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ABSTRACT 

Heterogeneous and configurable systems (HaCS) have been 

widely used to meet stringent runtime performance and energy 

constraints in embedded systems. However, no prior work has 

addressed the emerging runtime thermal constraints in these 

systems. To leverage HaCS’ capabilities to meet thermal 

constraints, in addition to performance and energy constraints, we 

propose TaSaT, a Thermal-aware Scheduling and Tuning 

algorithm for HaCS. TaSaT reduces HaCS temperature while 

meeting performance and energy constraints during runtime, 

without a priori knowledge of applications.  
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1 INTRODUCTION 
The ubiquitous nature of embedded systems has placed 

stringent and disparate constraints, including energy, 

performance, and temperature on these systems. Whereas energy 

and performance have traditionally been the predominant 

constraints, temperature is a growing concern in embedded 

systems due to the systems stringent resource constraints. Due to 

the small size, limited availability of cooling mechanisms (e.g., 

on-board fans), and cost of system real estate, keeping an 

embedded system’s temperature within thermal constraints, in 

addition to necessary performance and energy optimizations, is a 

major challenge for system designers.  

Several microprocessor optimizations exist to enable 

adherence to potentially competing performance and energy 

constraints. For example, heterogeneous multiprocessors—such as 

the ARM big.LITTLE [5], ARM Juno [6]—offer fixed, disparate 

configurations to provide coarse-grained adaptation to different 

applications’ execution requirements. To enhance this adaptation, 

configurable systems with tunable components (e.g., cache, 

pipeline depth, issue window, etc.) can be tuned/adjusted to meet 

specific, fine-grained application requirements [10][19][23]. 

Furthermore, heterogeneous and configurable systems (HaCS) 

[3][4] provide larger design spaces that enable both coarse-

grained and fine-grained adaptation to applications’ runtime 

needs.  

To address increasingly critical thermal challenges, several 

thermal-aware optimizations have been employed to reduce the 

core temperature. Dynamic thermal management (DTM) [8] 

leverages the temperature-performance tradeoff of dynamic 

voltage and frequency scaling (DVFS), decode throttling, 

speculation control and instruction cache toggling to reduce the 

core temperature. Complementing DTM, activity migration [13] 

and temperature-aware scheduling [22] reduce core temperature 

by executing the applications on the core(s) that will result in the 

lowest average system temperature. Furthermore, phase-based 

tuning [1] has been used to determine Pareto optimal 

configurations in configurable systems for fine-grained execution 

time, energy, and temperature.   

Whereas prior thermal-aware optimizations addressed thermal 

issues in homogenous and configurable systems, to the best of our 

knowledge, no work has addressed thermal constraints in HaCS, 

which is particularly challenging due to the coarse- and fine-

grained adherence to constraints in HaCS. We have identified 

three main challenges of thermal management in HaCS: (1) 

considering HaCS’ typically large design spaces, the 

heterogeneous and configurable parameters that offer the best 

coarse- and fine-grained performance and temperature tradeoffs 

must be determined; (2) HaCS thermal optimization must be 

scalable to applications that are unknown at design time; and (3) 

given a multicore HaCS, a thermal-aware low-overhead 

scheduling and tuning algorithm that leverages HaCS’ flexibility 

to satisfy performance and temperature constraints must be 

designed. 

In this paper, we address the aforementioned challenges by 

evaluating design choices for a multicore heterogeneous and 

configurable system (HaCS) where the executing applications are 

unknown a priori. To enable thermal management in HaCS, while 

simultaneously satisfying performance and energy needs, we 

propose a novel thermal-aware scheduling and tuning (TaSaT) 

algorithm for HaCS that requires no a priori knowledge, or offline 

profiling of the applications. Due to the cache’s significant impact 

on overall system performance and energy, we focus on cache 

optimization in this work, and show that a heterogeneous, 

configurable cache offers substantial advantages for thermal-

aware runtime optimizations. We design our TaSaT algorithm as 

part of a hardware cache tuner that can hold scheduling and tuning 

information of an arbitrary number of applications using a least 

recently used (LRU) replacement policy.  

Our results reveal that TaSaT reduces the system’s 

temperature, execution time, and energy by 16.53%, 10.74%, and 

22.87% respectively, as compared to a base commercial off-the-

shelf (COTS) system. Additionally, TaSaT reduced the system 

temperature by 4.70%, as compared to prior work, and imposed a 

tuning-time performance overhead of 7.77% as compared to an 
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ideal system with a priori knowledge of applications’ best 

performance configurations.  

2 RELATED WORK 
Much prior work contributed novel heterogeneous systems 

(e.g., [5][16][17]), configurable systems (e.g., [10][11][19][23]), 

heterogeneous and configurable (e.g., [3][4]systems), and 

associated scheduling (e.g., [14][15][21]) , tuning (e.g., [1][11]), 

and scheduling and tuning algorithms (e.g., [3][4]). Given these 

expansive research areas, for brevity, we only discuss the most 

related works on heterogeneous and configurable systems (HaCS) 

and associated runtime scheduling and tuning algorithms. 

2.1 Heterogeneous and Configurable Systems 

(HaCS) 

To achieve coarse- and fine-grained adherence to energy, 

Alsafrjalani et al. [4] designed a quad-core heterogeneous and 

configurable system (HaCS). The cores featured fixed, 

heterogeneous cache sizes, and enabled coarse-grained adherence 

to performance constraints. The cores also featured configurable 

cache line size and associativities, and enabled fine-grained 

adherence to performance constraints. The authors designed a 

scheduling and tuning algorithm that dynamically profiled and 

mapped the applications to cores that consumed the lowest 

energy. Once the applications were scheduled, a tuner adjusted the 

core’s cache line size and associativity to best match the 

application’s cache requirements. However, the authors did not 

evaluate the thermal impacts of their proposed work.  

Adegbija et al. [1] considered the thermal impact while 

optimizing the performance and energy of configurable systems. 

The authors used an evolutionary algorithm to determine Pareto 

optimal cache configurations and clock frequencies for different 

application phases.  However, the proposed technique required the 

executing applications to be profiled and classified offline, at 

design time, which limited the technique from being applied to 

general purpose applications where the executing applications are 

unknown a priori. Furthermore, the proposed technique only 

considered a single-core system, and did not take into account 

application-to-core scheduling. 

2.2 Scheduling and Tuning Algorithms  

Yeo et al. [22] contributed a thermal-aware scheduler based 

on a thermal prediction model. The prediction model used the 

applications’ runtime execution characteristics and classification 

derived from offline thermal profiling to predict the applications’ 

thermal behaviors. Using this prediction information and a core-

based thermal model, a thermal-aware scheduler migrates the 

application to a core that would take the longest to reach the 

temperature threshold. Although this approach is applicable to 

multicore systems, the work was evaluated on homogeneous 

multicore systems, which have much less variation in resource 

constraints as compared to heterogeneous systems. Furthermore, 

since this approach required offline application profiling, it is not 

scalable to applications that are unknown during design time.  

To extend scheduling to unknown applications, Alsafrjalani et 

al. used a dynamic scheduling and tuning algorithm for a HaCS 

[4]. The algorithm profiled the applications dynamically, enabling 

the system to scale to an arbitrary number of applications. When 

the applications best (lowest) energy core was determined, the 

algorithm scheduled the application to that core and tuned the 

core’s cache line and associativity. However, if the best core was 

not available the algorithm attempted to utilize a not-best, 

however idle, core, such that the total static and dynamic energy 

was minimized. However, the algorithm did not account for 

performance loss if applications needed to halt until the best, or 

near-best core was available. 

To address performance bottleneck, Alsafrjalani et al. [3], 

developed a performance/quality aware scheduling and tuning 

algorithm for HaCS. To discover low energy core and 

configuration while maintaining performance, the algorithm 

profiled the application on the cores, and explored tunable 

configurations, using performance ordering. The algorithm 

explored cores/configurations that had the highest performance 

expectation and continued until a core/configuration degraded the 

application’s performance below a predefined performance 

threshold. Even though the proposed approach was applicable to 

any HaCS and arbitrary number of applications, the approach did 

not consider temperature gain/loss as a byproduct of determining 

the best configurations for energy or performance.  

In this paper, we present the first—to the best of our 

knowledge—dynamic thermal-aware scheduling and tuning 

(TaSaT) algorithm for heterogeneous and configurable systems 

(HaCS). TaSaT requires no a priori knowledge of executing 

applications, and determines system configurations that can 

optimize temperature, energy, or performance, while incurring 

minimal, tuning-time overhead.  

3 Thermal-Aware HaCS Hardware Design 
Given the expansive design space (available configuration 

options) to construct a thermal-aware HaCS, this section details 

the steps of determining the heterogeneous parameters, 

configurable parameters, and our hardware architecture and the 

tuner hardware requirements.   

3.1 Heterogeneous and Configurable 

Parameters  

To design a HaCS system that adheres to performance and 

energy constraints, and to evaluate and compare our system to prior 

work [4], we used configurable caches with configurations that have 

high impact on performance and energy [23]. To gain insight into 

coarse- and fine-grained performance-energy tradeoff, we used a 

design space of 729 configurations, comprising different cache sizes, 

line sizes, and associativities. The design space comprises the cross 

product of instruction and data caches with the following parameters: 

size of 32, 16, and 8KB, line sizes of 64, 32, and 16B, and 

associativities of 4, 2, and 1. 

Since our goal is to reduce temperature while adhering to 

 
Figure 1. Thermal-aware HaCS with the hardware cache tuner 
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performance constraints, our system must feature configurations 

that simultaneously achieve both temperature and performance 

optimization goals. For coarse-grained performance optimization, 

we designed each core in our HaCS system with a fixed, different 

cache size. To complement coarse-grained optimization with fine-

grained optimization, each core features configurable line size and 

associativity. As a first step, we explored the cache parameters 

that provided the best performance-temperature tradeoffs by 

exhaustively searching our design space, using a set of embedded 

applications [9].  

Our exhaustive evaluation revealed that the different 

configurations had substantially different, and potentially 

conflicting, impacts on performance, energy, and temperature. 

However, since our approach features an online scheduling and 

tuning algorithm, exploring 729 configurations can impose 

significant performance and energy overhead, due to extreme 

configurations that significantly degrade performance, energy, 

and/or temperature. For example, our exhaustive search showed 

48% and 49% performance and energy overheads, respectively.  

Furthermore, using the exhaustive evaluation, we were able to 

narrow down the best cache configurations for performance, 

energy, and temperature. We observed that a wide range of 

configurations with sizes from 8KB to 32KB achieved the best 

performance and energy for the different applications in our 

experiments (the experimental setup is detailed in Section 6). 

However, the best configurations for temperature optimization 

only included the 8KB cache. Based on these observations, our 

HaCS system features cores with 8, 16, and 32KB cache sizes, as 

shown in Figure 1. We empirically determined that the 8KB was 

the most likely to minimize temperature, at the expense of 

performance or energy. Thus, since our work targets temperature 

optimization, we designated two cores (out of four) as 8KB to 

provide more opportunities for scheduling to the lowest-

temperature core. The 16KB and 32KB caches allow temperature 

optimization to be traded off, when necessary, in favor of 

performance or energy.  

3.2 Hardware Tuner Requirements 

To enable dynamic tuning, we use a low-overhead hardware 

cache tuner featuring dedicated buses connected to the cores’ 

power, voltage, and thermal (PVT) sensors [6]. The tuner also 

implements TaSaT algorithm’s finite state machine (Section 4), 

and a lookup table to store tuning information (e.g., explored 

configurations, applications’ best configurations). The tuner 

imposes 322 cycles time overhead [2], an insignificant overhead 

compared to the number of cycles required for our tuning interval 

of 1 million instructions [3]. During each tuning interval, the tuner 

measures/calculates an application’s energy, performance, and/or 

temperature, in order to determine which configuration to explore 

during the next interval. This interval is long enough to warm up 

and stabilize the caches [3]. 

The number of bits m required to store scheduling and tuning 

information per application is given by: 

 𝑚 = 𝑠 + (𝑒 + 𝑝 + 𝑡 + 𝑓) ∗ ⌈𝑙𝑜𝑔2(𝑐)⌉  (1) 

where e, p, and t are 32-bit values that store the energy, clock 

cycles, and temperature information, s is a 1-bit stop-tuning flag, f 

is a 2-bit performance and temperature flag, and c is the number 

of configurations in the design space. Furthermore, the number of 

bits n required for an auxiliary table to store the applications’ best 

configurations is given by:   

 𝑛 = 𝑎 ∗ ⌈𝑙𝑜𝑔2(𝑐)⌉     (2) 

where a is an 8-bit value that stores the best configuration 

information for up to 256 simultaneously applications. If more 

space is needed for additional applications, the tuner uses LRU 

policy to update the lookup and/or auxiliary table(s).  

Thus, the lookup and auxiliary tables require m * n bits (728 

bits in our case), which is insignificant, as compared to the level 1 

cache sizes of 8KB to 32KB. Prior work [2] revealed that a 

hardware cache tuner with more storage requirements than our 

design (e.g., per-configuration energy consumption was also 

stored) imposed only a 4.7% area overhead in a very small MIPS 

M4K processor; our tuner’s area overhead will be significantly 

less. 

4 TaSaT FOR THERMAL AWARE HaCS 

4.1 Overview 

Algorithm 1 depicts our thermal-aware scheduling and tuning 

(TaSaT) algorithm’s flow chart. The algorithm has four states: 

System Status Input, Scheduling, Tuning, and Evaluation states. 

For each application in the ready queue, the algorithm determines 

the core with the best cache size to schedule the application to, 

tunes the core’s cache line size and associativity, evaluates the 

performance and temperature impact of this execution, and finally 

updates the lookup tables.  

 
Algorithm 1 Thermal-aware Scheduling and Tuning (TaSaT) 
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4.2 TaSaT Algorithm States 

4.2.1 System Status Input State. When an application is placed 

in the ready queue to be executed, TaSaT starts/resumes the 

scheduling and tuning process based on the information in the 

system status input state. TaSaT checks the auxiliary table for 

information about the application’s best core, cache size, and 

associativity. If the auxiliary table contains this information, 

TaSaT attempts to schedule the application to the best core and 

directly tune the core cache line size and associativity to the best 

configuration. Otherwise, TaSaT uses the cores’ status 

information (e.g., idle, busy), application deadline information, 

which may be designer-specified or implicitly specified by the 

executing application due to input data stream processing 

requirements, and the application’s tuning information from the 

lookup table, and transitions to the scheduling state.  

4.2.2 Scheduling State. In the scheduling state, the algorithm 

determines which performance core to schedule the application to. 

A performance core is a core that does not violate an application’s 

deadline constraint. If sampling is complete, the performance 

core(s)—there may be more than one for each application—are 

known, and the algorithm attempts to schedule the application to 

an idle performance cores. If no performance core is available, the 

application remains in the ready queue. If sampling is not 

complete, the algorithm uses a sampling sub-process to sample the 

application on all/remaining cores.  

Since cache size has the highest impact on performance 

[3][23], the sampling sub-process starts with the core with the 

largest cache size. The application is executed for one tuning 

interval on each core in descending order of cache sizes and with 

the base line size and associativity. If the core does not violate the 

deadline, the algorithm flags the core as a performance core. 

When the algorithm schedules an application to a core, the 

algorithm transitions to the tuning state.  

4.2.3 Tuning State. Using the information from the lookup 

table, the algorithm tunes the core’s cache line size and 

associativity. If there is no tuning information in the lookup table 

(i.e., the application is executing on the core for the first time), the 

algorithm starts tuning from the largest line size and associativity, 

since these values are likely to not degrade performance [3]. For 

subsequent tuning intervals, the algorithm calls a tuning process 

that explores other cache line sizes and associativities, in a 

descending performance ordering (i.e., explores all line sizes 

first).  

The tuning process employs a pseudo hill-climbing heuristic 

to explore the cache line size and associativity values. To avoid 

local performance degradation, the process uses a predetermined 

threshold value, w, that tracks the number of times the tuning 

resulted in degraded performance. The process tunes to a lower 

cache size and associativity for one tuning interval. Each time the 

application is scheduled to a core, the tuning process explores a 

lower cache line size and associativity, as long as the number of 

performance degradations has not exceeded w. Once the cache 

line size and associativity are determined, the algorithm begins the 

evaluation state. 

4.2.4 Evaluation State. To evaluate the core/configuration 

performance, in the evaluation state, the algorithm uses an 

evaluate performance sub-process. The process reads in the core 

counters to measure the time elapsed for the application to execute 

and compares that time to the application deadline. If the 

application exceeded the deadline, the algorithm updates the 

performance flag bit, f0, of that configuration to 1 (marked as a 

sub-performance configuration). Using the information from the 

lookup table, the process also determines the number of sub-

performance configurations explored thus far. If this number 

exceeds w then the process sets the stop tuning flag, s, to 1 for the 

application.  

Similarly, to evaluate the temperature reduction, the algorithm 

calls an evaluate temperature sub-process. The process reads in 

the cores’ PVT and compares these values to the values of 

previously explored configurations. If the temperature value is 

lower than of the previously explored configuration(s), the 

process sets the temperature-saving flag, f1, of that configuration 

for the application. 

Using the results from the performance and temperature 

evaluation, the algorithm determines if the currently explored 

configuration results in acceptable performance and temperature 

reduction. The algorithm then update/store this information in the 

lookup table for the algorithm to use in subsequent executions.  

5 EXPERIMENT SETUP 
To evaluate our system, we used a quad-core HaCS 

architecture (Section 3), and ran seventeen applications that 

represent common embedded systems applications [9]. The quad-

core HaCS features cores with separate level one (L1) instruction 

and data caches of fixed sizes 8, 16, and 32KB. The caches’ line 

sizes and associativities are tunable to any combination of 8, 16, 

and 32B, and 1-, 2- and 4-way, respectively. We modeled our 

quad-core system similar to the ARM Cortex A9, consisting of a 

4-width out-of-order issue processor with 8 pipeline stages, 45 nm 

technology, and a clock frequency of 2GHz. The PVT are 

modeled after ARM’s Juno Development SoC [6].  

We used the EEMBC [9] Automotive benchmarks and six 

MiBench [12] benchmarks selected to represent different 

application domains. The benchmarks were specific compute 

kernels performing specific tasks in different application domains, 

including networking, image processing, security, etc. To obtain 

performance results, we executed the application on gem5 

simulator [7], to obtain energy results, we fed the simulation 

results output McPAT [18], and we used Hotspot 5.0 [20] as the 

thermal modeling tool. To model fan-less systems, we designed 

our system with a heat sink of 1mm and spreader 0.1 mm 

thickness, and we set the convection resistance to 4K/W. 

To simulate a load environment, we generated a queue of 

5000 applications from our benchmark applications with a 

designated ready/arrival time and deadline. To generate a realistic 

arrival rate, we used a Gamma distribution centered around a 

predetermined execution time  

 𝑋 =
∑ ∑ 𝑥(𝑖,𝑗)𝑐

𝑗=1
𝐴
𝑖=1

𝐴∗𝐶∗𝑐
    (3) 

where A, C, and c, are the numbers of applications, cores, and 

configurations, respectively, and x(i,j) is the execution time of 

application i using configuration j.  To generate a realistic 

deadline for an application, we designated the application’s 

average execution time using all configuration as the deadline.   

6 EVALUATION METHODOLOGY 
We evaluated the performance, temperature, and energy 

optimizations while executing a queue of 5000 applications 

(Section 5) using six systems, all of which featured quad-core 

processors. However, to evaluate the system tradeoffs, and 

scheduling and tuning overhead, the systems differed in the 

number of cache configurations, scheduling algorithms, and a 

priori knowledge of applications.   



 

Table 1 depicts the six systems, including the cache 

configurations, a priori knowledge of applications (and the 

applications’ deadlines), and the scheduling and tuning algorithms 

used in each system. The base system represents a commercial of-

the-shelf (COTS) system with fixed 32KB-4W-64B cache and a 

first-come first-served (FCFS) scheduling. The configuration 

column represents the cache configurations featured in the system. 

S1 and S2 caches comprised the complete design space of 729 

configurations, while S3-S5 comprised the same subset of 81 

cache configurations (Section 3.1). All systems, except S5, had a 

priori knowledge of the applications’ best performance and/or 

temperature configuration; i.e., we assumed there is no scheduling 

and tuning overhead. S1—S4 scheduled the applications using 

FCFS to the core with the best performance (P) or temperature (T) 

configuration, whereas S5 used our TaSaT algorithm to make 

scheduling and tuning decisions.  

We compared systems S1, S2, S3, S4, and S5 to the base 

system for performance, temperature, and energy optimizations. 

We also compared S1 to S3 and S2 to S4 to measure performance 

and temperature degradation, respectively, when a configuration 

subset is used instead of the complete design space. Since S1—S4 

assume a priori knowledge of executing applications, there is no 

scheduling and tuning overhead; the overhead results from using 

configuration subsets rather than the full design space.  

 To obtain S5’s performance and temperature tradeoffs with 

respect to an optimal system with a priori knowledge of 

application we compared S5 to S1 and S2, respectively. We also 

evaluated the S5’s scheduling and tuning overhead by comparing 

S5’s optimization potential to S3 and S4. Furthermore, since S3 

comprised a subset of configurations, the systems represent prior 

work [3][4] in which performance is prioritized. We compared the 

temperature and energy savings of S5 to S3 to obtain tradeoffs as 

compared to prior work, when temperature is prioritized. 

7 RESULTS AND ANALYSIS 
This section presents the performance, temperature, and 

energy results and analysis based on our experiment setup and 

evaluation methodology. 

7.1 Performance  

Figure 2 depicts the average performance, temperature, and 

energy improvements of S1, S2, S3, S4, and S5 normalized to the 

base system. Values below one correspond to less time, 

temperature, and energy, as compared to the base system. S1, S3, 

and S5 resulted in 27.09%, 23.07%, and 10.74% better 

performance, as compared to the base system, since these systems 

prioritized performance optimization during scheduling. However, 

S2, and S4, degraded the performance by 1.33% and 1.30%, 

respectively, since these systems used FCFS-T, which prioritized 

lower temperature over better performance. Since S2 and S4 had a 

priori knowledge of the applications’ best temperature 

configurations, the applications were scheduled to the best-

temperature cores, which resulted in performance degradation. 

Furthermore, even though S2 had all the cache configurations, 

while S4 had a subset of configurations, both systems achieved 

similar performance for the applications; thus, the eliminated 

configurations in S4 did not affect the system’s performance.  

To extend our performance analysis, we recorded how much 

time the systems’ scheduling and tuning decisions took. Figure 3 

depicts the average number of deadline misses that occurred while 

executing the applications. The applications missed the deadline 

25% of the time in the base system, since the base system 

scheduled the applications to first available cores, and all cores 

offered the same configuration. Our analysis revealed that 

although the base system’s caches featured the largest cache size, 

and the best average case performance, the base configuration was 

not the best for all of the applications. Executing some of the 

applications (e.g., basefp) on the base configuration degraded 

performance; as a result, other applications were prevented from 

meeting their deadlines. In S1 and S3, no applications missed their 

deadlines, since both systems offered the complete design space 

and prior knowledge of the best configurations.  

Since S1 and S3 offered the complete and subsetted design 

space, respectively, the subsetted design space contained enough 

best and near-best performance configurations. However, S3, S4 

and S5 incurred deadline misses while executing the applications, 

since S3 and S4 prioritized temperature and S5 explored the 

design space during runtime and accrued runtime overhead. Since 

S2 and S4 offered the complete and subsetted design space, 

respectively, the subsetted design space contained the same best 

and near best performance configurations, while providing best 

temperature configurations. This result also suggests that even 

though execution times on S2 and S4 were similar (Figure 2), S2 

and S4 may impact the performance of a hard real-time 

performance system differently (Figure 3). 

Finally, the applications in S5, which represent our HaCS 

with TaSaT algorithm, missed the deadline on average of 7.77%. 

Since S5 had no a priori knowledge of the applications, the 

scheduling and tuning overhead accounted for the deadline misses 

of some of the applications. The 7.77% tuning time overhead will 

amortize over time and is acceptable in soft real-time systems [3]. 

Furthermore, as compared to prior work that prioritized 

performance and had prior knowledge of the applications’ best 

configurations (S3), S5 decreased performance by 16.03%, since 

S5 used multiple performance cores for an application. Although 

S5 degraded the performance, that did not necessarily translate to 

a substantial increase in applications missing deadlines and is then 

Table 1: Evaluation Systems  
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within 7.77% of an ideal system while saving 4.70% temperature 

(Section 7.2), as compared to S3.  

7.2 Temperature  

Systems S1, S2, S3, S4, and S5 reduced the temperature by 

11.34%, 23.01%, 12.42%, 23.07%, and 16.53%, respectively, as 

compared to the base system, which had an average temperature 

of 89.55o C. Since S2 and S4 prioritized temperature, these two 

systems resulted in the highest temperature savings among the 

five systems. Also, S1 and S3 resulted in less temperature savings 

than S2 and S4, since S1 and S3 systems used FCFS-P, which 

prioritized higher performance over better temperature. Since S1 

and S3 had a priori knowledge of the application’s best 

performance configurations, the applications were scheduled to 

the best-performance core, which resulted in increased average 

temperatures as compared to S2 and S4. Moreover, we observed 

that even though S2 and S4 offered the complete and subsetted 

design space, respectively, there was no impact on the 

temperature; both systems’ temperature savings were similar.  

Furthermore, we observed that S5’s temperature savings of 

16.53% was less than that of S2 and S4, since S5’s balanced 

between temperature reduction and performance, while S2 and S4 

prioritized temperature only. Additionally, compared to an ideal 

system that prioritizes temperature (S4), S5, traded off 8.64% in 

temperature savings for 11.90% performance improvement, and 

90.65% fewer missed deadlines.  

7.3 Energy  

Systems S1, S2, S3, S4, and S5 resulted in 35.10%, 25.52%, 

31.90%, 25.53%, and 22.87% energy savings, respectively, as 

compared to the base system. Although S1 and S3 prioritized 

performance, the systems reduced the execution time 

substantially, with a less substantial power increase, which 

resulted in an overall energy reduction. Overall, our approach did 

not incur any energy overheads as compared to the base system. 

8 CONCLUSION AND FUTURE WORK 
In this work we presented a thermal-aware scheduling and 

tuning (TaSaT) algorithm for reduced temperature in 

heterogeneous and configurable systems (HaCS). Our algorithm 

required no a priori knowledge of applications and can be scaled 

to any HaCS and applications. TaSaT explored the design space 

using performance order configurations and obtained 16.53% and 

22.87% temperature and energy reduction, respectively, as 

compared to a base system. The algorithm imposed tuning-time 

performance overhead of 7.77%, as compared to an ideal system 

with a priori knowledge of applications. Furthermore, our 

algorithm reduced temperature by 4.67% compared to prior work. 

Future work will extend our algorithm to multi-level cache 

optimization and multi-objective optimization of temperature, 

performance, energy, and energy-delay product (EDP).   
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Figure 3. The average number of applications’ executions that 

exceeded the deadline for all the application’s in the queue 
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