
LARS: Logically Adaptable Retention Time
STT-RAM Cache for Embedded Systems

Kyle Kuan and Tosiron Adegbija
Department of Electrical & Computer Engineering

University of Arizona, Tucson, AZ, USA
Email: {ckkuan, tosiron}@email.arizona.edu

Abstract—STT-RAMs have been studied as a promising al-
ternative to SRAMs in embedded systems’ caches and main
memories. STT-RAMs are attractive due to their low leakage
power and high density; STT-RAMs, however, also have draw-
backs of long write latency and high dynamic write energy. A
popular solution to this drawback relaxes the retention time
to lower both write latency and energy, and uses a dynamic
refresh scheme that refreshes data blocks to prevent them
from prematurely expiring. However, the refreshes can incur
overheads, thus limiting optimization potential. In addition, this
solution only provides a single retention time, and cannot adapt to
applications’ variable retention time requirements. In this paper,
we propose LARS (Logically Adaptable Retention Time STT-RAM)
cache as a viable alternative for reducing the write energy and
latency. LARS cache comprises of multiple STT-RAM units with
different retention times, with only one unit on at a given time.
LARS dynamically determines which STT-RAM unit to power
on during runtime, based on executing applications’ needs. Our
experiments show that LARS cache is low-overhead, and can
reduce the average energy and latency by 35.8% and 13.2%,
respectively, as compared to the dynamic refresh scheme.

Index Terms—Spin-Transfer Torque RAM (STT-RAM) cache,
configurable memory, low-power embedded systems, adaptable
hardware, retention time.

I. INTRODUCTION

Much research has focused on optimizing caches’ perfor-
mance and energy efficiency, due to the caches’ non-trivial
overall impact on embedded systems [1]. One of such emerg-
ing optimizations involves replacing the traditional SRAM
cache with the non-volatile Spin-Torque Transfer RAM (STT-
RAM). Apart from its non-volatility, the STT-RAM offers
higher storage density than SRAM, low leakage power, and
compatibility with CMOS technology [2], [3], [4]. However,
dynamic operations in STT-RAM caches accrue significant
overheads, compared to SRAM caches, due to long write
latency and high dynamic write energy [4]. This paper aims
to mitigate these overheads associated with STT-RAM caches.
Specifically, we target the L1 cache, since it typically has the
highest number of dynamic operations in the cache hierarchy.

The STT-RAM was originally developed to preserve data for
up to ten years in the absence of an external power source [5].
This duration is known as the retention time. Prior work [6]
has shown that longer retention times translate to increased
write latency and energy, especially in resource-constrained
embedded systems. In addition, such long retention times are
usually unnecessary, since data is typically only needed in the

cache for no longer than one second [2]. To reduce the write
latency and energy, the retention time can be reduced, such
that it is just sufficient to hold cached data.

Much prior work has explored the benefits of significantly
relaxing the retention time [7], [4], [2], [8], [9]. Sometimes,
the retention time is shorter than the duration for which data
blocks must remain in the cache. To prevent the premature
eviction of data blocks, the dynamic refresh scheme (DRS)
[7], [4], [2] continuously refreshes the blocks that must re-
main in the cache beyond the retention time. However, the
refreshes—involving multiple read/write operations—accrue
runtime overheads and limit the optimization potential [8].

To mitigate these overheads, a few techniques (e.g., [8],
[10]) have been developed to reduce refreshes. These tech-
niques, however, typically rely on compiler-based data rear-
rangement, and the associated overheads, including compila-
tion time and the costs of extra physical circuits to implement
the techniques [8], [9]. In addition, these techniques typically
feature a single retention time throughout the cache’s lifetime
[8], [10], even though different applications may require differ-
ent retention times based on the lifetimes of the applications’
data blocks.

Our work is motivated by three key observations: 1) dif-
ferent applications may require different retention times; 2)
rather than performing multiple refreshes on cache blocks with
longer lifetimes than the static retention time, more energy
can be saved by using a longer retention time; and 3) a lower
retention time than the static retention time can reduce the
write energy and latency, if the reduced retention time does
not result in excessive cache misses.

Given that cache blocks’ lifetimes depend on different ap-
plications’ execution characteristics, we propose that the STT-
RAM cache’s access energy and latency can be substantially
reduced by dynamically adapting the retention time to the
applications’ individual needs. The retention time, however, is
an inherent physical characteristic of STT-RAMs [5], which
precludes physical runtime adaptability. Therefore, we explore
a technique for logically adapting the retention time to exe-
cuting applications’ needs.

In this paper, we propose LARS: Logically Adaptable
Retention time STT-RAM as a viable option for achieving
dynamically adaptable retention times in STT-RAMs. Since
STT-RAM cache units are much smaller in area than SRAM
caches, we propose a LARS cache that comprises of multiple



STT-RAM cache units, wherein only one unit is on at any
given time based on executing applications’ retention time
requirements. Our major contributions are summarized as
follows:
• To the best of our knowledge, this paper is the first

to propose dynamically adaptable retention time to
reduce STT-RAM’s write energy and latency. To this
end, we explore our idea of logical adaptation and
its potentials for reducing energy and latency.

• We explore and evaluate simple and easy-to-
implement algorithms to dynamically determine the
best retention times during runtime.

• We compare LARS to both the SRAM and DRS
to investigate its potentials. Experiments reveal that,
compared to the state-of-the-art DRS, LARS can
reduce the average STT-RAM cache energy and
latency by 35.8% and 13.2%, respectively.

II. BACKGROUND AND RELATED WORK

The STT-RAM’s basic structure, comprising of magnetic
tunnel junction (MTJ) cells, and characteristics have been
detailed in prior work [2], [11]. In this section, we present
a brief overview of prior work on volatile STT-RAMs that
provides the background for LARS.

A. Refresh Schemes on Volatile STT-RAM Cache

Prior work has shown that reducing the STT-RAM’s reten-
tion time (i.e., volatile STT-RAMs) can significantly reduce
the write energy and latency [7], [4], [2]. To prevent data
loss in STT-RAMs with reduced retention times, Sun et al.
[4] proposed the dynamic refresh scheme (DRS), which uses
a counter to monitor how long each cache block is in the
cache, in order to prevent premature expiry. Once the counter
reaches its maximum value, the cache controller continuously
refreshes the cache block until its lifetime expires (e.g.,
through eviction).

The dynamic refresh scheme incurs energy overheads due
to the large number of refreshes. To reduce this overhead, Jog
et al. [2] proposed the cache revive scheme, a flavor of DRS.
Rather than refreshing all the cache blocks as proposed in [4],
the cache revive scheme uses a small buffer to temporarily
hold cache blocks that have prematurely expired due to the
retention time. The most recently used cache blocks are then
copied back into the cache and refreshed.

More recent works used compiler-based techniques—such
as code optimization [8] and loop scheduling [10]—to reduce
refreshes. However, these works preclude runtime optimization
and incur overheads, since they typically rely on dedicated
hardware to deal with the data loss in volatile STT-RAM
cache.

Block 0

Block 2

Block 1

Buffer 0

Buffer 2

Buffer 1

Block 3

STT-RAM Cache Refresh Buffer (SRAM)

Expired

Re-write

Fig. 1: Overheads of dynamic refresh scheme

App 1 App 2 App n...

Index 0

Index 1

Index 2

Index 3

Index 0

Index 1

Index 2

Index 3

Index 0

Index 1

Index 2

Index 3

App 3 App 4

Index 0

Index 1

Index 2

Index 3

100 μs Cache1 ms Cache 100 ms Cache10 ms Cache

Fig. 2: STT-RAM retention time adapts to applications.

B. Cost of Refresh Schemes and Motivation for LARS

Fig. 1 illustrates some of the overheads incurred by the
dynamic refresh scheme. Consider an STT-RAM cache with
four blocks. Assuming that the retention time has elapsed, but
Block 1 has not expired, the data is refreshed by copying the
cache block into an SRAM refresh buffer and written back
into the STT-RAM cache. Each refresh costs read and write
operations to transfer the block between the STT-RAM and
SRAM caches. The energy overheads of these operations can
be prohibitive [8], especially in embedded systems.

Jog et al. [2] studied applications’ cache block lifetimes
to revealed that different applications have different cache
block lifetimes and retention time requirements. We performed
further studies to reveal that, based on the variable block
lifetimes in different applications, retention times can be
adapted to the applications to reduce the access energy and
latency.

III. LOGICALLY ADAPTABLE RETENTION TIME STT-RAM
(LARS) CACHE

Fig. 2 illustrates how LARS works. Given a constrained
design space of retention times, assume that App1’s best re-
tention time is 100 µs, App2’s and App4’s best retention time
is 100 ms, and so on. LARS allows the different applications
to execute on cache units with retention times that match the
applications’ needs, in order to reduce the energy and latency.

A. Retention Time Analysis

To motivate our work, we analyzed how retention times
affect applications’ cache miss rates. Fig. 3 illustrates the
relationship between cache miss rates and retention times for
different applications in the SPEC 2006 [12] benchmark suite.
The miss rates for the different STT-RAM retention times
are normalized to the applications’ SRAM miss rates with
the same cache configuration. For clarity, Fig. 3 only shows
five applications; we note, however, that the trend was similar
for all the applications. Since a higher retention time implies
higher energy and latency, our goal was to find the lowest
(best) retention times that maintained comparable cache miss
rates to the SRAM.

In general, the miss rates decreased as the retention times
increased for all the applications. However, we observed
different behaviors between the data and instruction caches.
For the data cache (Fig. 3a), the retention times that achieved
low cache miss rates varied for the different applications. For
example, bzip2’s and leslie3d’s best retention time were 100µs,
calculix’s and h264ref ’s were 10ms, and omnetpp’s was
100ms. For the instruction cache (Fig. 3b), however, 100ms
was consistently the best retention time for all applications.



(a) Data cache (b) Instruction cache

Fig. 3: STT-RAM cache miss rate changes under different
retention times (normalized to SRAM, baseline of 1)

Since embedded systems applications are typically unknown
at design time, our observations suggest that for optimal en-
ergy and latency in STT-RAM data caches, the retention times
must be dynamically adapted to match changing application
needs. Considering the consistency of the best retention time
for the instruction cache (Fig. 3b)—instructions typically have
less runtime variability than data—we decided to keep the
instruction cache’s retention time at 100ms, and focused the
rest of our work on the data cache.

B. LARS Architecture

The STT-RAM is 3 to 9 times denser than the SRAM [4],
[2]. However, for speed considerations, L1 cache sizes are
typically limited (e.g., 16 – 32KB), especially in embedded
systems devices. Thus, for the same memory size, an STT-
RAM would take up a much smaller physical area than the
SRAM. Based on this physical characteristic of the STT-RAM,
we propose a LARS cache that comprises of four STT-RAM
units; these four STT-RAM units will take up approximately
the same area as one SRAM cache of the same size.

Fig. 4 depicts the proposed LARS architecture. The LARS
cache comprises of four STT-RAM units with four different
data memory retention times. The cache also comprises of four
tag memory units, a status array with each element containing
a valid bit, dirty bit—we assume a write-back cache—and
monitor counter bits. To save energy, only one unit is on at
a time, depending on the retention time needs of executing
applications. Each element of the array indicates the status
of one cache block. Although an expiring cache block is not
refreshed in the LARS cache, we use the monitor counter to
determine when to eliminate an expiring cache block (through
invalidation, for example). We adopt the monitor counter from
[4], and assume a monitor clock whose period is N times
smaller than the retention time. Therefore, when a block’s
monitor counter goes from 0 to N , the block has reached
its maximum retention time and should be invalidated.

Fig. 5 shows the state machine of the n-bit monitor counter
for each cache block. The state machine comprises of states
S0 to SN , which advance on the monitor clock’s rising edge.
In each state, the monitor counter resets to S0 once the
cache block receives a write or invalidate command. When the
monitor counter’s state is SN , the counter begins the expiring
process and sets the E signal. The E signal triggers LARS to

No

BLOCK0
BLOCK1
BLOCK2
BLOCK3
...

Multi-Retention 
Tag Memory

Multi-Retention 
Data Memory

Valid, Dirty ,and 
Counter Bits

Dirty?

Yes

Expired

WB

INV

INV

Expired

Expired

Fig. 4: LARS architecture
check the block’s dirty bit. If the block is dirty, LARS will
flush the block to the next memory level. Otherwise, LARS
will only invalidate the cache block. Note that LARS requires
minimal modifications to the cache controller, since these
processes (e.g., writing back/invalidating a cache block) are
implemented in state-of-the-art cache controllers. We discuss
the monitor counter’s overhead in Section III-D.

C. Determining the Best Retention Time

We assume that the cache controller [4], [7], [2] orches-
trates the powering on/off of the appropriate STT-RAM units.
To enable a non-intrusive process of determining the best
retention time, we designed a low-overhead hardware LARS
tuner to implement the algorithms described herein (the tuner
overheads are described in Section III-D). The choice of
retention time determines which LARS STT-RAM unit is
powered on for different executing applications. Thus, we
explored different techniques for dynamically determining an
application’s best retention time.

1) Sampling Technique: First, we considered a simple
sampling technique that determines the best retention time
by exhaustively sampling every available retention time. The
application is executed on each STT-RAM unit for a tuning
interval—we used intervals of 100million instructions—during
which the energy consumption is measured. After sampling
all retention times, the best retention time (lowest energy) is
then selected and stored in a low-overhead data structure for
subsequent use. The tuning overheads (time and energy) from
this sampling technique are not prohibitive, since there are
only four retention time options in the proposed LARS cache.
With a tuning interval of 100 million instructions, tuning takes
place during execution of the first 400million instructions,
after which the optimal retention time is determined. Since
applications can run for trillions of instructions [12], the tuning
overheads are rapidly amortized during execution.

We used energy as the evaluation metric because we ob-
served that the energy-based approach provided an optimal
balance between energy and latency optimization, as compared
to a latency-based approach (details in Section V-A).

2) LARS Tuning Algorithm: For easy practical implemen-
tation, we also designed a simple tuning algorithm—LARS-
Optimal—to determine the best retention times during runtime.
The algorithm determines the best retention time for energy,

S0 S1 S2 Si...

T T T T T

W W W W E

T:Counter Pulse Width, W:Write/Invalidate, E:Expired

SNSN-1

Fig. 5: Monitor counter state machine for each cache block



App executed

Default to max retention time;
Mark retention time as valid

Run application for a tuning interval 
and record estimated energy

Mark recorded energy as base

Greater than 
base?

Yes

Select next lower retention time

Run application for a tuning interval 
and record estimated energy

Mark new retention time as valid
Mark recorded energy as base

No

Min retention 
time?

Exit

No

Yes

(a) LARS-Optimal tuning algo-
rithm

Run application for a tuning interval 
and record energy

Over 5% of 
base?

No

Yes

Exit

Do app profiling 
next time

(b) Checking process

Fig. 6: LARS-Optimal Tuning Algorithm

using a cache energy model [13] based on the number of cache
accesses, writebacks, misses, and the associated latencies.

Fig. 6a illustrates the LARS-Optimal tuning algorithm,
which runs during an application’s first execution. When the
application begins, LARS defaults to the maximum retention
time. The application is then executed for a tuning interval,
during which the execution statistics are collected from hard-
ware performance counters [14] and the energy consumed is
calculated using the energy model. For our experiments, we
used a tuning interval of 100 million instructions to provide a
balanced tradeoff between tuning overhead and accuracy; this
interval, however, can be adjusted based on specific system
tradeoffs [15].

Fig. 7 illustrates our datapath, which implements the energy
model for calculating the energy. The datapath uses a multiply-
accumulate (MAC) unit, comprising of a multiplier, interme-
diate register, and adder, to calculate the current energy. The
circled numbers in Fig. 7 represent the order in which the
controller state machine selects data items for the MAC. The
calculated current energy is stored as the base energy for
comparison during the tuning process.

As shown in Fig. 6a, LARS iterates through the retention
times in descending order for one tuning interval per retention
time, and compares the current energy value to the base
energy. If the calculated energy with the current retention
time is less than or equal to the previous energy, the current
retention time is stored and the base energy is updated to

MUX

Base energy

Current energy Comparator

CacheMissLatency

CacheHitLatency

CacheRefillLatency

ReadEnergyPerAccess

WriteEnergyPerAccess

LeakageCurrent

ReadRequests

WriteRequests

Writebacks

CacheMissCount
From 
cache 
controller

M
U

X

M
U

X

Current energy < Base energy ?

①②

③④

⑤

①

②

③

④

⑤

Current energy 
calculation control 
flow:
Select, multiply, and 
then increment, 
through variables ① 
to ⑤

Intermediate register

Fig. 7: Datapath for the energy model

the current energy. Otherwise, the previous retention time is
retained for the application, after which the tuning process
exits. The retention time and energy values are stored in a
small low-overhead hardware data structure (Section III-D)
for non-intrusive functioning.

LARS-Optimal also features a checking process, shown in
Fig. 6b, that acts as a feedback on subsequent executions
of the application. On each subsequent execution, the energy
consumed during the first interval is calculated and compared
to the stored value. If the calculated energy value deviates from
the stored value by more than 5%, LARS returns to the tuning
process for that application. Otherwise, the current retention
time is used to run the application. We added the checking
process to enable LARS to react to any runtime changes, such
as new data inputs.

D. LARS Overheads

The main LARS overheads result from the LARS hardware,
runtime tuning, and the switching overheads. We estimated
the overheads using Verilog implementations, synthesized with
Synopsys Design Compiler [16].

LARS’ hardware overheads result from the monitor counters
(Section III-B) and the LARS tuner. The tuner implements
the LARS-Optimal algorithm (Section III-C), datapath for
calculating the energy (Fig. 7), and data storage for retention
time and energy histories (Section III-C). The number of bits,
n, required for the monitor counter is equal to log2N , where
N is the number of monitor clock periods within the retention
time. For example, given a 100µs retention time and a monitor
clock period of 10µs, N = 10, and n = 4. A 32KB cache with
64B lines has 512 monitor counters for each STT-RAM unit;
each monitor counter requires 4 bits. For this cache, LARS
constitutes an area overhead of 0.78%.

We synthesized the tuner with SAED EDK90 Synopsys
standard cell library. The estimated area overhead was 0.0145
mm2, dynamic power was 28.04 mW, and leakage power was
422.68 µW. With respect to the ARM Cortex-A15 [17], the
tuner’s overhead is negligible (around 0.095%).

The switching overhead is the latency incurred while migrat-
ing the cache state (tag and data) from one STT-RAM unit to
another during the LARS tuning process. In the worst case, we
estimated that the migrations took approximately 4608 cycles
and 57.34nJ energy.

IV. EXPERIMENTAL SETUP

To evaluate and quantify the benefits of LARS, we modified
the GEM5 simulator [18] to model LARS. We added a new
retention parameter to GEM5 in order to model the variable
retention time behavior. We also implemented DRS [4]—the
most related work to ours—in GEM5 to enable comparison
with the state-of-the-art1.

To model a state-of-the-art embedded system microproces-
sor, we used configurations similar to the ARM Cortex A15
[14]. The microprocessor features a 2GHz clock frequency,

1The modified GEM5 version can be found at www.ece.arizona.edu/tosiron/
downloads.php

www.ece.arizona.edu/tosiron/downloads.php
www.ece.arizona.edu/tosiron/downloads.php


TABLE I: Cache parameters of SRAM and STT-RAM with different retention times

Cache Configuration 32KB, 64B line size, 4-way

Memory Device SRAM STT-RAM-100µs STT-RAM-1ms STT-RAM-10ms STT-RAM-100ms

Write Energy (per access) 0.033nJ 0.040nJ 0.056nJ 0.076nJ 0.101nJ

Read Energy (per access) 0.033nJ 0.012nJ 0.012nJ 0.011nJ 0.011nJ

Leakage Power 38.021mW 1.753mW

Hit Latency (cycles) 2 2 2 2 2

Write Latency (cycles) 2 3 4 5 7

separate 32KB L1 instruction and data caches, and an 8GB
main memory. We used a base retention time of 10ms for DRS,
similar to prior work [2], [4]. Our LARS cache comprises
of four STT-RAM units with 100µs, 1ms, 10ms, and 100ms
retention times. We chose the retention times to be as low
as possible without excessively increasing the cache miss
rates with respect to the SRAM, while covering a range of
application requirements. Note that the cache can be designed
with more STT-RAM units (and different retention times),
depending on the design objectives.

We used the MTJ cell modeling technique proposed in [11]
to obtain essential parameters, such as the write pulse, write
current, and MTJ resistance value RAP . We then applied these
parameters to the circuit modeling tool, NVSim [19], in order
to construct the STT-RAM cache for different retention times,
as shown in Table I. To compare LARS with the SRAM cache,
we modeled the SRAM using CACTI [20].

To represent a variety of workloads, we used twelve bench-
marks from the SPEC 2006 benchmark suite compiled for the
ARM instruction set architecture, using the reference input
sets. Prior work has shown that these benchmarks are suitable
for embedded systems research due to the compute and
memory intensity of emerging embedded systems applications
[21].

V. RESULTS

To illustrate LARS’ effectiveness, we evaluated and an-
alyzed the L1 data cache’s energy and the memory access
latency achieved by LARS compared to the SRAM and DRS,
representing prior work. In this section, we first summarize
the results from the LARS sampling technique, and thereafter
present results for LARS-Optimal.

A. LARS Sampling Technique

We evaluated the sampling technique based on different
metrics—energy-, latency-, and EDP-based approaches—to
determine which metric to use for the LARS tuning algo-
rithm. Fig. 8 illustrates the energy consumed by the different

Fig. 8: Energy of sampling approaches normalized to DRS

sampling approaches normalized to DRS. Both the EDP-
and energy-based approaches reduced the average energy by
35.8%, while the latency-based approach reduced the energy
by 30.1%.

Similarly, on average compared to DRS, the EDP- and
energy-based approaches reduced the latency by 11.1%, while
the latency-based approach reduced the latency by 13.2%.
Finally, the EDP- and energy-based approaches reduced the
EDP by 46.3%, while the latency-based approach reduced the
EDP by 45.3%. The energy-based approach performed best in
all instances, except for latency reduction, where the latency-
based approach only improved over the energy-based approach
by a marginal 2.1%. We have omitted the graphs for brevity.

B. LARS-Optimal Compared to the SRAM and DRS

We observed that LARS significantly reduced the energy
consumption as compared to the SRAM. Fig. 9 depicts the
cache energy and latency achieved by both LARS-Optimal
and DRS normalized to the SRAM. Fig. 9a shows that, on
average across all the applications, LARS-Optimal reduced
the energy by 75% as compared to the SRAM, with energy
savings as high as 86.4% for bzip2. We note that part of
this energy reduction was accounted for by the significantly
reduced leakage power that the STT-RAM offers as compared
to the SRAM (Table I). Thus, both LARS-Optimal and DRS
significantly reduced the energy compared to the SRAM.

Fig. 9b shows that on average, LARS-Optimal reduced the
latency by 4% as compared to the SRAM, with reductions as
high as 15.1% for astar. As shown in Fig. 9b, while the latency
improvement over the SRAM was not significant, LARS did
not degrade the latency, whereas DRS degraded the latency by
8.5%.

Compared to DRS, Fig. 9a shows that LARS reduced the
average energy by 35.8%, with energy savings as high as
42.6% for leslie3d. This energy reduction was directly tied
to the reduction in the dynamic energy resulting from the
dynamic refreshes featured in DRS. Fig. 9b shows that LARS
reduced the average latency by 13.2%, as compared to DRS,
with latency reductions as high as 26.9% for astar.

In general, LARS reduced the write energy and latency by
adapting the retention time to different applications’ needs,
and by using lower retention times when appropriate. In
addition, LARS eliminated the need for dynamic refreshes,
which was a source of overhead in DRS. We also observed
that LARS performed best for applications that maintained
low cache misses despite a low retention time. For example,
as seen in Fig. 3a, some applications, like leslie3d and bzip2,
maintained low cache misses as the retention time reduced.



(a) Data cache energy (b) Data cache latency
Fig. 9: LARS and DRS data cache energy and latency normalized to SRAM

Concomitantly, LARS’ improvements over DRS were higher
than average for these applications—42.6% and 31.8% energy
savings, respectively.

C. Exploring a Synergy Between LARS and DRS
We were further interested in exploring the synergy of

LARS with DRS to achieve additional energy and latency im-
provements. Thus, we also implemented a theoretical scheme
that combined LARS and DRS, featuring the best retention
time (equivalent to LARS-Optimal) and a refresh mechanism
to prevent premature data evictions (equivalent to DRS). We
observed only marginal improvements from this synergis-
tic scheme as compared to LARS-Optimal. The synergistic
scheme improved the average energy and latency by 1.5% and
2.8%, respectively (graphs omitted for brevity).

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we propose LARS: Logically Adaptable Reten-
tion Time STT-RAM cache. LARS cache logically adapts the
STT-RAM’s retention time to different applications’ runtime
requirements, in order to reduce the write energy and latency.
LARS comprises of multiple STT-RAM units with different
retention times; only one unit is powered on at a time, depend-
ing on an application’s needs. Experiments show that LARS
can reduce the average energy and latency by up to 35.8%
and 13.2%, respectively, as compared to a dynamic refresh
scheme. For future work, we plan to explore LARS’ impact for
dynamic phase-based application characteristics. We will also
extend LARS to dynamically tune other cache configurations,
such as cache size, line size, and associativity in order to fully
satisfy executing applications’ resource requirements.

REFERENCES

[1] S. Mittal, “A survey of architectural techniques for improving cache
power efficiency,” Sustainable Computing: Informatics and Systems,
vol. 4, no. 1, pp. 33–43, 2014.

[2] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and C. R.
Das, “Cache revive: Architecting volatile stt-ram caches for enhanced
performance in cmps,” in DAC Design Automation Conference 2012,
June 2012, pp. 243–252.

[3] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit
and microarchitecture evaluation of 3d stacking magnetic ram
(mram) as a universal memory replacement,” in Proceedings of the
45th Annual Design Automation Conference, ser. DAC ’08. New
York, NY, USA: ACM, 2008, pp. 554–559. [Online]. Available:
http://doi.acm.org/10.1145/1391469.1391610

[4] Z. Sun, X. Bi, H. Li, W. F. Wong, Z. L. Ong, X. Zhu, and W. Wu,
“Multi retention level stt-ram cache designs with a dynamic refresh
scheme,” in 2011 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Dec 2011, pp. 329–338.

[5] Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L.-C.
Wang, and Y. Huai, “Spin-transfer torque switching in magnetic tunnel
junctions and spin-transfer torque random access memory,” Journal of
Physics: Condensed Matter, vol. 19, no. 16, p. 165209, 2007. [Online].
Available: http://stacks.iop.org/0953-8984/19/i=16/a=165209

[6] C. Xu, D. Niu, X. Zhu, S. H. Kang, M. Nowak, and Y. Xie, “Device-
architecture co-optimization of stt-ram based memory for low power
embedded systems,” in 2011 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Nov 2011, pp. 463–470.

[7] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan,
“Relaxing non-volatility for fast and energy-efficient stt-ram caches,”
in 2011 IEEE 17th International Symposium on High Performance
Computer Architecture, Feb 2011, pp. 50–61.

[8] Q. Li, J. Li, L. Shi, C. J. Xue, Y. Chen, and Y. He, “Compiler-assisted
refresh minimization for volatile stt-ram cache,” in 2013 18th Asia and
South Pacific Design Automation Conference (ASP-DAC), Jan 2013, pp.
273–278.

[9] G. Rodrı́guez, J. Touriño, and M. T. Kandemir, “Volatile stt-ram
scratchpad design and data allocation for low energy,” ACM Trans.
Archit. Code Optim., vol. 11, no. 4, pp. 38:1–38:26, Dec. 2014.
[Online]. Available: http://doi.acm.org/10.1145/2669556

[10] K. Qiu, J. Luo, Z. Gong, W. Zhang, J. Wang, Y. Xu, T. Li, and C. J. Xue,
“Refresh-aware loop scheduling for high performance low power volatile
stt-ram,” in 2016 IEEE 34th International Conference on Computer
Design (ICCD), Oct 2016, pp. 209–216.

[11] K. C. Chun, H. Zhao, J. D. Harms, T. H. Kim, J. P. Wang, and C. H.
Kim, “A scaling roadmap and performance evaluation of in-plane and
perpendicular mtj based stt-mrams for high-density cache memory,”
IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 598–610, Feb
2013.

[12] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006. [Online].
Available: http://doi.acm.org/10.1145/1186736.1186737

[13] T. Adegbija and A. Gordon-Ross, “Phase-based cache locking
for embedded systems,” in Proceedings of the 25th Edition on
Great Lakes Symposium on VLSI, ser. GLSVLSI ’15. New
York, NY, USA: ACM, 2015, pp. 115–120. [Online]. Available:
http://doi.acm.org/10.1145/2742060.2742076

[14] “Cortex-A15 Processor.” [Online]. Available: https://www.arm.com/
products/processors/cortex-a/cortex-a15.php

[15] A. Gordon-Ross and F. Vahid, “A self-tuning configurable cache,” in
Proceedings of the 44th annual Design Automation Conference. ACM,
2007, pp. 234–237.

[16] D. Compiler, “Synopsys inc,” 2000.
[17] F. A. Endo, D. Couroussé, and H.-P. Charles, “Micro-architectural

simulation of embedded core heterogeneity with gem5 and mcpat,”
in Proceedings of the 2015 Workshop on Rapid Simulation and
Performance Evaluation: Methods and Tools, ser. RAPIDO ’15.
New York, NY, USA: ACM, 2015, pp. 7:1–7:6. [Online]. Available:
http://doi.acm.org/10.1145/2693433.2693440

[18] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2024716.2024718

[19] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 31, no. 7, pp. 994–1007,
Jul. 2012. [Online]. Available: http://dx.doi.org/10.1109/TCAD.2012.
2185930

[20] “HP Labs: CACTI.” [Online]. Available: http://www.hpl.hp.com/
research/cacti/

[21] M. Domeika, Software development for embedded multi-core systems:
a practical guide using embedded Intel architecture. Newnes, 2011.

http://doi.acm.org/10.1145/1391469.1391610
http://stacks.iop.org/0953-8984/19/i=16/a=165209
http://doi.acm.org/10.1145/2669556
http://doi.acm.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/2742060.2742076
https://www.arm.com/products/processors/cortex-a/cortex-a15.php
https://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://doi.acm.org/10.1145/2693433.2693440
http://doi.acm.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/TCAD.2012.2185930
http://dx.doi.org/10.1109/TCAD.2012.2185930
http://www.hpl.hp.com/research/cacti/
http://www.hpl.hp.com/research/cacti/

