
A Workload Characterization of the SPEC
CPU2017 Benchmark Suite

Ankur Limaye and Tosiron Adegbija
Department of Electrical and Computer Engineering

University of Arizona, Tucson, Arizona 85721
Email: {ankurlimaye, tosiron}@email.arizona.edu

Abstract—The Standard Performance Evaluation Corporation
(SPEC) CPU benchmark suite is commonly used in computer
architecture research and has evolved to keep up with system
microarchitecture and compiler changes. The SPEC CPU2006
suite, which remained the state-of-the-art for 11 years was
retired in 2017, and is being replaced with the new SPEC
CPU2017 suite. The new suite is expected to become mainstream
for simulation-based design and optimization research for next-
generation processors, memory subsystems, and compilers. In
this paper, we extensively characterize the SPEC CPU2017
applications with respect to several metrics, such as instruction
mix, execution performance, branch and cache behaviors. We
compare the CPU2017 and the CPU2006 suites to explore the
workload similarities and differences. We also present detailed
analysis to enable researchers to intelligently choose a diverse
subset of the CPU2017 suite that accurately represents the whole
suite, in order to reduce simulation time.

Index Terms—SPEC CPU2017, workload characterization,
benchmarks, computer architecture, performance analysis, mi-
croprocessor optimization.

I. INTRODUCTION

Benchmarking is one of the critical stages of the continuous
development cycle of compilers and system microarchitec-
tures. A set of representative applications (collectively referred
to as ‘benchmark suite’) is executed on the computer system
to either identify potential optimization opportunities in the
system software or hardware, or to qualitatively determine
the benefits of the optimizations performed. There are several
benchmark suites available that focus on different application
domains. For example, the EEMBC [1] and MiBench [2]
benchmark suites focus on embedded system applications
in different domains like automation, communication, and
office software. The SPLASH [3] and PARSEC [4] benchmark
suites, comprise of multi-threaded workloads and evaluate a
processor’s multi-threading capabilities.

One of the most widely used benchmark suites for general-
purpose high-performance computing research is the Stan-
dard Performance Evaluation Corporation (SPEC) CPU [5]
benchmark suite. The SPEC CPU2006 benchmark suite [6],
for example, is cited in over 7,250 research articles and has
over 43,000 published results on the SPEC website. The SPEC
CPU2006 suite, which remained the state-of-the-art for almost
11 years, is being replaced with the new SPEC CPU2017 suite
[7], released in June 20171. The new suite will significantly

1Hereafter, we refer to the SPEC CPU2006 and SPEC CPU2017 benchmark
suites as CPU06 and CPU17 suites respectively.

influence design and optimization research for next-generation
microprocessors, memory subsystems, and compilers.

Given a new benchmark suite like the CPU17, several
practical questions must be answered to assist researchers
in making decisions about the appropriateness of the suite
for their research. First, it is essential to understand the
suite’s workload characteristics (e.g., memory characteris-
tics, branches, instruction mix, etc.). It is also well-known
that SPEC benchmarks typically take a long time to run—
potentially, several days or weeks—when using simulators. As
a result, it is common practice, especially in computer architec-
ture research, to select a subset of the suite’s applications for
use [8], [9]. However, an arbitrary subset can lead to incorrect
or inaccurate results and inferences [9], [10]. The subset must
be carefully selected to maximize the variety of execution
characteristics, and minimize redundancy in the applications.
Furthermore, some of the benchmarks have multiple input data
for each application, and the choice of application-input pairs
is often arbitrary. The CPU17 can also have cost implications,
especially for non-commercial use. Since the suite is not open-
source, researchers who already have the CPU06 suite may be
asking themselves if purchasing the CPU17 suite provides any
significant academic/research benefits. Our goal in this work
is to take a step towards addressing these questions regarding
the new CPU17 suite.

This paper presents the first analysis—to the best of our
knowledge—of the execution and performance characteristics
of the applications in the CPU17 benchmark suite. We use
hardware performance counter statistics from a modern com-
puting system to analyze the suite with respect to several
metrics, such as instructions per cycle (IPC), branch and
cache behaviors, etc. We also briefly compare the CPU17 and
CPU06 suites to derive insights into the overall similarities
and differences between both suites. Using statistical analysis
techniques—Principal Components Analysis (PCA) and Hi-
erarchical Clustering—we present detailed analysis to enable
researchers to identify the redundancies among the CPU17
applications, and select a subset that represents the whole
suite. To enable researchers to reduce simulation time, we also
suggest a representative subset of the CPU17 applications.

The rest of the paper is organized as follows: Section II
presents a brief overview of the CPU17 benchmark suite.
Section III overviews the experimental setup and evaluation
methodology for the workload characterization, and the results



and analysis are presented in Section IV. For each charac-
teristic discussed, we also present an overall comparison of
the CPU17 suite with CPU06. Finally, Section V provides
the discussion and methodology for generating a diverse, yet
representative, subset of the CPU17 benchmark suite.

II. CPU17 SUITE: A BRIEF OVERVIEW

The SPEC CPU benchmark suites have evolved since
the first release of the CPU89 benchmark suite in order
to keep up with changes in system hardware and software
[11]. The CPU17 benchmark suite—released in June 2017—
is the fifth generation of the SPEC CPU benchmark suites.
The CPU17 suite features updated and improved applications,
multi-threading options for a few applications using OpenMP,
and an optional power consumption measurement metric [7].
The applications in the CPU17 suite have increased in size
and complexity. As compared to the CPU06 suite, the CPU17
suite’s C++, C, and Fortran lines of code have increased by
approximately 2×, 2.5× and 1.5×, respectively.

The CPU17 suite has 43 applications, organized into four
‘mini-suites’: ‘SPECrate 2017 Integer’, ‘SPECrate 2017 Float-
ing Point’, ‘SPECspeed 2017 Integer’ and ‘SPECspeed 2017
Floating Point’ suites2. The list of CPU17 benchmark suite
applications can be found in the SPEC CPU17 Documentation
[12]. The rate int and speed int suites consist of 10 applica-
tions each, while the rate fp and speed fp consist of 13 and
10 applications, respectively. Most of the applications have
both rate and speed versions (denoted with ‘_r’ and ‘_s’,
respectively), except for 508.namd_r, 510.parest_r,
511.povray_r and 526.blender_r, which only have
the rate versions, and 628.pop2_s, which only has the
speed version.

The speed fp suite applications and 657.xz_s have
an optional multi-threading capability using OpenMP. The
performance characteristics and differences between the
four benchmark suites are discussed in detail in Section IV.
Similarly to the CPU06 suite, all the CPU17 applications
can be executed with three different input sizes: test, train,
and ref. The test is the smallest input set and has the
least execution time, while the ref is the largest input
size and has the longest execution time. Most of the
CPU17 suite applications have a single input in each
input size, except for ten applications: 500.perlbench_r,
502.gcc_r, 503.bwaves_r, 525.x264_r, 557.xz_r,
600.perlbench_s, 602.gcc_s, 603.bwaves_s,
625.x264_s, and 657.xz_s. Thus, even though there
are 43 applications in the CPU17 suite, there are 69, 61,
and 64 distinct application-input pairs for the test, train, and
ref input sizes, respectively. The analysis performed herein
includes the characterization of all 194 application-input pairs
using the experimental setup and methodology discussed in
Section III.

2Hereafter, we will refer to the ‘SPECrate 2017 Integer’, ‘SPECrate 2017
Floating Point’, ‘SPECspeed 2017 Integer’ and ‘SPECspeed 2017 Floating
Point’ mini-suites as rate int, rate fp, speed int and speed fp, respectively.

TABLE I: Experimental system configurations

Processors
Intel Xeon E5-2650L v3 - Dual socket
x86 64 Haswell architecture
12 cores–can execute 24 threads (per processor)

Memory 64 GB DDR4

L1 I Cache 8-way set associative 32 kB (per core)
L1 D Cache 8-way set associative 32 kB (per core)
L2 Cache 8-way set associative 256 kB (per core)
L3 Cache 30 MB shared by all cores (per processor)

OS
Red Hat Enterprise Linux server v7.4
Linux kernel: 3.10.0-514.26.2.el7.x86 64
gcc: 4.8.5

III. EXPERIMENTAL SETUP AND METHODOLOGY

We characterized the CPU17 applications by running them
on a real system. We then collected execution data from
the system’s hardware performance counters for analysis.
Table I depicts some of the system configuration details of
our experimental setup. We used an Intel Xeon E5-2650L
processor featuring the Haswell architecture. We disabled the
Intel Turbo Boost on all the cores to prevent any dynamic
changes in the operating frequency. Each core features separate
32 KB level one (L1) instruction and data caches with 8-way
set associativity, and unified 256 KB L2 caches with 8-way
set associativity. All the cache levels have a line size of 64
bytes. The system also features a 30 MB L3 cache shared
by all the cores, and a main memory of 64 GB. We ran
all our experiments on the Red Hat Enterprise Linux server
v7.4 operating system. We chose to use hardware performance
counters on a real system due to the much faster execution
speed, as compared to using architecture simulators (e.g.,
GEM5 [13]). In addition, executing the applications on a real
system provides a more accurate sense of actual application
characteristics.

We used the Linux perf utility to instrument the hardware
performance counters. The exhaustive list of the hardware
counters available for the specific microprocessor can be
generated by using the perf list command. We used 15
counters that we deemed to be relevant for our analysis. To
enable reproducibility of the results presented herein, we men-
tion the specific counter flags used for different performance
characteristics discussed in Section IV.

We installed the CPU17 suite according to the docu-
mentation provided on the SPEC website [12] using the
install.sh file with linux-x86_64 toolset. All the
applications were built for the base tuning, without any
additional optimization compiler flags. We set the number of
copies to 1 for the rate applications; for the speed applications
we set the number of threads to 4 (the default values in the
configuration file). We executed one application-input pair at
a time and collected the hardware performance counter values
for each execution. Although we were able to install all the
CPU17 applications successfully, we encountered errors for
five application-input pairs while collecting the perf output
data. The applications that reported errors were 627.cam4_s
for all the three input sizes, and 500.perlbench_r’s and



TABLE II: CPU17 benchmarks’ average performance charac-
teristics

Suite Input Size
Instruction Count

IPC
Execution Time

(in billions) (s)

rate int
test 76.922 1.716 18.250

train 230.553 1.765 75.660
ref 1751.516 1.724 573.627

rate fp
test 47.431 1.692 15.445

train 357.233 1.651 114.034
ref 2291.092 1.635 795.579

speed int
test 77.078 1.698 18.396

train 232.961 1.739 77.438
ref 2265.182 1.635 670.742

speed fp
test 58.825 0.681 4.510

train 477.316 0.710 37.366
ref 21880.115 0.706 670.972

600.perlbench_s’ test.pl test input. We also similarly
installed the CPU06 suite, to compare the results with the
CPU17 suite.

IV. WORKLOAD CHARACTERIZATION RESULTS

Table II presents an overview of the CPU17 suite applica-
tions’ execution characteristics, including the average instruc-
tion count, IPC, and execution time across all the applications.
For the applications with multiple inputs, we have reported
the average values of hardware counters across all the inputs.
We make three general observations based on these average
characteristics:

1) The average instruction count and execution time increase
significantly as the input size increases from test to ref
across all the applications.

2) For int and fp applications, the speed versions have higher
average instruction count compared to the rate versions.
Interestingly, the IPC values for the int applications
remain relatively same (within 1.060% for test, 1.495%
for train, and 5.443% for ref input sets) across all the
benchmarks despite the increased instruction count and
execution times. However, the IPC values for the fp
applications reduce drastically (by 56.820% – 59.752%)
for the speed compared to the rate versions. We attribute
this to the multi-threaded execution, and higher L2 and
L3 cache miss rates of the speed fp applications.

3) There are also differences between the int and fp appli-
cations within the rate and speed mini-suites. Compared
to the int applications, the fp applications show higher
average instruction count, higher execution time, and
lower IPC values, especially for the ref input size.

In what follows, we focus on the ref input size—for
brevity—to discuss detailed performance characteristics. For
the comparative analysis, we have considered the IPC,
microarchitecture-independent characteristics like instruction
mix and memory footprint, and microarchitecture-dependent
characteristics like the cache and branch behaviors.

TABLE III: IPC Comparison of CPU17 and CPU06 suites
Suite Average Std. Dev.

CPU06 int 1.762 0.707

CPU17 int 1.679 0.640

CPU06 fp 1.815 0.706

CPU17 fp 1.255 0.636

CPU06 all 1.784 0.707

CPU17 all 1.457 0.672

A. Instructions per Cycle (IPC)

The IPC is one of the most critical performance char-
acteristics of the microprocessor. The IPC value is influ-
enced by both the underlying microarchitecture of the pro-
cessor (e.g., pipeline depth, in-order vs. out-of-order exe-
cution paradigm, branch predictor accuracy, cache config-
uration, etc.) and the application’s characteristics (e.g., in-
struction mix, memory access patterns, types of branch in-
structions, etc.). We used the inst_retired.any and
cpu_clk_unhalted.ref_tsc flags to calculate the IPC
values.

Fig. 1a and Fig. 1b show the IPC values for the rate
and speed applications, respectively (dotted vertical lines are
used to separate int and fp applications in the figures). As
observed from Table II and Fig. 1, the rate int and speed int
applications exhibit relatively similar IPC values, except for
557.xz_r (1.741) and 657.xz_s (0.903). The speed fp
applications show significantly lower IPC values compared
to their rate fp counterparts. We attribute these low IPC
values to the applications’ high L2 and L3 cache miss rates,
high instruction count and high memory footprints (details
in Section IV-C and Section IV-D). Among the int appli-
cations, 525.x264_r (3.024) and 625.x264_s (3.038)
show the highest IPC values, while 505.mcf_r (0.886) and
657.xz_s (0.903) show the lowest IPC values for rate and
speed mini-suites, respectively. Similarly, among the fp ap-
plications, 508.namd_r (2.265) and 628.pop2_s (1.642)
have the highest IPC values, and 549.fotonik3d_r
(1.117) and 619.lbm_s (0.062) have the lowest IPC values
for rate and speed, respectively.

Table III compares the IPC values for the CPU06 and
CPU17 suites. In general, we observed that the CPU17 ap-
plications exhibited lower IPC values than the CPU06 appli-
cations by 18.330% on average across all the applications,
and by 4.711% and 30.854% for the int and fp applications,
respectively.

B. Instruction Mix Analysis

The instruction mix is a microarchitecture-independent ap-
plication characteristic that shows the applications’ diversity
based on the types of instructions executed. The instruction
mix is also crucial in identifying how each instruction type
contributes to application execution and the impact of specific
system components on the overall performance. For example,
a high number of memory references may result in slower
execution if the memory hierarchy is not rightly-provisioned;



(a) (b)

Fig. 1: Instructions per cycle: (a) rate, and (b) speed mini-suites

a high number of branch instructions may also slow down
execution if the processor’s branch predictor is inefficient. We
have considered the memory load and store operations, and
branch instructions in our analysis.

1) Memory references: To access the number
of memory load and store micro-operations, we
used the mem_uops_retired.all_loads and
mem_uops_retired.all_stores flags respectively.
We compared the memory operations with the retired micro-
operations, accessed using the uops_retired.all flag.
Figures 2a and 2b depict the breakdown of the load and store
micro-operations executed by the different rate and speed
applications. The CPU17 applications have 33.993% memory
micro-operations on average. All int applications have a
similar percentage of memory micro-operations for the rate
(34.750%) and speed (34.712%) versions.

However, the rate fp and speed fp mini-suites show a
7.265% difference in the memory micro-operations, with
speed fp and rate fp having 29.029% and 36.294% mem-
ory micro-operations, respectively. 654.roms_s has the
lowest percentage of memory micro-operations, with only
11.504% loads and 0.895% stores. The applications with
the highest percentage of memory micro-operations are:
507.cactuBSSN_r and 607.cactuBSSN_s at 48.375%
and 41.146%, respectively, for the rate and speed suites.
Among int applications, 523.xalancbmk_r (29.151%)
and 605.mcf_s (29.581%), and among speed applications,
507.cactuBSSN_r (39.786%) and 607.cactuBSSN_s
(33.536%) have the highest percentage load micro-operations.
548.exchange2r_r and 648.exchange2r_s have the
highest percentage store micro-operations—15.911% and
15.910%, respectively—among the int applications, while
among the fp applications, 519.lbm_r (13.076%) and
619.lbm_s (13.480%) have the highest percentage of store
micro-operations.

2) Branch instructions: Fig. 3a and 3b show the percentage
of branch instructions for all the rate and speed CPU17 ap-
plications. We used the br_inst_exec.all_branches
flag to obtain the number of branch instructions executed.

On average, branch instructions make up 14.743% of the
CPU17 applications’ instructions, where 78.662% of these

TABLE IV: Instruction mix comparison of CPU17 and CPU06
suites

Suite
% Loads % Stores % Branches

Average Std. Dev. Average Std. Dev. Average Std. Dev.

CPU06 int 26.234 4.032 10.311 3.534 19.055 6.526

CPU17 int 24.390 2.882 10.341 3.444 18.735 7.168

CPU06 fp 23.683 4.625 7.176 3.342 10.805 7.165

CPU17 fp 26.187 6.190 7.136 3.346 11.114 6.475

CPU06 all 24.739 4.566 8.473 3.755 14.219 8.014

CPU17 all 25.331 4.983 8.662 3.751 14.743 7.804

branch instructions are conditional branches. The fp appli-
cations have 7.621% fewer branch instructions than the int
applications. 505.mcf_r and 605.mcf_s have the highest
percentage of branch instructions at 31.277% and 32.939%,
respectively, while 519.lbm_r and 619.lbm_s have the
lowest at 1.198% and 3.646%, respectively.

Table IV compares the instruction mix of the CPU06 and
CPU17 suites. Both the CPU06 and CPU17 show similar
trends for percentage stores and branch instructions: the int
applications have higher values than the fp applications. For
percentage loads, however, the trend reverses; fp applications
have higher values than the int applications. It is interesting
to note that despite the CPU17 suite’s 3.830× increase in
the instruction count, the instruction mix—loads, stores, and
branches—for all CPU06 and CPU17 applications remain
within 2.5% of each other.

C. Memory Footprint

The Virtual Set Size (VSZ) and Resident Set Size (RSS)
provide insights into an application’s memory usage and
working set size [14], [15]. The RSS measures the physical
memory used, while the VSZ is the address space reserved
by the operating system for the executing application. There
are no hardware performance counters to measure the VSZ
and RSS directly; thus, we used the ps -o vsz,rss Linux
command to output the VSZ and RSS values at 1s intervals,
and report the maximum values.

Fig. 4 depicts the VSZ and the RSS for the CPU17 applica-
tions. Fig. 4a and 4b depict the memory footprints of the rate
and speed CPU17 applications with respect to the VSZ and the
RSS. The speed applications have 8.276× and 9.764× higher



(a) (b)

Fig. 2: Breakdown of memory micro-operations for: (a) rate, and (b) speed mini-suites

(a) (b)

Fig. 3: Branch characteristics for: (a) rate, and (b) speed mini-suites

(a) (b)

Fig. 4: Memory footprint for: (a) rate, and (b) speed mini-suites

RSS and VSZ, respectively, than the rate applications because
the speed applications have larger input sizes [12]. Among
all the applications, 657.xz_s has the maximum RSS and
VSZ values of 12.385 GiB and 15.422 GiB, respectively. On
the other hand, 548.exchange2_r has the lowest RSS and
VSZ values of 1.148 MiB and 15.160 MiB, respectively. The
RSS and VSZ also show high negative correlation values of
-0.465 and -0.510 with the IPC.

Table V compares the RSS and VSZ for the CPU17 with the
CPU06 suite. As compared to the CPU06 applications, CPU17

applications’ average RSS increased by 4.307× and 6.276×
for the int and fp applications, respectively, and by 5.314× for
all applications. Similarly, CPU17 applications’ VSZ increased
by 4.759× and 5.817× for the int and fp applications, and by
5.285× for all applications.

D. Cache Behavior

We analyzed the cache access behavior of the
CPU17 applications with respect to the L1, L2, and
L3 cache miss rates. The cache miss rates have a high
impact on the applications’ overall performance, due



TABLE V: RSS and VSZ comparison of CPU17 and CPU06
mini-suites

Suite
RSS (GiB) VSZ (GiB)

Average Std. Dev. Average Std. Dev.

CPU06 int 0.391 0.454 0.399 0.453

CPU17 int 1.684 3.073 1.899 3.658

CPU06 fp 0.366 0.342 0.491 0.400

CPU17 fp 2.297 3.434 2.856 3.755

CPU06 all 0.376 0.393 0.452 0.426

CPU17 all 1.998 3.278 2.389 3.739

to the delays caused by cache misses. We used the
mem_load_uops_retired with l1_hit, l1_miss,
l2_hit, l2_miss, l3_hit and l3_miss extensions
(for example: mem_load_uops_retired.l1_hit) to
obtain the number of cache hits and misses, with which we
computed the miss rates for all the caches.

Fig. 5a and 5b depict the L1, L2 and L3 cache miss rates
for the rate and speed applications. Our first observation was
that the L2 cache miss rates were higher than the L3 miss
rates for 34 CPU17 applications. We attribute this behavior to
our system cache configuration; the 30 MB shared L3 cache
is likely better provisioned for the CPU17 applications than
the L2 cache.

The average L1, L2, and L3 cache miss rates were 3.424%,
32.515%, and 14.171%, respectively, for the entire CPU17
suite. The speed applications have higher cache miss rates
than the rate applications across all the caches. Similarly,
the int applications exhibit higher cache miss rates than the
fp applications. For the L1 cache, 523.xalancbmk_r and
605.mcf_s have the highest cache miss rates of 12.174%
and 14.138%, respectively, among the rate int and speed int
mini-suites. Among the fp applications, 507.cactuBSSN_r
and 607.cactuBSSN_s have the highest cache miss rates
of 19.485% and 14.584%, respectively. 505.mcf_r and
605.mcf_s have the highest L2 cache miss rates of 65.721%
and 77.824%, respectively, while 531.deepsjeng_r and
631.deepsjeng_s have the highest L3 cache miss rates
of 67.516% and 68.579%, respectively, for the rate int and
speed int mini-suites. Among the rate fp and speed fp ap-
plications, 549.fotonik3d_r and 649.fotonik3d_s
have the highest L2 and L3 cache miss rates of 71.609% and
54.730%, and 66.291% and 41.369%, respectively. The L1,
L2, and L3 cache load miss rates have negative correlation
values of -0.282, -0.479, and -0.137, respectively, with the
IPC values across all the applications.

Table VI compares the cache miss rates of the CPU06 and
CPU17 suites. On average overall, the CPU17 applications’
L2 cache miss rates decrease by 3.231% as compared to the
CPU06 applications. The L1 and L3 cache miss rates, however,
increase by 0.231% and 0.442% on average, respectively. We
observed mixed trends in the L1 and L3 cache miss rates for
CPU17 int and fp applications as compared to CPU06 int
and fp applications; however, we observed that the CPU17

TABLE VI: Comparison of cache miss rates for CPU17 and
CPU06 suites

Suite
L1 Miss Rate (%) L2 Miss Rate (%) L3 Miss Rate (%)

Average Std. Dev. Average Std. Dev. Average Std. Dev.

CPU06 int 4.129 6.390 40.854 19.760 12.152 15.044

CPU17 int 3.865 4.489 38.614 20.820 15.298 19.456

CPU06 fp 2.533 1.521 31.914 20.227 14.041 16.332

CPU17 fp 3.023 4.703 26.971 18.660 13.146 12.638

CPU06 all 3.193 4.344 35.746 20.511 13.259 15.839

CPU17 all 3.424 4.622 32.515 20.557 14.171 16.281

TABLE VII: Branch predictor accuracy comparison for
CPU17 and CPU06 suites

Suite Average (%) Std. Dev.

CPU06 int 2.393 2.505

CPU17 int 3.310 2.441

CPU06 fp 1.971 1.653

CPU17 fp 1.188 1.202

CPU06 all 2.145 2.060

CPU17 all 2.198 2.172

int and fp applications’ L2 cache miss rates have decreased
significantly by 2.240% and 8.775%, respectively, as compared
to CPU06.

E. Branch Predictor Accuracy

The branch predictor is a processor component that specu-
latively executes branch instructions to improve the instruction
pipeline’s efficiency. The branch prediction accuracy is critical
for pipeline performance since a wrong speculation could
necessitate a pipeline flush, thus wasting clock cycles. We
used the br_misp_exec.all_branches flag to obtain
the branch mispredicts.

Fig. 6a and 6b show the rate and speed applications’
branch mispredict rates. Overall, the int applications have
higher branch mispredict rates than the fp applications. The
average mispredict rate for all the applications is 2.198%.
541.leela_r and 641.leela_s have the highest mispre-
dict rates among all the applications at 8.656% and 8.636%,
respectively—approximately 3.5× higher than the overall av-
erage. The rate and speed applications have very similar
mispredict rates at 2.199% and 2.196%, respectively.

Table VII compares the branch mispredict rate between the
CPU06 and CPU17 suites. The CPU06 suite shows a similar
trend to CPU17: the mispredict rate for fp applications is lower
than that of int applications. Overall, the average mispredict
rate for CPU17 is marginally higher than CPU06 by 0.053%.

V. REDUNDANCY IN THE CPU17 SUITE

The CPU17 suite consists of 194 distinct application-
input pairs and required about 10 hours and 53 minutes to
completely run all the pairs our computer system. Microar-
chitecture research usually employs simulators, like GEM5,
which are typically significantly slower. Simulating all the
application-input pairs may be prohibitive, and perhaps, un-
necessary. Thus, we performed statistical analysis on the



(a) (b)

Fig. 5: Cache miss rates for: (a) rate, and (b) speed mini-suites

(a) (b)

Fig. 6: Branch mispredict rates for: (a) rate, and (b) speed mini-suites

microarchitecture-independent application characteristics in
order to measure the similarity between the application-
input pairs and determine a diverse representative subset of
application-input pairs. In this section, we discuss our method-
ology for generating a representative subset, and suggest a
subset of CPU17 applications.

A. Principal Component Analysis

The CPU17 applications’ characterization gives us a rich set
of variables for the inter-application comparison. To analyze
the similarity and redundancy between the 194 application-
input pairs, we used 20 microarchitecture-independent appli-
cation characteristics. Given the difficulty of analyzing 194
application-input pairs for 20 characteristics, we used Principal
Component Analysis (PCA) [16], a multivariate statistical
technique, to reduce the dimensionality of our data. Table VIII
lists the characteristics used for the PCA.

The PCA generates a set of new variables, known as prin-
cipal components (PCs), which are linear combinations of the
original set of variables, such that all the principal components
are uncorrelated to each other. The PCA transforms a set of p
variables {X1, X2, ..., Xp} into a set of p PCs {Z1, Z2, ..., Zp}
such that:

Zi =

p∑
j=1

aijXj

TABLE VIII: List of PCA characteristics
inst_retired.any;

mem_uops_retired.all_loads; mem_uops_retired.all_stores;
load_uops(%); store_uops(%); total_mem_uops(%);

br_inst_exec.all_branches; branch_inst(%);
br_inst_exec.all_conditional; br_inst_exec.all_direct_jmp;

br_inst_exec.all_direct_near_call;
br_inst_exec.all_indirect_jump_non_call_ret;

br_inst_exec.all_indirect_near_return;
branch_conditional(%); branch_direct_jump(%);

branch_near_call(%); branch_indirect_jump_non_call_ret(%);
branch_indirect_near_return(%); rss; vsz

This transformation has the following useful properties:
(i)

p∑
i=1

V ar[Xi] =

p∑
i=1

V ar[Zi],

which means that the total variance in the data remains
same and the transformation does not result in any
information loss;

(ii)
Cov[Zi, Zj ] = 0,∀i 6= j,

which means there is no information overlap between the
PCs, and the PCs are uncorrelated to each other; and

(iii)
V ar[Z1] > V ar[Z2] > ... > V ar[Zp],



(a) (b)

Fig. 7: Scatter-plot of CPU17 application-input pairs’ PC values

which means that Z1 has the most information (variance),
and each subsequent Zi has less information than previ-
ous Zi−1. This property is useful in reducing the dimen-
sionality of the data. The components with lower variance
can be removed from the analysis without significant loss
of information.

We used MATLAB to perform the PCA on our data, and
reduced our data dimensionality from [194 × 20] to [194 ×
4] by choosing the first four PCs, accounting for 76.321% of
the total variance.

Fig. 7a and 7b show the scatter plots of the first four PC
values for all the application-input pairs with the ref input
size. A few application-input pairs have PC values close
together, and we have highlighted them with square boxes in
Fig. 7. It is evident from Fig. 7 that PC1 has the maximum
range (hence maximum variance), and the range of the PCs
decrease from PC1 to PC4. The application-input pairs with
similar PC values will show similar performance character-
istics. For example, consider three sample application-input
pairs: 603.bwaves_s executed with two different ref inputs
in1 and in2, and 607.cactuBSSN_s. As seen in Fig. 7,
603.bwaves_s–in1 and 603.bwaves_s–in2 are clustered
together in both scatter plots, and 607.cactuBSSN_s is
isolated from 603.bwaves_s’ cluster.

To validate the clusters in Fig. 7, Table IX depicts the
performance characteristics of the three sample application-
input pairs. 603.bwaves_s–in1 and 603.bwaves_s–in2
exhibit similar characteristics, but both differ significantly
from 607.cactuBSSN_s’ characteristics. Thus, the PCs can
be used as a similarity metric; the application-input pairs with
similar PC values can be clustered together.

We also performed factor analysis on the data to eval-
uate the impacts of the different application characteristics

Fig. 8: Factor loadings for all CPU17 application-input pairs

on the different PCs. Factor analysis enables us to observe
the PCs as a function of the application characteristics in
order to determine the most important characteristics for the
PCs. Fig. 8 depicts the factor loadings of all the CPU17
application-input pairs. We observed that the first component
(PC1) is most positively dominated by number of instructions
retired, load and store memory micro-operations, number of
branch instructions and branch instruction types. The second
component (PC2) is positively dominated by percent store
micro-operations, percent total memory operations, percent
near call and near return branch instructions, and negatively
dominated by percent conditional branch instructions. The
third component (PC3) is positively dominated by percent load
micro-operations, percent total memory micro-operations, and
negatively dominated by percent near call branch instructions.
The fourth component (PC4) is negatively dominated by the
memory footprint metrics: RSS and VSZ.

Based on the PC values, we performed hierarchical cluster-
ing, to derive representative subsets of the CPU17 suite.



TABLE IX: Validating PC clustering

Characteristic
603.bwaves_s

607.cactuBSSN_s
in1 in2

Instruction Count
48788.718 50116.477 10616.666

(in billions)

% Loads 27.545 27.320 33.536
% Stores 4.982 5.015 7.610

% Branches 13.416 13.497 3.734

RSS (GiB) 11.677 11.750 6.885
VSZ (GiB) 12.078 12.145 7.287

B. Agglomerative Hierarchical clustering

Hierarchical clustering [17] is one of the most commonly
used clustering techniques. We performed the hierarchical
clustering as follows: first, we assumed that all the application-
input pairs were in separate clusters. Thereafter, we iteratively
merged the two clusters with the least linkage distance—we
used the Euclidean distances between the PC co-ordinates—
to form a new cluster. Thus, the number of clusters were
decreased by one in every iteration.

To illustrate the hierarchical clustering, Fig. 9a and 9b
show the dendrogram for clustering of the rate and speed
benchmark suites with the ref input size. The y-axis depicts
the application-input pairs, and the x-axis depicts the Eu-
clidean distance. As per the hierarchical clustering algorithm
[17], two application-input pairs with the smallest distance
are merged to form a new cluster in each step, until all
the application-input pairs are included in the single cluster.
For example, considering the speed applications in Fig. 9b,
the application-input pairs of 602.gcc_s-in2 and -in3 are
clustered in the first iteration, whereas 638.imagick_s
is clustered in the last iteration. This visualization allows
flexibility in the choice of application-input pairs for a variable
number of clusters. Thus, given the clusters in Fig. 9b, if
only three application-input pairs are to be selected, then
the selected applications should be: one application from

the set {603.bwaves_s-in1, 603.bwaves_s-in2}, one
application from the set {638.imagick_s, 644.nab_s,
628.pop2_s, and 621.wrf_s}, and the third application
can be chosen from the remaining pairs.

C. Subsetting the CPU17 suite

Usually, the main motivation behind subsetting a benchmark
suite is to reduce research simulation time, while representing
the complete suite. To this end, we performed a hierarchical
clustering of the CPU17 application-input pairs, and chose
the application-input pair with the shortest execution time
from each cluster. For instance, considering the example
in Section V-B, with a cluster featuring 638.imagick_s,
644.nab_s, 628.pop2_s, and 621.wrf_s, the execu-
tion times for the application-input pairs were 486.279s,
332.640s, 1619.982s, and 762.382s, respectively. In this case,
644.nab_s would be chosen to represent the cluster, since
it has the shortest execution time.

To determine the optimal subset of CPU17 applications,
we used the sum of squared error (SSE) [17] to measure
the quality of clustering. The SSE is the sum of Euclidean
distances between the data points in a cluster and the centroid
of the cluster. As the clusters are merged, the SSE value will
increase with each iteration. In our work, we chose the number
of clusters based on the Pareto-optimal solution for the SSE
and execution time. Fig. 10a and 10b show the Pareto-optimal
solution for the rate and speed applications. As seen in Fig.
10, the optimal subset for rate applications is 12, while for
speed applications is 10.

Based on this analysis, Table X suggests a subset of 22 rate
and speed CPU17 applications. The table also shows the total
execution time of the applications and the savings as compared
to running the full suite. Compared to running the full mini-
suite of rate applications, using our suggested subset reduced
the execution time by 57.116%; similarly, compared to the full
mini-suite of speed applications, using our suggested subset
reduced the execution time by 62.052%.

(a) (b)

Fig. 9: Dendrogram of: (a) rate, and (b) speed mini-suites



(a) (b)

Fig. 10: Finding Pareto-optimal cluster sizes for: (a) rate, and (b) speed mini-suites

TABLE X: Suggested subset of CPU17 benchmarks

Suite Benchmarks
Execution Time

Time (s) % Saving

rate
500.perlbench_r-in3, 502.gcc_r-in4, 507.cactuBSSN_r, 511.povray_r,

8232.709 57.116519.lbm_r, 520.omnetpp_r, 525.x264_r-in1, 527.cam4_r,
531.deepsjeng_r, 538.imagick_r, 541.leela_r, 548.exchange2_r

speed
603.bwaves_s-in2, 607.cactuBSSN_s, 621.wrf_s, 625.x264_s-in1, 628.pop2_s,

5885.485 62.052
638.imagick_s, 641.leela_s, 644.nab_s, 654.roms_s, 657.xz_s-in1

VI. CONCLUSION

In this paper, we analyzed the new SPEC CPU2017 ap-
plications with respect to different characteristics, such as
instructions per cycle, instruction mix, memory footprint, and
cache and branch behaviors. We compared the characteristics
of the CPU17 suite to the CPU06 suite to gain insights into
the similarities and differences between the suites. We have
deliberately omitted any conclusions about the value of the
new CPU17 suite as compared to the CPU06 suite—we leave
this judgment to the readers, and hope the analysis presented
herein will enable the readers’ decision-making.

We also presented a detailed methodology and results of
redundancy analysis of the CPU17 applications. We have also
suggested an approach to subsetting the CPU17 applications
to obtain a representative set of CPU17 applications, which
will aid in reducing the simulation time. However, given how
much time simulations typically take, we note that the reduced
simulation time achieved using the suggested approach may
still be prohibitive. Thus, in future work, we will further an-
alyze the CPU17 applications to explore their phase behavior
in order to identify the applications’ simulation phases, and
evaluate the appropriateness of the CPU17 applications for
phase-based optimization research.

REFERENCES

[1] J. A. Poovey, M. Levy, S. Gal-On, and T. M. Conte, “A benchmark
characterization of the EEMBC benchmark suite,” 2009.

[2] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. 4th Annu. IEEE Int. Workshop Workload
Characterization, Dec 2001, pp. 3–14.

[3] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in ACM SIGARCH Computer Architecture News, vol. 23, no. 2.
ACM, 1995, pp. 24–36.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proc. 17th Int.
Conf. Parallel Architectures and Compilation Techniques, Oct 2008.

[5] “SPEC CPU Benchmarks,” https://www.spec.org/benchmarks.html#cpu.
[6] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM

SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.
[7] “SPEC releases major new CPU benchmark suite,” https://www.spec.

org/cpu2017/press/release.html.
[8] D. Citron, “MisSPECulation: partial and misleading use of SPEC

CPU2000 in computer architecture conferences,” in ACM SIGARCH
Computer Architecture News, vol. 31, no. 2. ACM, 2003, pp. 52–61.

[9] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and
application balance in the SPEC CPU2006 benchmark suite,” ACM
SIGARCH Computer Architecture News, vol. 35, no. 2, pp. 412–423,
2007.

[10] A. A. Nair and L. K. John, “Simulation points for SPEC CPU 2006,”
in Proc. IEEE Int. Conf. Computer Design (ICCD). IEEE, 2008, pp.
397–403.

[11] J. L. Henning, “SPEC CPU Suite Growth: An Historical Perspective,”
SIGARCH Compututer Architecture News, vol. 35, no. 1, pp. 65–68,
Mar 2007.

[12] “SPEC CPU2017 Documentation,” https://www.spec.org/cpu2017/Docs.
[13] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
Simulator,” Computer Architecture News, vol. 40, no. 2, p. 1, 2012.

[14] J. L. Henning, “SPEC CPU2006 Memory Footprint,” SIGARCH Com-
puter Architecture News, vol. 35, no. 1, pp. 84–89, Mar 2007.

[15] D. Gove, “CPU2006 Working Set Size,” SIGARCH Computer Architec-
ture News, vol. 35, no. 1, pp. 90–96, Mar 2007.

[16] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere, “Workload
design: selecting representative program-input pairs,” in Proc. Int. Conf.
Parallel Architectures and Compilation Techniques, 2002, pp. 83–94.

[17] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Pearson, 2006.


