096,675,237 | 1,504,949,141,494 0.0429 0.00009 0.00003
IPC 0.597 0911 0.641 0.537 0.0043 0.8968 0.0568

Execution Time (ms) 3.307 3.063 16.953 2,433.242 0.0557 0.0021 0.00005
Branch instructions (%) 8.621 9.687 5.678 9.920 0.3601 0.0031 0.5973
Branch miss rate (%) 9.333 5.979 11.528 8.109 0.0375 0.2743 0.1974
Branch misses pti 8.116 5.970 6.818 7.088 0.2555 0.6334 0.1569

L1 I-Cache accesses pti 572.482 537.063 553.402 557.215 0.4881 0.4598 0.5684
L1 I-Cache miss rate (%) 1.526 0.813 0.400 0.189 0.0284 0.00055 0.00003
L1 I-Cache misses pti 8.810 5.157 2.211 1.185 0.0375 0.00055 0.00003
L1 D-Cache accesses pti 350.426 335.935 357.159 382.168 0.9337 0.8968 0.1832
L1 D-Cache miss rate (%) 2.395 0.440 1.210 3.064 0.0030 0.3590 0.5973
L1 D-Cache misses pti 8.137 1.809 3.998 12.059 0.0025 0.2370 0.5401
LLC accesses pti 30.836 10.317 19.180 37.168 0.0030 0.0676 0.7836
LLC miss rate (%) 14.451 10.230 19.114 23.024 0.1416 0.2370 0.1038
LLC misses pti 5.585 0.665 4.808 10.336 0.00079 0.4598 0.6270
Page faults pmi 13.082 2.300 5.797 1.786 0.00079 0.1101 0.00018
Context switches pmi 0.618 0.403 0.173 0.016 0.1741 0.5148 0.00049
iTLB misses pmi 15.777 3.452 7.912 26.4310 0.00079 0.1728 0.0213
dTLB misses pmi 1,133.287 10.917 225.160 1,308.998 0.00065 0.6334 0.4586

TABLE III: Validating similarity based on PC values

Characteristic ‘ ‘ sqrs wabp ‘ ‘ kmeans
IPC 0.760 0.756 0.523
L1 I Cache accesses pti 540.090 | 539.384 588.003
L1 I Cache miss rate (%) 1.668 1.647 2.176
L1 D Cache accesses pti 330.983 | 331.025 399.863
L1 D Cache miss rate (%) 2.306 2.302 1.386
LLC accesses pti 29.658 29.837 29.535
LLC miss rate (%) 8.147 8.097 13.021
Branches instructions (%) 6.547 6.552 9.567
Branch miss rate (%) 11.831 11.860 11.412

and L1 I-Cache misses pti), L1 D-Cache characteristics (L1 D-
Cache accesses pti, L1 D-Cache miss rate, L1 D-Cache misses
pti), and LLC characteristics (LLC accesses pti, LLC miss
rate, and LLC misses pti). Using these groupings, we then
performed PCA to determine benchmarks similarities for the
different execution characteristics.

Table [V] lists the benchmarks with the minimum Euclidean
distance between the PCs for the different grouped characteris-
tics. A Euclidean distance closer to zero indicates a higher de-
gree of similarity among the execution characteristics. The two
most similar benchmarks were apdet and jpeg (MiBench) for
the performance characteristics as seen in Table Similarly,
h264ref (MiBench) had the closest branch characteristics to
imghist. For L1 I Cache, L1 D Cache and LLC, vips (PARSEC)
was closest to iradon, fft (MiBench) was closest to apdet, and
blackscholes (PARSEC) was closest to activity. In general,
our analysis indicates that a close representation of HERMIT
applications using current benchmark suites is only possible
using benchmarks from different suites to represent different
execution characteristics.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present HERMIT, a benchmark suite
for the Internet of Medical Things (IoMT). This benchmark
suite is a step toward enabling research into highly efficient
processors for emerging IoMT applications. We analyzed
HERMIT for different execution characteristics and compared
the benchmarks to three commonly used benchmark suites,
MiBench, PARSEC, and SPEC CPU2006. Our comparative
analysis revealed that the execution characteristics of HER-
MIT benchmarks substantially differ from those of existing
benchmark suites.

Our future work involves extending HERMIT to repre-
sent more applications in the IoMT space. We also plan to
investigate additional execution characteristics of HERMIT
benchmarks, such as phase characteristics, which will en-
able optimizations for adaptable microprocessors. We will
also further analyze how execution can be optimized using
specialized processors, such as application specific integrated
circuits (ASICs), field-programmable gate arrays (FPGAs),
and graphics processing units (GPUs).

REFERENCES
[1] Ashton, Kevin, “That ‘Internet of Things’ thing,” RFiD Journal, vol. 22,
no. 7, pp. 97-114, 2009.

[2] “Gartner says the internet of things will transform the data center,” 2014.
[Online]. Available: http://www.gartner.com/newsroom/id/2684616

[3]

[4

=

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787-2805, 2010.

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645-1660, 2013.
Y. Yuehong, Y. Zeng, X. Chen, and Y. Fan, “The Internet of Things in
Healthcare: An overview,” Journal of Industrial Information Integration,
vol. 1, pp. 3-13, 2016.

J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson, and A. Marrs,
“Disruptive technologies: Advances that will transform life, business,
and the global economy,” Tech. Rep., May 2013.

D. M. Becker, C. A. Tafoya, S. L. Becker, G. H. Kruger, M. J. Tafoya,
and T. K. Becker, “The use of portable ultrasound devices in low-and
middle-income countries: a systematic review of the literature,” Tropical
Medicine & International Health, vol. 21, no. 3, pp. 294-311, 2016.
V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-
aware wireless microsensor networks,” IEEE Signal Processing Maga-
zine, vol. 19, no. 2, pp. 40-50, Mar 2002.

T. T.-O. Kwok and Y.-K. Kwok, “Computation and energy efficient
image processing in wireless sensor networks based on reconfigurable
computing,” in Proc. Int. Conf. Parallel Processing Workshops, 2006,
pp- 8 pp-—50.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637-646, 2016.

T. Adegbija, A. Rogacs, C. Patel, and A. Gordon-Ross, “Enabling Right-
Provisioned Microprocessor Architectures for the Internet of Things,” in
Proc. Int. Mechanical Engineering Congr. and Expo. (ASME), 2015, pp.
V014T06A001-V014TO6A001.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
Its Role in the Internet of Things,” in Proc. 1st MCC Workshop Mobile
Cloud Computing, Helsinki, Finland, 2012, pp. 13-16.

M. Maksimovic¢, V. Vujovi¢, N. Davidovié, V. Milosevié, and B. Perisié,
“Raspberry Pi as Internet of things hardware: performances and con-
straints,” Design Issues, vol. 3, p. 8, 2014.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. 4th Annu. IEEE Int. Workshop Workload
Characterization, Dec 2001, pp. 3-14.

J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1-17, 2006.
C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proc. 17th Int.
Conf. Parallel Architectures and Compilation Techniques, Oct 2008.
“The Embedded Microprocessor Benchmark Consortium.” [Online].
Available: http://www.eembc.org/

A. Limaye and T. Adegbija, “A Workload Characterization of the SPEC
CPU2017 Benchmark Suite,” in Proc. IEEE Int. Symp. Performance
Analysis of Systems and Software (ISPASS), Apr 2018.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: a
tool for evaluating and synthesizing multimedia and communicatons
systems,” in Proc. 30th Ann. Int. Symp. on Microarchitecture, 1997,
pp. 330-335.

C. Strydis, D. Dave, and G. N. Gaydadjiev, “ImpBench revisited: An
extended characterization of implant-processor benchmarks,” in Proc.
Int. Conf. Embedded Computer Systems: Architectures, Modeling and
Simulation, July 2010, pp. 126-135.

M. Arlitt, M. Marwah, G. Bellala, A. Shah, J. Healey, and B. Vandiver,
“loTAbench: An Internet of Things analytics benchmark,” in Proc. 6th
ACM/SPEC Int. Conf. Performance Engineering, 2015, pp. 133-144.
F. Tehranipoor, N. Karimian, P. A. Wortman, and J. A. Chandy, “Low-
cost authentication paradigm for consumer electronics within the internet
of wearable fitness tracking applications,” in Consumer Electronics
(ICCE), 2018 IEEE International Conference on. IEEE, 2018, pp.
1-6.

I. Bisio, F. Lavagetto, M. Marchese, and A. Sciarrone, “Smartphone-
based user Activity Recognition Method for Health Remote Monitoring
Applications,” in Proc. 2™¢ Int. Conf. Pervasive and Embedded Com-
puting and Communication Systems, Feb 2012, pp. 200-205.

I. Bisio, A. Delfino, F. Lavagetto, and A. Sciarrone, “Enabling IoT for
in-home rehabilitation: accelerometer signals classification methods for
activity and movement recognition,” IEEE Internet of Things Journal,
vol. 4, no. 1, pp. 135-146, 2017.

I. Bisio, F. Lavagetto, M. Marchese, and A. Sciarrone, “Smartphone-
centric ambient assisted living platform for patients suffering from
co-morbidities monitoring,” IEEE Communications Magazine, vol. 53,
no. 1, pp. 3441, Jan 2015.

http://www.gartner.com/newsroom/id/2684616
http://www.eembc.org/

TABLE IV: Applications with similar execution characteristics to HERMIT applications

Execution Characteristics
HERMIT Performance Branch L1 I-Cache L1 D-Cache LLC
Benchmark Dist. Benchmark Dist. Benchmark Dist. Benchmark Dist. Benchmark Dist.
activity fregmine 0.0139 t).)peset 0.5374 xalancbmk 0.4638 pc.zmcza 0.1967 blackscholes 0.1162
(PARSEC) (MiBench) (CPUO06) (MiBench) (PARSEC)
j trici trici d lancbmk
aes Jacesim 00723 | PUT 15033 | AT g 20940 an 0.1392 | FHEOME | G 5146
(PARSEC) (MiBench) (MiBench) (CPUO06) (CPUO06)
]] t t t
apdet peg 0.0080 | Treamine 1 4149 gsor 0.6140 R 0.0633 qsor 0.1372
(MiBench) (PARSEC) (MiBench) (MiBench) (MiBench)
hrv © ;’:;)6) 05375 (lv[“f];s"” b | 02085 (h;’,”l;pcmh) 0.4693 E’é":ég’ g 1.0450 (:;5(:6) 02176
iBenc iBenc
imghise || STISsearch | oe3g | H20HeS g g3a | AdPem | qugy | Dasicmath G 545 Jerret 0.2176
(MiBench) (CPU06) (MiBench) (MiBench) (PARSEC)
iradon (le;c%) 05273 (lé;l:jg Z) 0.1476 (PA:f; SE o | 02253 (éi’:jg’; || 0823 (OC’”}:’SZS 0.7442
kmeans streamcluster 0.0440 freqmine 05830 strii?gsearch 14187 tonto 02236 strii?gsearch 02041
(PARSEC) (PARSEC) (MiBench) (CPU06) (MiBench)
Iow Jacesim | a4y R4 0.1945 gsort 0.8738 fonto | 10 | Strinssearch | gy
(PARSEC) (MiBench) (MiBench) (CPU06) (MiBench)
sqrs vips 00127 | DPPesel | a5y | adem | G eqag | mmd | g aune | DPESET T ogag
(PARSEC) (MiBench) (MiBench) (CPU06) (MiBench)
wabp vips 00126 | PPl | g qa0n | 9dem | Ggago | Mmd | gaupg | DPESEl G g6y
(PARSEC) (MiBench) (MiBench) (CPU06) (MiBench)
[26] J. Qi, P. Yang, D. Fan, and Z. Deng, “A Survey of Physical Activity [38] W. Engelse and C. Zeelenberg, “A single scan algorithm for QRS-

[27]

(28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Monitoring and Assessment Using Internet of Things Technology,” in
Proc. IEEE Int. Conf. Computer and Information Technology; Ubiq-
uitous Computing and Communications; Dependable, Autonomic and
Secure Computing; Pervasive Intelligence and Computing, Oct 2015,
pp. 2353-2358.

G. B. Moody, “ECG-based indices of physical activity,” in Proc.
Computers in Cardiology, Oct 1992, pp. 403-406.

D. Halperin, T. S. Heydt-Benjamin, K. Fu, T. Kohno, and W. H. Maisel,
“Security and privacy for implantable medical devices,” IEEE Pervasive
Computing, vol. 7, no. 1, 2008.

J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.
“Crypto++ Library 5.6.5.” [Online]. Available: https://www.cryptopp.
com

J. E. Mietus, C. K. Peng, P. C. Ivanov, and A. L. Goldberger, “Detection
of obstructive sleep apnea from cardiac interbeat interval time series,”
in Proc. Computers in Cardiology, vol. 27, 2000, pp. 753-756.

A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a
New Research Resource for Complex Physiologic Signals,” Circulation,
vol. 101, no. 23, pp. €215-e220, 2000.

R. E. Kleiger, J. Miller, J. Bigger, and A. J. Moss, “Decreased heart
rate variability and its association with increased mortality after acute
myocardial infarction,” The American Journal of Cardiology, vol. 59,
no. 4, pp. 256 — 262, 1987.

J. E. Mietus, C. K. Peng, I. Henry, R. L. Goldsmith, and A. L.
Goldberger, “The pNNx files: re-examining a widely used heart rate
variability measure,” Heart, vol. 88, no. 4, pp. 378-380, 2002.

P. A. Toft and J. A. Sgrensen, “The Radon transform-theory and
implementation,” Ph.D. dissertation, Technical University of Denmark,
Department of Informatics and Mathematical Modeling, 1996.

H. Ng, S. Ong, K. Foong, P. Goh, and W. Nowinski, “Medical image seg-
mentation using k-means clustering and improved watershed algorithm,”
in Proc. IEEE Southwest Symp. Image Analysis and Interpretation, 2006,
pp. 61-65.

M. J. Knieser, F. G. Wolff, C. A. Papachristou, D. J. Weyer, and D. R.
Mclntyre, “A technique for high ratio LZW compression,” in Proc. Conf.
Design, Automation and Test in Europe, vol. 1, 2003, pp. 101-16.

(39]
[40]

[41]

[42]

detection and feature extraction,” Computers in cardiology, vol. 6, no.
1979, pp. 37-42, 1979.

“ARM.” [Online]. Available: http://www.arm.com

F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, vol. 1, no. 6, pp. 80-83, 1945.

M. J. Crawley, Statistics: An introduction using R, 2nd ed. John Wiley
& Sons, 2014.

L. Eeckhout, H. Vandierendonck, and K. D. Bosschere, “Workload
design: selecting representative program-input pairs,” in Proc. Int. Conf.
Parallel Architectures and Compilation Techniques, 2002, pp. 83-94.

Ankur Limaye is a Ph.D. student in the Depart-
ment of Electrical and Computer Engineering at
the University of Arizona. His research interests in-
clude computer architecture, workload characteriza-
tion and performance analysis, and right-provisioned
microarchitectures for IoT devices.

Tosiron Adegbija (M’11) received his M.S and
Ph.D in Electrical and Computer Engineering from
the University of Florida in 2011 and 2015, respec-
tively and his B.Eng in Electrical Engineering from
the University of Ilorin, Nigeria in 2005.

He is currently an Assistant Professor of Elec-
trical and Computer Engineering at the University
of Arizona, USA. His research interests are in
computer architecture, with emphasis on adaptable
computing, low-power embedded systems design
and optimization methodologies, and microprocessor

optimizations for the Internet of Things (IoT).
Dr. Adegbija was a recipient of the Best Paper Award at the Ph.D forum
of IEEE Computer Society Annual Symposium on VLSI (ISVLSI) in 2014.

https://www.cryptopp.com
https://www.cryptopp.com
http://www.arm.com

