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Abstract—This paper presents AMELIA: Aircraft Monitoring
and Electronically Linked Instantaneous Analytics as an applica-
tion of the Internet of Things (IoT) for aviation safety—a safety-
critical use-case—from an edge computing perspective. AMELIA
is a multi-layered edge computing system that automatically
detects aircraft emergencies, and only transmits relevant data
and information to enable quicker and more efficient response
to emergencies. We describe a prototype of AMELIA to illustrate,
explore, and motivate the potentials of the IoT for aviation safety,
and lay a foundation for the design of diverse high-impact edge
computing systems on the IoT.

Index Terms—Internet of Things, aviation safety, edge com-
puting, automatic control, IoT prototype.

I. INTRODUCTION

The Internet of Things (IoT) refers to a pervasive presence
of connected devices that can interact with each other, and
gather, interpret, and use data, in order to reduce reliance
on human intervention. The IoT’s goal is to provide new,
diverse, and more efficient services, spanning a wide variety
of domains, that promise to transform life, business, and the
global economy [14]. In several IoT use-cases, edge devices
gather data and transmit the data to high performance head
nodes, where data visualization is performed [8]. However,
the IoT’s growth, involving billions of connected devices, also
poses significant challenges. Due to the resulting exponential
increase in acquired/transmitted data, overheads with respect
to bandwidth bottlenecks, latency, energy consumption, and
security issues are also bound to increase [5]. In real-time,
safety-critical IoT use-cases, such as aviation and medical
diagnostics, devices must adhere to stringent constraints in
order to prevent potentially fatal events.

Edge computing addresses some of the attendant challenges
of the IoT by equipping edge devices with sufficient computa-
tional resources to reduce, process, interpret, and use data. One
of the clear advantages of edge computing is that it reduces the
amount of transmitted data, and in effect, reduces the latency
and energy overheads that arise from data transmission [4],
[11]. Beyond these benefits, we also show, in this work, that
edge computing also offers additional benefits, including, cost,
security, and privacy.

In this paper, we demonstrate some of the potential benefits
of edge computing using a high-impact IoT use-case: aviation
safety [20]. Aviation is important because most aviation appli-
cations are safety-critical systems—failure can result in loss of
life, significant property damage, or extensive damage to the

environment. In addition, aviation is pervasive in everyday life,
business, and the economy. On average, about 100,000 daily
flights originate from approximately 9000 airports around the
world [2]. While air travel is still considered one of the safest
forms of travel, there are still small but present dangers in air
travel. The disappearance of Malaysia MH370 on March 8,
2014 is a stark reminder of these dangers that necessitate in-
novative multi-disciplinary technologies for ensuring aviation
safety.

Aviation safety involves aircraft monitoring, wherein flight
data is continuously collected and stored using devices such
as the Flight-Data Acquisition Unit (FDAU) and Flight Data
Recorder (FDR) [10]. In addition, communication protocols
such as the Automatic Dependent Surveillance-Broadcast
(ADS-B) continuously transmit flight data to ground centers
for real-time analysis and monitoring [13]. However, the
overheads of collecting and transmitting massive amounts of
data pose critical challenges for aviation safety due to the
concomitant overheads of data transmission.

To address these challenges, we present AMELIA: Aircraft
Monitoring and Electronically Linked Instantaneous Analytics.
AMELIA illustrates a practical solution proffered by IoT edge
computing to address some of the challenges with state-of-
the-art aircraft monitoring. AMELIA is a multi-layered edge
computing system that ensures that each flight data parameter
received during a flight remains within a preset range of
values. Any deviation from these preset values immediately
generates an alert sequence that includes automated correction
and simultaneous alerts to the required personnel (e.g., pilots
and ground control), with the relevant data, for quick response.
Thus, apart from enabling quick aircraft location or retrieval
in case of a crash, AMELIA can also prevent crashes by
providing ground controllers with all the relevant parameters,
thereby giving pilots access to experts outside of the cockpit.

We have developed AMELIA as a motivation for exploring
other high-impact IoT applications (e.g., real-time medical
diagnostics). Our design goal for AMELIA is a simple, low-
overhead, and highly efficient framework that generates real-
time actionable information from the massive amounts of
collected data, in order to reduce the overheads associated
with the IoT. We have created a prototype of AMELIA, using
commercial off-the-shelf hardware, and describe the prototype
in this paper. Using our prototype, and experiments performed
in actual flight tests on a glider aircraft, we demonstrate that



IoT edge computing offers significant potential for innovative
and highly efficient systems to provide real-world solutions.

II. BACKGROUND ON AVIATION SAFETY AND
CHALLENGES WITH THE STATE OF THE ART

The flight recorder, otherwise known as black box, is proba-
bly one of the most important technologies for aviation safety
through aircraft monitoring. A flight-data acquisition unit
(FDAU)—installed in most modern aircraft—receives various
discrete, analog, and digital parameters from several sensors
and avionic systems. The massive amounts of data collected by
the FDAU are then recorded on the flight data recorder (FDR),
which is housed in the black box. The black box also includes
the cockpit voice recorder, which records voice data in the
cockpit. In the event of an accident, investigators can analyze
the data on the black boxes, which are designed to survive
accidents, in order to determine the causes of the accident.

In addition to FDRs, modern aircraft also use automatic
dependent surveillance-broadcast (ADS-B), which broadcasts
information about an aircraft’s location, airspeed, and other
data, to air traffic ground control. Pilots can also receive
weather and traffic position information delivered directly to
the cockpit through the ADS-B system. Unfortunately, recent
events like the disappearance of Malaysia MH370 have shown
that these safety mechanisms, while extremely useful, are still
severely lacking. The current paradigm of ADS-B and the
black boxes faces three key challenges:

1) Cost: Data transmission, especially in aviation, comes
with astronomical costs. Even though FDRs record rich
flight data that can help prevent aircraft disasters in real
time, it has been estimated that it would cost billions
of dollars to implement flight data streaming across the
airline industry [3]. In addition, the data transmitters
required to achieve this real-time transmission could cost
up to $100,000 a piece [1].

2) Security and privacy: Internet hackers can track airplanes
in unnerving detail with equipment that cost less than
$1000. With the ADS-B system employed in aircraft,
especially with a two-way communication interface,
hackers can easily interfere with vital communications
or potentially cause security breaches.

3) Massive data loads: FDRs record such large amounts
of data that they require complex automated analysis
and data mining techniques and algorithms to extract
useful information [10]. These could impose significant
overheads, especially in hard real-time scenarios where
the data interpretation and visualization must adhere to
stringent latency constraints.

We propose AMELIA, as an example of IoT edge comput-
ing, to address these challenges in aircraft monitoring. Our
goal in designing AMELIA was a simple, low-overhead, and
efficient aircraft monitoring system, with the intelligence to
detect emergencies in real time, and take appropriate actions
to mitigate the emergencies. In addition, we aimed to design a
system with low bandwidth requirements in order to not over-
whelmed limited satellite communication resources. AMELIA

Fig. 1: A high level illustration of AMELIA.

represents a step towards such a system. We show, using a
prototype, how AMELIA can mitigate challenges presented
by the state-of-the-art in aircraft monitoring.

III. AMELIA FRAMEWORK

AMELIA acts as a delay-tolerant one-way node. Unlike
passive devices, such as the flight data and cockpit voice
recorders, that only store voice and aircraft data, AMELIA
implements an active flight data recorder that can intelligently
transmit data when necessary. Furthermore, AMELIA ad-
dresses the cost of communication via satellite. Since satellite
mediated connection is the only true form of global communi-
cation, satellites are the operational choice for AMELIA’s ex-
ternal communication. However, in contrast to an Emergency
Location Beacon or other transponders/beacons that blindly
transmit location signals, AMELIA automatically uplinks to
the satellite system only when an emergency is detected, in
order to minimize the communication overhead.

A. Functionality of AMELIA

Figure 1 depicts a high level illustration of AMELIA’s
functionality. We assume that AMELIA collects data from
the on-board flight data acquisition unit (FDAU). The FDAU
is currently installed on most state of the art aircraft, and it
features multiple input ports and interfaces that allow easy
integration of external hardware (such as flight data recorders).
Thus, AMELIA can easily be installed and integrated into the
state-of-the-art, with low overhead. In addition, it can be used
to complement and augment other aircraft monitoring systems
like the flight data recorder.

When AMELIA receives data from the FDAU, AMELIA
performs data processing in three layers: parametric analysis,
ranking, and heuristic analysis. Figure 2 depicts the algorithms
in the parametric bracket warning, ranking, and heuristic sys-
tems that perform the required analysis for the different layers.
The inset table illustrates sample parameters (using the Boeing
777 aircraft [18] as a reference) and outputs from the different
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Sample parameters, group, priority, and transmission priority
Sensor Pl Pd Pu Grp Priority Transmit
Pitch -50o 65o 50o 1 2 2
Roll -270o 15o 270o 1 3 3
Climb rate -35,00ft/min 3,800ft/min 3,500ft/min 1 1 1
Altitude 3,000ft 39,000ft 43,100ft 1 4 4
Cabin pressure n/a 6,500ft 8,000ft 2 4 5

Fig. 2: AMELIA framework comprising of the parametric bracket, ranking, and heuristic systems. (Inset table: sample flight
parameters, using a Boeing 777 aircraft as reference, and outputs from the AMELIA framework.)

layers of the framework. Instead of transmitting a continuous
stream of data, as is the case in the state-of-the-art [10],
the parametric bracket warning system performs continuous
parametric analysis on the data to detect when any of the data
oversteps the preset parameter brackets. The system consists
of predefined lower bound and upper bound safe parameter
values, Pl and Pu, respectively. If a detected value, Pd lies
outside of the range of safe values (Pd < Pl or Pd > Pu), an
emergency is detected, and an alert sequence is generated. For
example, the load factor (or g-factor)—the ratio of an aircraft’s
lift to its weight—of the average passenger aircraft should
typically not exceed 2gs. The parametric bracket warning
system detects if the airframe has exceeded the load factor
during parametric analysis.

After an outlying parameter is detected, the parametric
bracket warning system generates an alert sequence. One key
characteristic of our parametric bracket system added as a
security feature (Section III-B) is that the alert sequence can
only be generated from within the airframe, since the system
is not connected to any wireless/external inputs. After the alert
sequence is generated, the ranking system groups the data
points by sensor type, which could indicate the urgency of an
emergency. For example, sensors that indicate malfunctioning
equipment, such as wing flaps, landing gear, or steering
may be in one group; sensors that indicate environmental
conditions, such as temperature, altitude change, or obstacles
may be in another group; and sensors that indicate travel and
orientation, such as pitch, tilt, speed, or load factor, may be
in a third group. The ranking system then ranks the data
points within each group in order of priority—the priority is
a function of the amount of deviation from the safe operation
parameter bracket—and the response latency requirements for
the detected emergencies. For example, data regarding a high
load factor will be ranked as higher priority than data regarding
a malfunctioning landing gear due to the urgency of the load
factor event.

Finally, the ranking system simultaneously transmits the
data to the on-board heuristic system, and through the satellite
link to the appropriate ground control centers. The heuristic

system is preprogrammed with algorithms of potential solu-
tions to known emergencies, in order to enable real-time deci-
sions and actions for mitigating the effects of the emergencies.
The system performs heuristic analysis, which searches the
solution space (i.e., all the potential solutions that relate to
the detected emergencies) to determine the best solutions to
the ensuing emergencies. Some of these solutions may be
performed by the aircraft’s automated system, while others
may require the pilot’s intervention. The heuristic system
transmits the potential solutions to the appropriate aircraft
automatic control, to the pilot, and to ground control, for
continuous evaluation of any automated actions.

B. One-way Node and Security

Security and privacy of active flight data recorders are some
of the most critical factors that impede the adoption of systems
like AMELIA [13]. These concerns are motivated by the
possibility that proprietary aircraft technical information can
be leaked. In addition, pilots are concerned that every instance
of a flight will be reviewed with unjustified scrutiny. AMELIA
addresses these security and privacy concerns as follows:

1) Similar to current flight data recorder technology, data
is stored directly on-board within the AMELIA system.

2) AMELIA only transmits data when the aircraft’s pa-
rameters indicate an emergency. AMELIA can only be
triggered by an error within the airframe; thus, the
unit acts as a one-way node with no external radio
communication inputs. While AMELIA does not address
the susceptibility of the transmission medium to attacks,
it is a step in the right direction towards more secure and
private aircraft monitoring systems.

C. AMELIA Prototype Implementation Details

To build the AMELIA prototype, we used commercial-
off-the-shelf hardware. To represent the FDAU during test-
ing, we used the Adafruit 10-DOF inertia measurement unit
(IMU) breakout, which combines three sensors to provide
11 dimensions of data: 3 dimensions of accelerometer data,
3 dimensions of gyroscopic data, 3 dimensions of magnetic



Fig. 3: AMELIA hardware: shell casing (left) and internal view
(right).

Fig. 4: Grob G103 glider in flight during our testing of
AMELIA.

(compass)—direction of the strongest magnetic signal, baro-
metric pressure/altitude, and temperature [16].

When AMELIA receives data from the IMU, through an
RS-232 serial connector, the data is processed using an Ar-
duino Uno microcontroller unit [7], which implements the
parametric bracket warning and ranking systems; we intend to
implement the heuristic system in future work. Data received
from the IMU is stored in a non-volatile memory to maintain
the data in the event of a power loss. We used a 4GB SD
card, connected through a SeeedStudio SD card shield. To add
GPS data and transmission capabilities for our test system, we
used the Link Sprite GPS V3 and the TinyTrak4 GPS Position
Encoder. The encoder supports Automatic Packet Reporting
System (APRS) messaging, and allowed us to transmit APRS
messages from the AMELIA prototype on the aircraft during
flight tests. Finally, we used the VX-6R YAESU dual-band
receiver for communications between the glider pilot and the
ground station during testing.

Figure 3 depicts AMELIA’s shell casing (left picture), which
was created using a Computerized Numerical Control (CNC)
machine and aircraft-grade aluminum; the picture on the right
depicts the internal view of AMELIA.

IV. EVALUATION

A. Flight Tests

We tested the AMELIA prototype on a Grob G103 glider
aircraft as depicted in Figure 4, which shows the aircraft during
one of our test flights. We performed two flight tests (Flights A
and B), and used the aircraft pitch as the emergency parameter.
We programmed AMELIA to collect data at 1.5 second

intervals, and the parametric bracket system was programmed
with pitch ranges to represent the safe zone, caution zone,
and danger zone as depicted in Figure 5. We implemented
the first two layers of AMELIA’s functionality: the parameter
analysis and ranking layers, and leave the heuristic layer for
future work. The heuristic layer adds significant complexity
to the system—it requires massive amounts of emergency
parameters, potential solutions, and a design space exploration
technique (e.g., using neural networks) to quickly determine
the best solution in real time. In addition, the heuristic layer
also requires more complex test scenarios. However, the pa-
rameter analysis and ranking layers provide a solid foundation
for implementing the heuristic layer.

Our test metric was the automatic transmission of prioritized
data, based on detected aircraft emergencies. During the two
test flights, our glider pilot mimicked possible emergency
scenarios using aerial acrobatic maneuvers on the aircraft.
Figure 5 depicts the data obtained during both flight tests—
Flights A and B. The peaks in the graph depict points at which
AMELIA detected emergencies, based on the aircraft pitch,
and transmitted data to a ground station with the outlying
parameters.

During Flight A, AMELIA dynamically transmitted 13 GPS
data points and 2,500 packets containing altitude, heading
and roll sensing (AHRS) via the Automatic Packet Reporting
System (APRS). We used the APRS as a substitute for a
satellite relay; the APRS acted as a rudimentary cloud for
storing the data online. The system of interlocking satellite
coverage allowed the data to be successfully transferred via a
144 to 430 MHz FM transceiver to a location 85 miles away,
with a latency of 1.5 seconds. Information was also transmitted
to the Internet.

Data limitations inherent within the APRS limited the
number of GPS NMEA that could be transmitted. Even though
we set the TinyTrak 4 modem to a much higher frequency of
15s between transmissions, we observed a rate of 60s between
transmissions.

For Flight B, we replaced the inertia measurement unit
(IMU) with the Link Sprite GPS to test AMELIA’s capabilities
with different data collection units. During this flight, AME-
LIA transmitted 11 GPS NMEA data points and 2,500 packets
containing altitude.

B. Cost Overhead Analysis

Cost is one of the most important factors that impede
the adoption of devices like AMELIA. Figure 6 estimates
AMELIA’s cost compared to the state-of-the-art, with respect
to certification cost (cost of ensuring that the device is safe
and effective), operating cost (in-flight hourly cost), and capital
cost (cost of building the device). The costs were estimated for
an average size commercial aircraft, based on publicly avail-
able information. Note that AMELIA’s costs were determined
based on our prototype; these costs will likely increase in a
commercial use-case. However, we expect that the cost in a
commercial scenario will only be a small fraction of the cost
of state-of-the-art systems (e.g., black box and ADS-B). Also,
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Fig. 5: Data points for our flight tests (Flight A and B) showing the data peaks, when emergencies are automatically detected,
and reduced data and/or actionable information is transmitted.
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Fig. 6: Cost analysis of AMELIA compared to the state of the
art. The estimated costs are for an average size commercial
aircraft.

AMELIA is not intended to replace the state-of-the-art, but to
complement and update the existing systems. Thus, the design
goal, with respect to cost, is to minimize the overhead.

Compared to the ADS-B’s and the black box’s certification
costs of about $80,0000 and $10,000, respectively, AMELIA’s
certification would cost about $3,000. Compared to the ADS-
B’s operating cost of about $1500, AMELIA cost only $150.
The black box, since it is a passive recording device, does not
accrue any operating cost. Finally, compared to the ADS-B’s
and black box’s capital costs of about $12,000 and $25,000,
respectively, AMELIA costs only about $350. These costs
show that AMELIA will constitute a low-cost addition to
current systems.

V. RELATED WORK

Aviation safety will be one of the most important appli-
cations of the Internet of Things (IoT) [6], [20]. Some prior
work has been done with respect to using concepts related
to the Internet of Things to provide solutions for challenges
in aviation safety. Most previous proposals, however, involve
continuous transmission of data using the Automatic De-
pendent Surveillance-Broadcast (ADS-B) [13] system. This
solution imposes significant overheads, including bandwidth
bottlenecks, operating cost, latency overheads. Other related
research on aircraft monitoring have focused on designing
more efficient flight data recorders [10], [15], [17] and tech-
niques for efficiently extracting useful information from the
massive amounts of data gathered by FDRs [12], [19], [21].
Some of these techniques (e.g., the cluster analysis technique
proposed in [12] for anomaly detection in flight data) can be
used in synergy with AMELIA.

The most related work to ours is the glass-box proposed
by Kavi et al. [9], [10]. The glass-box provides real-time
monitoring of airplanes using recent information, artificial
intelligence, learning and network technologies. The system
involves continuous communication between ground-based
and on-board intelligent software agents to collect and analyze
flight data, in order to detect potentially unsafe conditions in
real-time and provide early warning to the pilot. The proposed
work, while a vital step in the right direction, suffered from
some of the aforementioned challenges of the state of the art
(Section II).

To the best of our knowledge, ours is the first proposal that
uses IoT edge computing to address some of the challenges
of aircraft monitoring. In addition, we have developed a
prototype, tested in an actual flight scenario, to illustrate



the benefits of such a system, in order to motivate future
applications.

VI. FUTURE RESEARCH DIRECTIONS

The work presented herein motivates several opportunities
for future research. Some of the overheads associated with the
Internet of Things can be significantly reduced in several high-
impact applications by incorporating an AMELIA-like frame-
work in those applications. While the design and prototyping
of AMELIA was directly motivated by challenges in avia-
tion safety/aircraft monitoring, we envisage that the proposed
framework can apply to several high-impact applications.

For example, one key application of interest is medical
diagnosis. We envision that portable medical devices (e.g.,
emerging wifi pacemakers, portable ultrasounds) can be aug-
mented with an AMELIA-like system to increase accessi-
bility to real-time diagnostic expertise, especially in remote
locations. Rather than having diagnostic personnel travel to
remote locations, the medical devices can be equipped with
the computational resources and intelligence to diagnose emer-
gencies remotely, and in real time, such that only actionable
information is transmitted to medical personnel. Real-time
automotive monitoring is another such application that can
benefit from the framework proposed herein.

Finally, much future work exists for extending and further
evaluating the different components of the AMELIA system.
We intend to augment AMELIA with more complex parameter
analysis techniques. For example, we could use a combination
of pre-defined parameter thresholds and real-time analysis of
historical flight data to detect flight anomalies. In addition,
we also intend to implement the heuristic layer to allow
for real-time exploration of potential solutions to detected
emergencies.

VII. CONCLUSION

The Internet of Things (IoT) promises to spawn new and
more efficient services to solve real-world problems. How-
ever, the IoT also introduces new challenges with respect
to bandwidth bottlenecks, cost, latency, especially in safety
critical real-time systems. Edge computing addresses some
of these challenges by performing computations at the edge
nodes in order to reduce the overheads associated with data
transmission.

In this paper, we proposed Aircraft Monitoring and Elec-
tronically Linked Instantaneous Analytics (AMELIA) as an IoT
edge computing framework in a high-impact safety critical
use-case, aviation safety. Unlike the state-of-the-art aircraft
monitoring systems that passively collect and/or transmit data,
resulting in significant overheads, AMELIA is a multilay-
ered system that analyzes collected data in order to reduce
transmitted data and only transmit actionable information for
faster response in emergencies. We described our prototype
of AMELIA to demonstrate the potentials of the Internet of
Things, from an edge computing perspective, for addressing
some of the challenges associated with aircraft monitoring in
aviation safety. AMELIA provides a foundation that can be

extended to other high-impact edge computing use-cases, such
as real-time medical diagnostics.
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