
TaSaT: Thermal-Aware Scheduling and Tuning Algorithm

for Heterogeneous and Configurable Embedded Systems
Mohamad Hammam Alsafrjalani

Department of Electrical and Computer Engineering,

University of Miami, Coral Gables, FL, USA
alsafrjalani@miami.edu

Tosiron Adegbija
Department of Electrical and Computer Engineering,

The University of Arizona, Tucson, AZ, USA
tosiron@email.arizona.edu

ABSTRACT

Heterogeneous and configurable systems (HaCS) have been

widely used to meet stringent runtime performance and energy

constraints in embedded systems. However, no prior work has

addressed the emerging runtime thermal constraints in these

systems. To leverage HaCS’ capabilities to meet thermal

constraints, in addition to performance and energy constraints, we

propose TaSaT, a Thermal-aware Scheduling and Tuning

algorithm for HaCS. TaSaT reduces HaCS temperature while

meeting performance and energy constraints during runtime,

without a priori knowledge of applications.

ACM Reference Format:

Mohamad Hammam Alsafrjalani and Tosiron Adegbija. 2018.

TaSaT: Thermal-Aware Scheduling and Tuning Algorithm for
Heterogeneous and Configurable Embedded Systems In GLSVLSI ’18:

2018 Great Lakes Symposium on VLSI, May 23–25, 2018, Chicago, IL,

USA. ACM, NY, NY, USA, 6 pages.
https://doi.org/10.1145/3194554.3194576

1 INTRODUCTION
The ubiquitous nature of embedded systems has placed

stringent and disparate constraints, including energy,

performance, and temperature on these systems. Whereas energy

and performance have traditionally been the predominant

constraints, temperature is a growing concern in embedded

systems due to the systems stringent resource constraints. Due to

the small size, limited availability of cooling mechanisms (e.g.,

on-board fans), and cost of system real estate, keeping an

embedded system’s temperature within thermal constraints, in

addition to necessary performance and energy optimizations, is a

major challenge for system designers.

Several microprocessor optimizations exist to enable

adherence to potentially competing performance and energy

constraints. For example, heterogeneous multiprocessors—such as

the ARM big.LITTLE [5], ARM Juno [6]—offer fixed, disparate

configurations to provide coarse-grained adaptation to different

applications’ execution requirements. To enhance this adaptation,

configurable systems with tunable components (e.g., cache,

pipeline depth, issue window, etc.) can be tuned/adjusted to meet

specific, fine-grained application requirements [10][19][23].

Furthermore, heterogeneous and configurable systems (HaCS)

[3][4] provide larger design spaces that enable both coarse-

grained and fine-grained adaptation to applications’ runtime

needs.

To address increasingly critical thermal challenges, several

thermal-aware optimizations have been employed to reduce the

core temperature. Dynamic thermal management (DTM) [8]

leverages the temperature-performance tradeoff of dynamic

voltage and frequency scaling (DVFS), decode throttling,

speculation control and instruction cache toggling to reduce the

core temperature. Complementing DTM, activity migration [13]

and temperature-aware scheduling [22] reduce core temperature

by executing the applications on the core(s) that will result in the

lowest average system temperature. Furthermore, phase-based

tuning [1] has been used to determine Pareto optimal

configurations in configurable systems for fine-grained execution

time, energy, and temperature.

Whereas prior thermal-aware optimizations addressed thermal

issues in homogenous and configurable systems, to the best of our

knowledge, no work has addressed thermal constraints in HaCS,

which is particularly challenging due to the coarse- and fine-

grained adherence to constraints in HaCS. We have identified

three main challenges of thermal management in HaCS: (1)

considering HaCS’ typically large design spaces, the

heterogeneous and configurable parameters that offer the best

coarse- and fine-grained performance and temperature tradeoffs

must be determined; (2) HaCS thermal optimization must be

scalable to applications that are unknown at design time; and (3)

given a multicore HaCS, a thermal-aware low-overhead

scheduling and tuning algorithm that leverages HaCS’ flexibility

to satisfy performance and temperature constraints must be

designed.

In this paper, we address the aforementioned challenges by

evaluating design choices for a multicore heterogeneous and

configurable system (HaCS) where the executing applications are

unknown a priori. To enable thermal management in HaCS, while

simultaneously satisfying performance and energy needs, we

propose a novel thermal-aware scheduling and tuning (TaSaT)

algorithm for HaCS that requires no a priori knowledge, or offline

profiling of the applications. Due to the cache’s significant impact

on overall system performance and energy, we focus on cache

optimization in this work, and show that a heterogeneous,

configurable cache offers substantial advantages for thermal-

aware runtime optimizations. We design our TaSaT algorithm as

part of a hardware cache tuner that can hold scheduling and tuning

information of an arbitrary number of applications using a least

recently used (LRU) replacement policy.

Our results reveal that TaSaT reduces the system’s

temperature, execution time, and energy by 16.53%, 10.74%, and

22.87% respectively, as compared to a base commercial off-the-

shelf (COTS) system. Additionally, TaSaT reduced the system

temperature by 4.70%, as compared to prior work, and imposed a

tuning-time performance overhead of 7.77% as compared to an

__

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org

GLSVLSI '18, May 16–18, 2018, Chicago, IL, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5724-1/18/05…$15.00

https://doi.org/10.1145/3194554.3194576

ideal system with a priori knowledge of applications’ best

performance configurations.

2 RELATED WORK
Much prior work contributed novel heterogeneous systems

(e.g., [5][16][17]), configurable systems (e.g., [10][11][19][23]),

heterogeneous and configurable (e.g., [3][4]systems), and

associated scheduling (e.g., [14][15][21]) , tuning (e.g., [1][11]),

and scheduling and tuning algorithms (e.g., [3][4]). Given these

expansive research areas, for brevity, we only discuss the most

related works on heterogeneous and configurable systems (HaCS)

and associated runtime scheduling and tuning algorithms.

2.1 Heterogeneous and Configurable Systems

(HaCS)

To achieve coarse- and fine-grained adherence to energy,

Alsafrjalani et al. [4] designed a quad-core heterogeneous and

configurable system (HaCS). The cores featured fixed,

heterogeneous cache sizes, and enabled coarse-grained adherence

to performance constraints. The cores also featured configurable

cache line size and associativities, and enabled fine-grained

adherence to performance constraints. The authors designed a

scheduling and tuning algorithm that dynamically profiled and

mapped the applications to cores that consumed the lowest

energy. Once the applications were scheduled, a tuner adjusted the

core’s cache line size and associativity to best match the

application’s cache requirements. However, the authors did not

evaluate the thermal impacts of their proposed work.

Adegbija et al. [1] considered the thermal impact while

optimizing the performance and energy of configurable systems.

The authors used an evolutionary algorithm to determine Pareto

optimal cache configurations and clock frequencies for different

application phases. However, the proposed technique required the

executing applications to be profiled and classified offline, at

design time, which limited the technique from being applied to

general purpose applications where the executing applications are

unknown a priori. Furthermore, the proposed technique only

considered a single-core system, and did not take into account

application-to-core scheduling.

2.2 Scheduling and Tuning Algorithms

Yeo et al. [22] contributed a thermal-aware scheduler based

on a thermal prediction model. The prediction model used the

applications’ runtime execution characteristics and classification

derived from offline thermal profiling to predict the applications’

thermal behaviors. Using this prediction information and a core-

based thermal model, a thermal-aware scheduler migrates the

application to a core that would take the longest to reach the

temperature threshold. Although this approach is applicable to

multicore systems, the work was evaluated on homogeneous

multicore systems, which have much less variation in resource

constraints as compared to heterogeneous systems. Furthermore,

since this approach required offline application profiling, it is not

scalable to applications that are unknown during design time.

To extend scheduling to unknown applications, Alsafrjalani et

al. used a dynamic scheduling and tuning algorithm for a HaCS

[4]. The algorithm profiled the applications dynamically, enabling

the system to scale to an arbitrary number of applications. When

the applications best (lowest) energy core was determined, the

algorithm scheduled the application to that core and tuned the

core’s cache line and associativity. However, if the best core was

not available the algorithm attempted to utilize a not-best,

however idle, core, such that the total static and dynamic energy

was minimized. However, the algorithm did not account for

performance loss if applications needed to halt until the best, or

near-best core was available.

To address performance bottleneck, Alsafrjalani et al. [3],

developed a performance/quality aware scheduling and tuning

algorithm for HaCS. To discover low energy core and

configuration while maintaining performance, the algorithm

profiled the application on the cores, and explored tunable

configurations, using performance ordering. The algorithm

explored cores/configurations that had the highest performance

expectation and continued until a core/configuration degraded the

application’s performance below a predefined performance

threshold. Even though the proposed approach was applicable to

any HaCS and arbitrary number of applications, the approach did

not consider temperature gain/loss as a byproduct of determining

the best configurations for energy or performance.

In this paper, we present the first—to the best of our

knowledge—dynamic thermal-aware scheduling and tuning

(TaSaT) algorithm for heterogeneous and configurable systems

(HaCS). TaSaT requires no a priori knowledge of executing

applications, and determines system configurations that can

optimize temperature, energy, or performance, while incurring

minimal, tuning-time overhead.

3 Thermal-Aware HaCS Hardware Design
Given the expansive design space (available configuration

options) to construct a thermal-aware HaCS, this section details

the steps of determining the heterogeneous parameters,

configurable parameters, and our hardware architecture and the

tuner hardware requirements.

3.1 Heterogeneous and Configurable

Parameters

To design a HaCS system that adheres to performance and

energy constraints, and to evaluate and compare our system to prior

work [4], we used configurable caches with configurations that have

high impact on performance and energy [23]. To gain insight into

coarse- and fine-grained performance-energy tradeoff, we used a

design space of 729 configurations, comprising different cache sizes,

line sizes, and associativities. The design space comprises the cross

product of instruction and data caches with the following parameters:

size of 32, 16, and 8KB, line sizes of 64, 32, and 16B, and

associativities of 4, 2, and 1.

Since our goal is to reduce temperature while adhering to

Figure 1. Thermal-aware HaCS with the hardware cache tuner

Lower Level Memory

8k

8k

8k

8k

16k

16k

32k

32k

Core 3

P
V

T

Core 4

P
V

T

Core 2

P
V

T

Core 1

P
V

T

Lookup

tableAux.

table

L
ev

el
 1

 C
ac

h
e

L
ev

el
 1

 C
ac

h
e

L
ev

el
 1

 C
ac

h
e

L
ev

el
 1

 C
ac

h
e

Cache Tuner
TaSaT

FSM

performance constraints, our system must feature configurations

that simultaneously achieve both temperature and performance

optimization goals. For coarse-grained performance optimization,

we designed each core in our HaCS system with a fixed, different

cache size. To complement coarse-grained optimization with fine-

grained optimization, each core features configurable line size and

associativity. As a first step, we explored the cache parameters

that provided the best performance-temperature tradeoffs by

exhaustively searching our design space, using a set of embedded

applications [9].

Our exhaustive evaluation revealed that the different

configurations had substantially different, and potentially

conflicting, impacts on performance, energy, and temperature.

However, since our approach features an online scheduling and

tuning algorithm, exploring 729 configurations can impose

significant performance and energy overhead, due to extreme

configurations that significantly degrade performance, energy,

and/or temperature. For example, our exhaustive search showed

48% and 49% performance and energy overheads, respectively.

Furthermore, using the exhaustive evaluation, we were able to

narrow down the best cache configurations for performance,

energy, and temperature. We observed that a wide range of

configurations with sizes from 8KB to 32KB achieved the best

performance and energy for the different applications in our

experiments (the experimental setup is detailed in Section 6).

However, the best configurations for temperature optimization

only included the 8KB cache. Based on these observations, our

HaCS system features cores with 8, 16, and 32KB cache sizes, as

shown in Figure 1. We empirically determined that the 8KB was

the most likely to minimize temperature, at the expense of

performance or energy. Thus, since our work targets temperature

optimization, we designated two cores (out of four) as 8KB to

provide more opportunities for scheduling to the lowest-

temperature core. The 16KB and 32KB caches allow temperature

optimization to be traded off, when necessary, in favor of

performance or energy.

3.2 Hardware Tuner Requirements

To enable dynamic tuning, we use a low-overhead hardware

cache tuner featuring dedicated buses connected to the cores’

power, voltage, and thermal (PVT) sensors [6]. The tuner also

implements TaSaT algorithm’s finite state machine (Section 4),

and a lookup table to store tuning information (e.g., explored

configurations, applications’ best configurations). The tuner

imposes 322 cycles time overhead [2], an insignificant overhead

compared to the number of cycles required for our tuning interval

of 1 million instructions [3]. During each tuning interval, the tuner

measures/calculates an application’s energy, performance, and/or

temperature, in order to determine which configuration to explore

during the next interval. This interval is long enough to warm up

and stabilize the caches [3].

The number of bits m required to store scheduling and tuning

information per application is given by:

 𝑚 = 𝑠 + (𝑒 + 𝑝 + 𝑡 + 𝑓) ∗ ⌈𝑙𝑜𝑔2(𝑐)⌉ (1)

where e, p, and t are 32-bit values that store the energy, clock

cycles, and temperature information, s is a 1-bit stop-tuning flag, f

is a 2-bit performance and temperature flag, and c is the number

of configurations in the design space. Furthermore, the number of

bits n required for an auxiliary table to store the applications’ best

configurations is given by:

 𝑛 = 𝑎 ∗ ⌈𝑙𝑜𝑔2(𝑐)⌉ (2)

where a is an 8-bit value that stores the best configuration

information for up to 256 simultaneously applications. If more

space is needed for additional applications, the tuner uses LRU

policy to update the lookup and/or auxiliary table(s).

Thus, the lookup and auxiliary tables require m * n bits (728

bits in our case), which is insignificant, as compared to the level 1

cache sizes of 8KB to 32KB. Prior work [2] revealed that a

hardware cache tuner with more storage requirements than our

design (e.g., per-configuration energy consumption was also

stored) imposed only a 4.7% area overhead in a very small MIPS

M4K processor; our tuner’s area overhead will be significantly

less.

4 TaSaT FOR THERMAL AWARE HaCS

4.1 Overview

Algorithm 1 depicts our thermal-aware scheduling and tuning

(TaSaT) algorithm’s flow chart. The algorithm has four states:

System Status Input, Scheduling, Tuning, and Evaluation states.

For each application in the ready queue, the algorithm determines

the core with the best cache size to schedule the application to,

tunes the core’s cache line size and associativity, evaluates the

performance and temperature impact of this execution, and finally

updates the lookup tables.

Algorithm 1 Thermal-aware Scheduling and Tuning (TaSaT)

Algorithm

System Status

Input State

Read

information

Lookup

tables

Application

Deadline

N
Sampling Performance

core idle

Schedule

application

Application

waits in RQ

Sampling

complete

Y

YN

Y

Sampling

core idle

Tune to core’s

base config.
Tuning

Auxiliary

tables
Cores’ Status

Scheduling

State
N

First time

on core

YN

Tuning State

Update lookup

table
Evaluate

Temperature

Evaluate

performance

Evaluation State Cores’

Counters

Cores’

PVT

N

Other

Performance

core idleY

4.2 TaSaT Algorithm States

4.2.1 System Status Input State. When an application is placed

in the ready queue to be executed, TaSaT starts/resumes the

scheduling and tuning process based on the information in the

system status input state. TaSaT checks the auxiliary table for

information about the application’s best core, cache size, and

associativity. If the auxiliary table contains this information,

TaSaT attempts to schedule the application to the best core and

directly tune the core cache line size and associativity to the best

configuration. Otherwise, TaSaT uses the cores’ status

information (e.g., idle, busy), application deadline information,

which may be designer-specified or implicitly specified by the

executing application due to input data stream processing

requirements, and the application’s tuning information from the

lookup table, and transitions to the scheduling state.

4.2.2 Scheduling State. In the scheduling state, the algorithm

determines which performance core to schedule the application to.

A performance core is a core that does not violate an application’s

deadline constraint. If sampling is complete, the performance

core(s)—there may be more than one for each application—are

known, and the algorithm attempts to schedule the application to

an idle performance cores. If no performance core is available, the

application remains in the ready queue. If sampling is not

complete, the algorithm uses a sampling sub-process to sample the

application on all/remaining cores.

Since cache size has the highest impact on performance

[3][23], the sampling sub-process starts with the core with the

largest cache size. The application is executed for one tuning

interval on each core in descending order of cache sizes and with

the base line size and associativity. If the core does not violate the

deadline, the algorithm flags the core as a performance core.

When the algorithm schedules an application to a core, the

algorithm transitions to the tuning state.

4.2.3 Tuning State. Using the information from the lookup

table, the algorithm tunes the core’s cache line size and

associativity. If there is no tuning information in the lookup table

(i.e., the application is executing on the core for the first time), the

algorithm starts tuning from the largest line size and associativity,

since these values are likely to not degrade performance [3]. For

subsequent tuning intervals, the algorithm calls a tuning process

that explores other cache line sizes and associativities, in a

descending performance ordering (i.e., explores all line sizes

first).

The tuning process employs a pseudo hill-climbing heuristic

to explore the cache line size and associativity values. To avoid

local performance degradation, the process uses a predetermined

threshold value, w, that tracks the number of times the tuning

resulted in degraded performance. The process tunes to a lower

cache size and associativity for one tuning interval. Each time the

application is scheduled to a core, the tuning process explores a

lower cache line size and associativity, as long as the number of

performance degradations has not exceeded w. Once the cache

line size and associativity are determined, the algorithm begins the

evaluation state.

4.2.4 Evaluation State. To evaluate the core/configuration

performance, in the evaluation state, the algorithm uses an

evaluate performance sub-process. The process reads in the core

counters to measure the time elapsed for the application to execute

and compares that time to the application deadline. If the

application exceeded the deadline, the algorithm updates the

performance flag bit, f0, of that configuration to 1 (marked as a

sub-performance configuration). Using the information from the

lookup table, the process also determines the number of sub-

performance configurations explored thus far. If this number

exceeds w then the process sets the stop tuning flag, s, to 1 for the

application.

Similarly, to evaluate the temperature reduction, the algorithm

calls an evaluate temperature sub-process. The process reads in

the cores’ PVT and compares these values to the values of

previously explored configurations. If the temperature value is

lower than of the previously explored configuration(s), the

process sets the temperature-saving flag, f1, of that configuration

for the application.

Using the results from the performance and temperature

evaluation, the algorithm determines if the currently explored

configuration results in acceptable performance and temperature

reduction. The algorithm then update/store this information in the

lookup table for the algorithm to use in subsequent executions.

5 EXPERIMENT SETUP
To evaluate our system, we used a quad-core HaCS

architecture (Section 3), and ran seventeen applications that

represent common embedded systems applications [9]. The quad-

core HaCS features cores with separate level one (L1) instruction

and data caches of fixed sizes 8, 16, and 32KB. The caches’ line

sizes and associativities are tunable to any combination of 8, 16,

and 32B, and 1-, 2- and 4-way, respectively. We modeled our

quad-core system similar to the ARM Cortex A9, consisting of a

4-width out-of-order issue processor with 8 pipeline stages, 45 nm

technology, and a clock frequency of 2GHz. The PVT are

modeled after ARM’s Juno Development SoC [6].

We used the EEMBC [9] Automotive benchmarks and six

MiBench [12] benchmarks selected to represent different

application domains. The benchmarks were specific compute

kernels performing specific tasks in different application domains,

including networking, image processing, security, etc. To obtain

performance results, we executed the application on gem5

simulator [7], to obtain energy results, we fed the simulation

results output McPAT [18], and we used Hotspot 5.0 [20] as the

thermal modeling tool. To model fan-less systems, we designed

our system with a heat sink of 1mm and spreader 0.1 mm

thickness, and we set the convection resistance to 4K/W.

To simulate a load environment, we generated a queue of

5000 applications from our benchmark applications with a

designated ready/arrival time and deadline. To generate a realistic

arrival rate, we used a Gamma distribution centered around a

predetermined execution time

 𝑋 =
∑ ∑ 𝑥(𝑖,𝑗)𝑐

𝑗=1
𝐴
𝑖=1

𝐴∗𝐶∗𝑐
 (3)

where A, C, and c, are the numbers of applications, cores, and

configurations, respectively, and x(i,j) is the execution time of

application i using configuration j. To generate a realistic

deadline for an application, we designated the application’s

average execution time using all configuration as the deadline.

6 EVALUATION METHODOLOGY
We evaluated the performance, temperature, and energy

optimizations while executing a queue of 5000 applications

(Section 5) using six systems, all of which featured quad-core

processors. However, to evaluate the system tradeoffs, and

scheduling and tuning overhead, the systems differed in the

number of cache configurations, scheduling algorithms, and a

priori knowledge of applications.

Table 1 depicts the six systems, including the cache

configurations, a priori knowledge of applications (and the

applications’ deadlines), and the scheduling and tuning algorithms

used in each system. The base system represents a commercial of-

the-shelf (COTS) system with fixed 32KB-4W-64B cache and a

first-come first-served (FCFS) scheduling. The configuration

column represents the cache configurations featured in the system.

S1 and S2 caches comprised the complete design space of 729

configurations, while S3-S5 comprised the same subset of 81

cache configurations (Section 3.1). All systems, except S5, had a

priori knowledge of the applications’ best performance and/or

temperature configuration; i.e., we assumed there is no scheduling

and tuning overhead. S1—S4 scheduled the applications using

FCFS to the core with the best performance (P) or temperature (T)

configuration, whereas S5 used our TaSaT algorithm to make

scheduling and tuning decisions.

We compared systems S1, S2, S3, S4, and S5 to the base

system for performance, temperature, and energy optimizations.

We also compared S1 to S3 and S2 to S4 to measure performance

and temperature degradation, respectively, when a configuration

subset is used instead of the complete design space. Since S1—S4

assume a priori knowledge of executing applications, there is no

scheduling and tuning overhead; the overhead results from using

configuration subsets rather than the full design space.

 To obtain S5’s performance and temperature tradeoffs with

respect to an optimal system with a priori knowledge of

application we compared S5 to S1 and S2, respectively. We also

evaluated the S5’s scheduling and tuning overhead by comparing

S5’s optimization potential to S3 and S4. Furthermore, since S3

comprised a subset of configurations, the systems represent prior

work [3][4] in which performance is prioritized. We compared the

temperature and energy savings of S5 to S3 to obtain tradeoffs as

compared to prior work, when temperature is prioritized.

7 RESULTS AND ANALYSIS
This section presents the performance, temperature, and

energy results and analysis based on our experiment setup and

evaluation methodology.

7.1 Performance

Figure 2 depicts the average performance, temperature, and

energy improvements of S1, S2, S3, S4, and S5 normalized to the

base system. Values below one correspond to less time,

temperature, and energy, as compared to the base system. S1, S3,

and S5 resulted in 27.09%, 23.07%, and 10.74% better

performance, as compared to the base system, since these systems

prioritized performance optimization during scheduling. However,

S2, and S4, degraded the performance by 1.33% and 1.30%,

respectively, since these systems used FCFS-T, which prioritized

lower temperature over better performance. Since S2 and S4 had a

priori knowledge of the applications’ best temperature

configurations, the applications were scheduled to the best-

temperature cores, which resulted in performance degradation.

Furthermore, even though S2 had all the cache configurations,

while S4 had a subset of configurations, both systems achieved

similar performance for the applications; thus, the eliminated

configurations in S4 did not affect the system’s performance.

To extend our performance analysis, we recorded how much

time the systems’ scheduling and tuning decisions took. Figure 3

depicts the average number of deadline misses that occurred while

executing the applications. The applications missed the deadline

25% of the time in the base system, since the base system

scheduled the applications to first available cores, and all cores

offered the same configuration. Our analysis revealed that

although the base system’s caches featured the largest cache size,

and the best average case performance, the base configuration was

not the best for all of the applications. Executing some of the

applications (e.g., basefp) on the base configuration degraded

performance; as a result, other applications were prevented from

meeting their deadlines. In S1 and S3, no applications missed their

deadlines, since both systems offered the complete design space

and prior knowledge of the best configurations.

Since S1 and S3 offered the complete and subsetted design

space, respectively, the subsetted design space contained enough

best and near-best performance configurations. However, S3, S4

and S5 incurred deadline misses while executing the applications,

since S3 and S4 prioritized temperature and S5 explored the

design space during runtime and accrued runtime overhead. Since

S2 and S4 offered the complete and subsetted design space,

respectively, the subsetted design space contained the same best

and near best performance configurations, while providing best

temperature configurations. This result also suggests that even

though execution times on S2 and S4 were similar (Figure 2), S2

and S4 may impact the performance of a hard real-time

performance system differently (Figure 3).

Finally, the applications in S5, which represent our HaCS

with TaSaT algorithm, missed the deadline on average of 7.77%.

Since S5 had no a priori knowledge of the applications, the

scheduling and tuning overhead accounted for the deadline misses

of some of the applications. The 7.77% tuning time overhead will

amortize over time and is acceptable in soft real-time systems [3].

Furthermore, as compared to prior work that prioritized

performance and had prior knowledge of the applications’ best

configurations (S3), S5 decreased performance by 16.03%, since

S5 used multiple performance cores for an application. Although

S5 degraded the performance, that did not necessarily translate to

a substantial increase in applications missing deadlines and is then

Table 1: Evaluation Systems

Figure 2. Performance, Temperature, and Energy of all

systems, normalized to the Base System's

System\Setup $Config. A Priori Sched. Al.

Base 32-4-64 yes FCFS

S1 complete yes FCFS-P

S2 complete yes FCFS-T

S3 subset yes FCFS-P

S4 subset yes FCFS-T

S5 subset no TaSaT

0

0.2

0.4

0.6

0.8

1

1.2

S1 S2 S3 S4 S5

Evaluation Systems

Perf. Temp. Energy

R
es

u
lt

s
N

o
rm

al
iz

ed
 t

o
 T

h
e

B
as

e
S

y
st

em
's

within 7.77% of an ideal system while saving 4.70% temperature

(Section 7.2), as compared to S3.

7.2 Temperature

Systems S1, S2, S3, S4, and S5 reduced the temperature by

11.34%, 23.01%, 12.42%, 23.07%, and 16.53%, respectively, as

compared to the base system, which had an average temperature

of 89.55o C. Since S2 and S4 prioritized temperature, these two

systems resulted in the highest temperature savings among the

five systems. Also, S1 and S3 resulted in less temperature savings

than S2 and S4, since S1 and S3 systems used FCFS-P, which

prioritized higher performance over better temperature. Since S1

and S3 had a priori knowledge of the application’s best

performance configurations, the applications were scheduled to

the best-performance core, which resulted in increased average

temperatures as compared to S2 and S4. Moreover, we observed

that even though S2 and S4 offered the complete and subsetted

design space, respectively, there was no impact on the

temperature; both systems’ temperature savings were similar.

Furthermore, we observed that S5’s temperature savings of

16.53% was less than that of S2 and S4, since S5’s balanced

between temperature reduction and performance, while S2 and S4

prioritized temperature only. Additionally, compared to an ideal

system that prioritizes temperature (S4), S5, traded off 8.64% in

temperature savings for 11.90% performance improvement, and

90.65% fewer missed deadlines.

7.3 Energy

Systems S1, S2, S3, S4, and S5 resulted in 35.10%, 25.52%,

31.90%, 25.53%, and 22.87% energy savings, respectively, as

compared to the base system. Although S1 and S3 prioritized

performance, the systems reduced the execution time

substantially, with a less substantial power increase, which

resulted in an overall energy reduction. Overall, our approach did

not incur any energy overheads as compared to the base system.

8 CONCLUSION AND FUTURE WORK
In this work we presented a thermal-aware scheduling and

tuning (TaSaT) algorithm for reduced temperature in

heterogeneous and configurable systems (HaCS). Our algorithm

required no a priori knowledge of applications and can be scaled

to any HaCS and applications. TaSaT explored the design space

using performance order configurations and obtained 16.53% and

22.87% temperature and energy reduction, respectively, as

compared to a base system. The algorithm imposed tuning-time

performance overhead of 7.77%, as compared to an ideal system

with a priori knowledge of applications. Furthermore, our

algorithm reduced temperature by 4.67% compared to prior work.

Future work will extend our algorithm to multi-level cache

optimization and multi-objective optimization of temperature,

performance, energy, and energy-delay product (EDP).

REFERENCES

[1] Adegbija, T.; Gordon-Ross, A., “Thermal-aware phase-based tuning of

embedded systems,” Great Lakes Symposium on VLSI (GLSVLSI), 2014

[2] Adegbija, T.; Gordon-Ross, A.; Rawlins, M., “Analysis of cache tuner

architectural layouts for multicore embedded systems,” Int. Con. on

Performance Computing and Communications, 2014.

[3] Alsafrjalani, M., H.; Gordon-Ross, A., “Quality of service-aware, scalable

cache tuning algorithm in consumer-based embedded devices,” International

Great Lakes Symposium on VLSI (GLSVLSI), 2016

[4] Alsafrjalani, M., H.; Gordon-Ross, A., “Dynamic Scheduling for Reduced

Energy in Configuration-Subsetted Heterogeneous Multicore Systems,” Int.

Con. on Embedded and Ubiquitous Computing, 2014

[5] ARM Ltd., big.LITTLE Technology, White Paper:

http://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobil

e.pdf

[6] ARM Ltd., https://developer.arm.com/products/architecture/a-

profile/docs/100113/

latest/hardware-description/juno-arm-development-platform-soc

[7] Binkert, N.; et al., “The gem5 simulator,” Computer Architecture News, 2011

[8] Donald, J.; Martonosi, M., “Techniques for Multicore Thermal Management:

Classification and New Exploration,” International Symposium in Computer

Architecture (ISCA), 2006.

[9] EEMBC. The Embedded Microprocessor Benchmark Consortium

http://www.eembc.org/benchmark/automotive _sl.php, Sept. 2013

[10] Folegnani, D.; Gonzalez, A., “Energy-effective issue logic,” Int. Symp. on

Computer Architecture (ISCA), 2001

[11] Gordon-Ross, A.; Vahid, F., “A Self-Tuning Configurable Cache,” IEEE

Design Automation Conference (DAC), 2007

[12] Guthausch, M., R.; et al., “Mibench: a free, commercially representative

embedded benchmark suite,” IEEE Workshop on Workload Characterization,

2001.

[13] Heo, S.; Barr, K.; Asanovic, K., “Reducing Power Density through Activity

Migration,” Int. Symp. on Low Power Electronics & Design (ISLPED), 2003

[14] Joao, José A., Aater Suleman, M., Mutlu, O., Patt, N., “Utility-based

acceleration of multithreaded applications on asymmetric CMPs. SIGARCH,”

Computer Architecture News, 2013

[15] Kim, K.; Kim, D.; Park, C.; “Real-time scheduling in heterogeneous dual-core

architectures,” International Conference on Parallel and Distributed Systems,

2006

[16] Kumar, R.; et al., “Single-ISA heterogeneous multi-core architectures: the

potential for processor power reduction,” 36th Int. Symp. on

Microarchitecture, 2003

[17] Kumar, R.; Tullsen, D.; N. Jouppi, N.; Ranganathan, P., “Heterogeneous chip

multiprocessors,” IEEE Computer, vol. 38, Nov. 2005

[18] Li, S.; et al., “McPAT: an integrated power, area, and timing modeling

framework for multicore and manycore architectures,” Int. Symp. on

Microarchitecture, 2009

[19] Malik, A.; Moyer, B.; Cermak, D., “A low power unified cache architecture

providing power and performance flexibility,” Int. Symp. on Low Power

Electronics and Design (ISLPED), 2000

[20] Skadron, K.; et al., “Temperature-aware microarchitecture: modeling and

implementation,” Transactions on Architecture and Code Optimization, 2004.

[21] Van Craeynest, K.; Jaleel, A.; Eeckhout, L.; Narvaez, P.; Emer, J.;

“Scheduling heterogeneous multi-cores through performance impact

estimation (PIE),” 39th Int. Symp. on Computer Architecture (ISCA), 2012

[22] Yeo, I.; Kim, E.; J., “Temperature-aware scheduler based on thermal behavior

grouping in multicore systems,” Conference on Design, Automation and Test

in Europe (DATE), 2009

[23] Zhang, C.; Vahid, F.; Najjar, W.; “A highly configurable cache architecture

for embedded systems,” Int. Sym. on Computer Architecture (ISCA), 2003

Figure 3. The average number of applications’ executions that

exceeded the deadline for all the application’s in the queue

25.19%

0.00%

69.72%

0.00%

77.59%

7.77%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Base S1 S2 S3 S4 S5

Evaluation Systems

A
v

er
ag

e
D

ea
d

li
n

e
M

is
se

s
o

f

A
p

p
li

ca
ti

o
n

s

