
Bit-wise and Multi-GPU Implementations of the
DNA Recombination Algorithm

Elnaz Tavakoli Yazdi, Ankur Limaye, Ali Akoglu, Tosiron Adegbija and Adam Buntzman
Department of Electrical and Computer Engineering University of Arizona, Tucson, AZ 85721

Emails: {tavakoliyazdi, ankurlimaye, akoglu, tosiron, buntzman}@email.arizona.edu

Abstract—The V(D)J recombination is the primary mech-
anism for generating a diverse repertoire of T-cell receptors
(TCRs) essential to the adaptive immune system for recognizing
a wide variety of diseases. However, modeling TCR repertoire
is computationally challenging as the total number of TCRs
to be generated and processed can exceed 1018 sequences. We
propose a bit-wise implementation of the V(D)J recombination
algorithm, which reduces the memory footprint and execution
time by factors of 4 and 2, respectively, compared to the
state-of-the-art GPU implementation. We also present a multi-
GPU implementation, experimentally identify suitable workload
partitioning strategies for both single- and multi-GPU implemen-
tations, and finally, expose the relationship between the workload
size and limited scalability offered by the algorithm on a cluster
with up to eight GPUs. We show that the bit-wise implementation
reduces the execution time from 40.5 hours to 19 hours on a
single GPU and 4.4 hours on an eight-GPU configuration.

Index Terms—DNA recombination process, Graphics Process-
ing Unit (GPU), bit-wise implementation, and multi-GPU.

I. INTRODUCTION

The adaptive immune system protects vertebrates by de-
tecting and neutralizing foreign invaders (antigens) using T-
cell receptors (TCRs), which are placed on the surface of
a T-cell [1]. A TCR recognizes an antigen by detecting the
small protein fragments that are on the surface of that antigen,
and then sends a message to the nucleus of its T-cell. This
successful recognition induces a response to eliminate the
antigens [2]. The diversity in the TCR pool increases the
chance of detecting a variety of antigens for the adaptive
immune system, which is the first step of a successful recovery
from diseases. Analysis of TCR pool (repertoire) is crucial for
understanding the functionality of a healthy immune system,
determining the nature of successful and unsuccessful immune
responses, and understanding the immune mechanism in the
presence of different diseases such as type 1 diabetes, various
cancers (blood, breast, colorectal, etc.), rheumatoid arthritis
(an autoimmune disease), and multiple sclerosis [3]. The
response of the immune system to a specific antigen often
leaves evidence in the form of repertoire sequence patterns
(signatures) that are common across individuals. Ability to
detect such patterns is critical for understanding the correlation
between the immune receptors and different diseases, and
identifying immune receptor clones that can be converted into
precision vaccines [4]–[6].

A diverse set of TCRs is required for the adaptive immune
system to detect a wide variety of antigens successfully.
The immune systems of the vertebrates achieve this diversity

through the DNA recombination process, known as the V (D)J
recombination [7]. This process involves a rearrangement of
the variable (V ), diversity (D), and joining (J) gene segments
in a combinatorial way chosen from members of each gene
family [7], [8]. The form and length of each gene segment
vary across different species, and it is more complicated in
the humans than most vertebrates. For example, there are 20
different V genes in the mice, while there are 50 different V
genes in humans. The combinations of V , D, and J gene seg-
ments of mice generate the TCR repertoire consisting of more
than 1015 sequences. Furthermore, the total number of paths
exhausted to generate all the combinations can exceed 1018

paths. Replicating the recombination process in a simulation
environment allows immunologists to test different hypothesis
on immune system response analysis. However, this simulation
requires a massive scale of data processing.

The study by Striemer et al. [9], which successfully models
the mouse TCRβ repertoire for the first time, shows that the
time scale of the TCR synthesis can be reduced to 16 days on
a single NVIDIA GTX480 GPU from an estimated execution
time of 52 weeks on a general-purpose processor. To the
best of our knowledge, this is the only work available for
parallelizing the DNA recombination algorithm. We refer to
this study as the baseline implementation for the remainder of
this paper. The primary goal of modeling the TCR repertoire
is to count the number of unique pathways that each in vivo
sequence can be generated artificially by rearranging the input
data set (V , D, J genes and n-nucleotide sequence). We aim
to investigate ways to reduce the execution time and memory
footprint of the recombination process using the mouse data
set as a reference, so that we can establish a basis for rapidly
modeling more complex systems. Towards this goal, compared
to the state-of-the-art GPU-based implementation [9], we make
the following contributions:
• Bit-wise implementation of the recombination process,

consisting of fine-grained shift, concatenation, compari-
son, and counting over the binary domain input data set.

• Multi-GPU implementation with an even workload dis-
tribution across the GPUs.

The bit-wise implementation reduces the global and con-
stant memory footprints by factors of 4 and 3.5, respectively,
compared to the baseline implementation [9]. We show that
the execution time of the baseline implementation reduces by
a factor of 2.1 with the bit-wise implementation on a single
NVIDIA Tesla P100 GPU. For the multi-GPU implementation,



Fig. 1. V (D)J recombination process showing the P-nucleotide formation with lengths: one for V –gene termini, two for left of D–gene termini, four for
the right of D–gene termini, and four for J–gene termini in step one. The example depicts the elimination of one nucleotide on the V –gene termini, three
nucleotides on both sides of the D–gene and two nucleotides on J–gene termini.

we introduce a task generation function that generates a unique
task for each thread and eliminates the communication be-
tween the GPU threads. We conduct a scalability analysis and
show that the execution time of the baseline implementation
reduces by a factor of 9.2 with the multi-GPU and bit-wise
implementation for the eight-GPU configuration.

The main hindrance to systematically developing new im-
munotherapies, new immunodiagnostics, and novel immuno-
biomarkers is the enormous magnitude (> 1018 unique
species) of the repertoire of TCR species that can be made by
the immune system. Our bit-wise and multi-GPU implemen-
tation is an important step towards a TCR in silico synthesis
model that is a practical option for selecting new cellular
immunotherapies. The proposed GPU emulation of immune
repertoire modeling brings this goal within grasp as we reduce
the time scale of the simulations from days to hours.

The rest of the paper is organized as follows: In section
II, we describe the DNA recombination algorithm from both
the biological and algorithmic perspectives and explain the
structure of the input data set. In section III, we discuss
the related work for the recombination process. We explain
the parallelization approach that is suitable for the GPU-
based implementation in section IV. We present detailed
explanations regarding the bit-wise representation and multi-
GPU optimization strategies in sections V and VI, respectively.
In section VII, we present our experimental environment
followed by our evaluation strategy and simulation results in
section VIII. Finally, we present the conclusion and future
work in section IX.

II. DNA RECOMBINATION ALGORITHM

The V (D)J recombination, as illustrated in Fig. 1, is a
specialized DNA rearrangement process critical to the adaptive
immune system. In this section, we describe the DNA recom-
bination process from biological and algorithmic perspectives
and highlight key features related to our parallelization ap-
proach.

A. Biological Perspective
The TCRs are created by recombination of the V , D,

and J gene segments. Fig. 1 illustrates the recombination
process using an example sequence formed by the V , D,
and J segments. The two rows in Step 0 represent the two
complementary DNA strands: the template strand and its
mirror image, the coding strand. As the V , D, and J segments
go through the recombination process for generating unique
sequences in search of a sequence that matches the antigen, a
diverse set of sequences are generated. We summarize the three
critical steps that contribute to this diversity in the following
paragraphs.

In the first step, the recombination activation gene, re-
combinase, cuts the DNA at the joints between the V –D
segment pairs and the D–J segment pairs. Immediately, the
template strand and the coding strand bind to each other at the
cut location. Subsequently, the Artemis exonuclease enzyme
irregularly releases circular ends to generate a palindromic
nucleotide (P-nucleotide) of variable lengths [7], [12], [15].
As shown in Fig. 1, at the beginning of Step 1, up to four
genes from the coding strand are appended to the template
strand on the right termini of the V segment, both termini of



the D segment, and the left termini of the J segment. This p-
nucleotide addition of length up to four is one of the significant
contributors to the diversity during the recombination.

In the second step, both strands of the V , D, and J
segments go through a process called chew back. The Artemis
exonuclease enzyme is involved in this chew back process too,
in which a variable number of nucleotides are eliminated from
the V , D, and J termini. As shown in Fig. 1, the chew back
happens from right to left on the V segment, left to right on
the J segment, and from both directions on the D segment.
The chew back length ranges from one nucleotide to the length
of that gene segment. This chew back process is the second
contributor to the diversity.

In the third step, the Terminal Transferase (TDT) enzyme
catalyzes the addition of n-nucleotides between the V –D and
D–J gene pairs. We consider the size n ranging between zero
and ten. This range has been proven to regenerate 99.5% of
the sequences in the in vivo data set [9]. The in vivo data set
has been built based on the samples that were sequenced on
the Roche FLX 454 platform at the UNC-Chapel Hill High
Throughput Genome Sequencing Core. The in vivo data set
consists of 101, 822 functional sequences. Finally, the DNA
ligase IV closes off the V and D termini to form V –D
junction, and the D and J termini to form D–J junction.
Compared to the first two factors contributing to the diversity,
having additional n-nucleotides between the V –D and D–J
junctions grows the combinational search space enormously.

B. Algorithmic Perspective
We refer to the V (D)J recombination as the V nDn′J re-

combination, where V , D, and J indicate the unique sequences
from each set of corresponding segments and n indicates the
set of all possible nucleotide combinations. We refer to the
generated V nDn′J sequences as the ‘in silico’ sequences.
Thus, to generate the in silico sequences, we need four inputs:
V , D, J , and the n-nucleotide (n) sequences.

The four nucleotide bases A, G, C, and T , are used to gener-
ate an n-nucleotide sequence. Thus, for a nucleotide sequence
of length m, there are 4m unique nucleotide combinations. In
the recombination process, these nucleotide sequences can be
attached on either side or on both sides of the D sequence. To
differentiate between the positions, we define the nucleotides
as n and n′. The D sequence can cut the n-nucleotide at any
position. Therefore, this complex junction-level combination
may lead to the generation of an identical sequence via
numerous ways. Our primary purpose is to count the number
of unique pathways that generate a given in vivo sequence
through the recombination process. Algorithm 1 shows the
pseudo-code for the V nDn′J recombination process with six
nested for loops. The first four loops iterate through all V ,
D, J and n sequences to form the in silico sequence. The
fifth loop iterates through all possible combinations of nDn′

sequences since the D sequence can cut the n-nucleotide at
any position. All single sequences are combined and stored in
the variable Combination through these nested loops. The last
for loop iterates through all in vivo sequences and compares

Input : V , J , D and n-nucleotide sequences
Output : Number of times each unique in vivo

sequence is generated (Counter)
1 for i = 0 to number of V sequences do
2 for j = 0 to number of J sequences do
3 for k = 0 to number of D sequences do
4 for m = 0 to number of n-nucleotide

sequences do
5 for p =n-nucleotidelength to 0 do

nDn′ =
CombineString(n[m][p], D[k], n[m][p−
n-nucleotidelength])

Combination =
CombineString(V [i], nDn′, J [j]);

6 for n = 0 to number of in vivo
sequences do

if Combination == invivo[n]
then

Counter[n]= Counter[n]+1;
end

end
end

end
end

end
end

Algorithm 1: V(D)J Recombination Algorithm

them against the in silico sequence. If a generated sequence
is found in the current in vivo set, we increment the counter
value for that sequence. This process continues until the entire
combinational search space has been exhausted.

C. Input data sets

The input data sets consist of the V , D, J , and in vivo
genes. In C57BL/6 mice, there are 20 basic V β genes, 2 Dβ
genes, and 12 basic Jβ genes. However, all possible patterns
such as chew back and palindromic forms for each of the
functional V , D, and J gene sequences need to participate in
the recombination process for modeling the TCR repertoire, as
illustrated in Fig. 1. For example, the first basic V gene has a
length of 14. For the V gene, up to four genes can be appended
to the right end of the V gene from its mirror strand (step one,
indicated as +4, +3, +2, +1); therefore the actual length of this
gene can be up to 18. This process would generate 18 different
sequences based on the chew back process (step two). The D
and J gene data sets go through a similar process, as explained
in section II-A; therefore, each V , D and J gene data set
consists of several forms of sequences with different lengths.
Each V , D, J , and in vivo sequence is generated using four
bases (A, G, T , and C). The in vivo data set of C57BL/6 mice
involves 101, 822 sequences, which are grouped based on the
specific V –J pair used to generate that sequence. There is no
other recombination path for an in vivo sequence other than
the specific V –J pair that generates that specific sequence.
We exploit this key feature to reduce the search space within
the in vivo data set and hence reduce the execution time.



III. RELATED WORK

The massive scale of data processing in TCR synthesis poses
as a barrier for immunologists, which has led them to use
computationally tractable statistical methods with a trade-off
in accuracy. Earlier works on modeling the TCRβ repertoire
in mice [16]–[19], commonly utilized a method that randomly
sampled a subset of the TCR pool at a scale of 106 among 1015

recombinants, which has been shown to bias the simulations
[21]. Our ability to evaluate all possible pathways allows us
to investigate TCRs that would have the highest probability
of participating in immune responses. The basis of our GPU
implementation is the Convergent Recombination Hypothesis
[20], and its functionality is verified with a one to one output
match to the sequential algorithm [21].

The study by Striemer et al. [9] is the first work, which
successfully modeled the entire TCRβ repertoire for the
mouse dataset using a single GTX480 NVIDIA GPU. Their
parallelization strategy is based on n-nucleotide level, where
each thread is assigned a unique n-nucleotide sequence to
apply the recombination process on that unique sequence.
This approach ensured even workload distribution among
the threads due to two reasons: First, each thread operated
on a unique n-nucleotide to generate all possible in silico
sequences using the same V , D, and J genes. Hence, the
total number of recombination pathways were equal among
all active threads. Second, since each thread performed the
recombination process on the same V and J genes, the total
number of in vivo sequences for the comparison process was
the same for all active threads.

IV. PARALLELIZATION STRATEGY

In this section, we study the alternative parallelization
approaches for the GPU-based implementation of the V (D)J
recombination process. We evaluate each strategy by answer-
ing the following questions: 1) What is the suitable work-
load distribution for the parallelization strategy? 2) Does the
proposed parallelization strategy result in an even workload
distribution among the threads?

Since each V –J pair generates a specific sequence, an
alternative parallelization approach would be the V –J level
parallelism, i.e., assigning one V gene, one J gene, and both
D genes to each thread to perform the recombination process.
In this assignment, each thread needs to cover all possible n-
nucleotide lengths (zero to ten, as specified in Section II-A)
along with all possible combinations of four bases for any
given n-nucleotide length. However, since there are 20 V genes
and 12 J genes, this implementation would require only 240
threads and result in significantly low thread utilization on
the GPU. A finer granularity of V –J level parallelism can be
realized by assigning one form (refer to the chew back and
palindromic forms of each input gene) of V gene, one form of
J gene, and both D genes to each thread. For this approach,
102, 446 threads are required as there are 362 V genes and
283 J genes in the chew back and palindromic forms for the
mice data set. This finer parallelization granularity occupies
90% of the threads on the target P100 series GPU.

0 50 100 150 200 250
VJ Pair Index

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Th
e 

N
or

m
al

iz
ed

 N
um

be
r o

f 
In

 V
iv

o
 S

eq
ue

nc
es

Fig. 2. Normalized distribution of in vivo sequences across 240 V –J pairs.

To evaluate the workload distribution of the fine-grained
V –J level parallelization approach, we need to consider the
workload for both combination and comparison steps. We
refer to the combination step as the process of generating all
possible in silico sequences for a given input data, and the
comparison step as the process of comparing the generated
sequences with in vivo sequences. The workload distribution
for the combination step is even since each thread is assigned
one form of V gene, one form of J gene, and both D genes. To
evaluate the workload distribution of the comparison step, we
provide a normalized distribution of in vivo sequences across
240 V –J pairs in Fig. 2. As shown, the total number of in
vivo sequences is not evenly distributed across different V –
J pairs, which directly affects the workload of each thread.
Since, each thread needs to compare the generated in silico
sequences against every in vivo sequence in the corresponding
V –J pair, the V –J based assignment results in an uneven
workload distribution among the GPU threads.

We evaluate the workload per thread for the combination
steps of both approaches (n-nucleotide [9] and V –J methods)
to decide which parallelization approach performs better in
terms of the execution time. In the V –J level parallelism,
each thread generates in silico sequences for all possible forms
of n-nucleotide for lengths of zero to ten. A single thread
needs to generate 706, 042, 015 in silico sequences e process
as there are 1, 381, 717 unique n-nucleotide and 505 D gene
sequences. In the n-nucleotide-based assignment, each thread
generates 51, 735, 230 in silico sequences since there are 362
V genes, 283 J genes, and 505 D genes. As a result, the
workload per thread in V –J level parallelism is almost 13×
higher than the n-nucleotide level parallelization approach.
Moreover, the n-nucleotide level parallelism offers a higher
degree of data-level concurrency and allows representing the
TCR synthesis process with up to 410 independent threads for
the n-nucleotide length of ten, whereas V –J level parallelism
allows launching only 102, 446 threads. Consequently, the n-
nucleotide-based approach offers better parallelization oppor-
tunity for the comparison process. Indeed, all active threads
can compare their in silico sequences with the fetched in vivo
sequence, which contributes to reducing the global memory
access to one among all active threads for a specific in vivo
sequence. We present our approach to bit-wise and multi-
GPU implementations based on the existent n-nucleotide level
parallelism in the following sections.



V. BIT-WISE REPRESENTATION
A. Input data set conversion

The main objective of using bit-wise representation for
mapping the recombination process is to reduce the memory
footprint and execution time. We represent each base with two
bits (A=00, C=01, T=10, G=11) and pack a sequence of four
bases into a single byte. For a sequence (V , D, and J) whose
length is not divisible by four, we pad zeros to the end of the
sequence to make the length of the binary string a multiple of
eight (one byte). For example, consider a V sequence having
a length of ten characters (20 bits). We append four zeros to
the end of the V sequence. As a result, the new V sequence
has 24 bits and requires three bytes to store the data in the
memory. We refer to the last byte of this V sequence, which
has four zero-padded bits as the padded bits. We refer to the
first two bytes containing the original bits of the V sequence
as full bytes. We also store the length of each gene sequence
along with the actual gene to distinguish between the padded
zeros and the base A. The length of the gene is encoded into
the first five bits of each gene sequence.

The maximum length of in vivo sequences is 60 characters.
In the baseline implementation [9], the in vivo sequences are
padded with zeros to make the length of all sequences equal
to 64 bytes. This guarantees that each sequence allocation
matches the number of threads in two warps, ensuring the
memory alignment to realize coalesced memory accesses. In
the bit-wise representation, we follow the same encoding
procedure with padding and represent each in vivo sequence
with a fixed size of 16 bytes.

In the baseline implementation [9], all possible forms of
V , D, and J sequences are stored in the constant memory to
take advantage of the temporal locality it offers. However, the
in vivo sequences are stored into the GPU’s global memory
as there are too many in vivo sequences (> 105) to fit into
the constant memory. The bit-wise representation allows us to
store all the input data sets in constant memory alone, without
having to resort to the global memory.
B. GPU Kernel

For the n-nucleotide level parallelism, the total number of
threads is set to the total possible combinations for a given
n-nucleotide sequence: 4m, where m is the length of the
n-nucleotide sequence. In this case, all active threads can
fetch the same input data (V , D, J , and in vivo) and each
thread can apply the recombination process over its assigned
n-nucleotide. This approach reduces the number of memory
accesses (global or constant) for a specific gene sequence to
one among all active threads.

As discussed in section IV, the in vivo sequences are
partitioned into 240 groups based on the V and J genes used
to generate those sequences. The baseline implementation uses
this feature to pare down the comparison search space [9]. The
in silico sequences are compared only with the corresponding
portion of the in vivo data set instead of the entire data set.
We also use this feature in our implementation. Therefore, our
GPU kernel, as illustrated in Algorithm 2, starts its execution
by using V and J gene indexes to determine how many and

Input : V , J , D and in vivo sequences
Output : Number of times each unique in vivo

sequence is generated (Counter)
1 for i = 0 to number of in vivo sequences do

if threadIdx.x < 16 then
SharedInVivo[threadIdx.x] = GlobalInVivo
[i ∗ 16 + threadIdx.x]

end
2 for j = 0 to number of V sequences do

if V[j] == SharedInVivo[lengthV [j]] then
3 for k = 0 to number of D sequences do
4 for p =n-nucleotidelength to 0 do

nDn′ = (n[p], D[k], n[p′])
if (V[j], nDn′) ==

SharedInVivo[lengthV [j]+n] then
5 for m = 0 to number of J

sequences do
if (V [j], nDn′, J [m]) ==
SharedInV ivo then

Counter[i]= Counter[i]+1;
end

end
end

end
end

end
end

end
Algorithm 2: Pseudo-code for GPU Kernel

which in vivo sequences will be used for the recombination
process. Then each thread is assigned a unique n-nucleotide
sequence based on the length of n sequence, thread ID, and
block ID. We propose a function that generates a unique binary
n-nucleotide sequence for each thread to guarantee that there
is no duplicate n-nucleotide sequence. Algorithm 3 shows the
pseudo-code for the task generator function, which is used to
generate a unique binary n-nucleotide sequence.

As shown in Algorithm 3, the task generation for each
thread involves two nested for loops. The first for loop iterates
through each byte of an n-nucleotide, one byte at a time. An

Input : threadId, blockId, and blockDim
Output : n-nucleotide sequence
base[4] = {00, 01, 10, 11}
Gindex = threadIdx.x+ blockIdx.x ∗ blockDim.x

1 for i = 0 to 3 do
2 for j = 0 to 9 increment by 2 do

temp =
base [{Gindex +Gindex/4

4∗i+((j−2)/2)}%4]�
(8− j)

n-nucleotide[i] |= temp
end

end
Algorithm 3: Pseudo-code for the task generator function
that generates a unique n-nucleotide sequence for each thread
based on its thread and block indexes.



Fig. 3. Brief view of the comparison process for the bit-wise version of V (D)J recombination process.

n-nucleotide is represented as a three-byte package since it
can be up to 10 characters (20 bits) long. The second for loop
iterates through the four bases in each byte of the n-nucleotide.
When these two for loops are completely unrolled, a unique
n-nucleotide of the given length n is assigned to each thread of
the GPU. After assigning a unique task to each GPU thread,
the recombination process begins on the GPU.

There are four main loops in the GPU kernel, as shown in
Algorithm 2. The first for loop iterates through each in vivo
sequence. Upon entering this loop, threads within the block
read a single in vivo sequence from the global memory into
the shared memory. Since all the threads within a block share
the in vivo sequence, we use synchthreads() to ensure that all
threads wait until the memory transaction is completed.

The second for loop iterates through each V sequence in
the current V gene set. All the threads within a block read the
same V sequence from the constant memory while working on
a different n-nucleotide sequence. We compare the V sequence
against the in vivo sequence. To accomplish this, we calculate
the total number of full bytes and padded bits for a given
V sequence. Then, we iterate through each full byte of the
V sequence and compare it with in vivo sequence one byte
at a time. If there is a mismatch, we terminate the current
comparison for all threads and read a new in vivo sequence
from the global memory. Otherwise, we continue to compare
the last byte of the V sequence with the pertinent byte of in
vivo sequence. To accomplish this, we shift the corresponding
byte of in vivo sequence to the right by the total number of
padded bits. Accordingly, we shift that byte to the left by the
same amount. We refer to this process as an alignment process.
Finally, we compare the last byte of the V sequence with the
aligned byte of in vivo sequence. This procedure is shown in
Step 1 of Fig. 3. If the V sequence completely matches with
the in vivo sequence, we proceed to the next loop. Otherwise,
we read a new in vivo sequence and repeat the process.

The third for loop iterates through each D sequence. There
is a difference between this loop (D-loop) and the previous
loop (V -loop). The D sequence can cut the n-nucleotide
sequence at any position, as explained in section II. Therefore,

each thread generates all possible combinations of nDn′

sequence for a given D and n-nucleotide sequences. Then,
each thread compares its nDn′ sequence with in vivo sequence
from the last character that was found to be identical to the V
sequence in the previous loop. This is accomplished by shifting
the in vivo sequence to the left by the length of the V sequence.
The comparison procedure is shown in Step 2 of Fig. 3, and
it is same as the process explained for the V -loop. If there
is a mismatch between the in silico and in vivo sequences,
the thread terminates the current comparison, generates a new
combination for the nDn′ sequence and repeats the process.
Otherwise, we continue to the next loop. It should be noted
that, if a thread has generated all possible forms of the nDn′

sequence for the given D and n-nucleotide sequences, we load
a new D sequence and repeat the process.

The final for loop iterates through each J sequence. In this
loop, we first calculate the length of V nDn′J sequence and
compare it with the length of in vivo sequence. If the length of
in silico and in vivo sequences are not equal, we terminate the
current comparison and load a new J sequence. Otherwise,
we compare the J sequence with the latter portion of in vivo
sequence, as shown in Step 3 of Fig. 3. If a sequence generated
by a thread matches with the in vivo sequence, then that thread
increments the local counter stored in a register. A thread
may generate the targeted in vivo sequence through multiple
recombination paths. After all the threads complete their n-
nucleotide level workload, the counter value stored in the
shared memory for that in-vivo sequence is updated through
reduction. At the end of this loop, the reduction determines
the total number of times an in vivo sequence is generated
artificially. Finally, the first thread within the block updates
the counter value in the global memory.

VI. MULTI-GPU IMPLEMENTATION

In n-nucleotide level parallelization, threads of a single
GPU are assigned a unique n-nucleotide sequence while they
work on the same V and J gene. From the multi-GPU
implementation perspective, we define a global index for each
thread based on its thread, block, and GPU indexes along with



TABLE I
P100 GPU STREAMING MULTIPROCESSOR FEATURES

Parameter Value
Compute Capability 6.0

Streaming Multiprocessors (SM) 56

Threads per Warp 32

Maximum Thread Block Size 1024

Maximum Thread Blocks per SM 32

Maximum Warps per SM 64

Maximum Threads per SM 2048

Maximum 32-bit Registers per SM 65536

Maximum Registers per Block 65536

Maximum Registers per Thread 255

Maximum Shared Memory Size per SM 64 KB
Constant Memory Size 64 KB

the GPU dimension as shown in (1) to generate a unique n-
nucleotide sequence for each active thread and utilize a task
generator function that is presented in Algorithm 3.

For the n-nucleotide-based parallelization approach, GPU
threads work on the same V –J pair, so they require accessing
the same in vivo sequences. Therefore, we replicate the input
data set and store it in the constant and global memories of
each GPU to avoid data transfer between the GPUs.

Gindex = threadIdx + (blockIdx× blockDim)

+ (GPUIdx× GPUDim) (1)

In order to distribute the workload evenly among GPUs,
we first calculate the total number of required threads, which
is 4m, where m is the length of the n-nucleotide sequence.
Then, we calculate the total number of required blocks based
on the thread-block configuration (refer to Fig. 4). Finally, we
calculate the total number of blocks in each GPU using (2).
The -1 in the nominator and +1 in the denominator are used for
a configuration with an odd number of GPUs. For example, we
need 262, 144 (49) threads for an n-nucleotide length of nine.
As we present in section VIII, the configuration having 2048
blocks and 128 threads per block is the desired configuration
on a single GPU. For a two-GPU implementation, based on
(2), each GPU is assigned 1024 blocks with 128 threads
in each block. This assignment ensures that the workload
distribution among the GPUs and GPU threads are equal.

#blocks =
#total threads− 1

#threads per block×#GPUs + 1
(2)

We perform a reduction process (all-reduced) to obtain the
final result from multiple GPUs. This process accumulates all
the results at the root node and copies them to the global
memory of the host. We note that the size of all-reduce
depends on the total number of in vivo sequences for a given
V –J pair. The largest size of V –J pair contains 3249 in vivo
sequences; hence, we need to reduce 6 KB data at most.

VII. EXPERIMENTAL SETUP

We conducted our experiments on a cluster consisting of
NVIDIA P100 GPU accelerator [14]. The system is composed
of Intel Haswell V3 28 core processor nodes, featuring 192
GB RAM per node, in which 8 of them are configured as

Fig. 4. Normalized performance over four threads per block configurations
(32, 64, 128, 256) for each n-nucleotide length ranging from four to ten.

accelerator nodes with a single NVIDIA P100 GPU in each
node. The cluster uses FDR Infiniband for node to node
interconnect, and 10 Gb Ethernet for the node to storage
interconnect. Table I summarizes the GPU parameters. The
P100 GPU has 56 streaming multiprocessors (SM), each
limited to having up to 2048 threads, 32 thread blocks, and
64 KB shared memory. For the bit-wise implementation of the
V (D)J recombination algorithm with n-level granularity, each
thread utilizes 48 registers, while there are 65, 536 registers
available per SM. Therefore, the maximum number of active
threads per SM is 1365 due to the register usage constraint.

Also, it should be noted that the shared memory usage is not
the limiting factor for the active threads per SM. As discussed
in section V, the shared memory usage per block is 16 bytes
plus one byte per thread for the counter value storage. Thus,
if we consider a block size of 128 threads, only 134 bytes
of shared memory is required per thread block, allowing for
489 thread blocks per SM. Given that for the n-nucleotide
length of nine with 2048 blocks and 128 threads per block
configuration, there are only 10 active threads per SM due
to the register usage constraint. As a result, we do not reach
the limiting factor (489 thread blocks per SM) for the shared
memory usage.

VIII. EXPERIMENTAL RESULTS

We start our analysis by determining the best thread-block
configuration for different n-nucleotide lengths on a single
GPU. We then compare the execution times of our bit-wise
implementation with the baseline implementation [9] on the
same experimental setup for each n-nucleotide length. Finally,
we present the execution time analysis for the multi-GPU
implementation with up to eight nodes.

A. Thread Block Configuration Analysis
Fig. 4 shows the normalized execution time results for 32,

64, 128, and 256 threads per block configuration for each n-
nucleotide length ranging from four to ten. For each length
of the n-nucleotide sequence, we use the shortest execution
time to normalize the execution times of other configurations.
Therefore, a normalized value of 1 represents the best perfor-
mance for a given length. We did not consider the n-nucleotide
lengths of zero to three as the number of threads are not
sufficient to utilize multiple warps executing concurrently. As
shown in Fig. 4, the differences between the performance
of various thread block configurations are negligible for the
lengths of four to six since the workload amount not sufficient



TABLE II
THREAD AND WARP UTILIZATION FOR AN N-NUCLEOTIDE LENGTH OF
SEVEN FOR THREE THREAD BLOCK CONFIGURATIONS. THE VALUES IN

PARENTHESIS INDICATE THE PERCENTAGE OF UTILIZATION

Thread block Threads per SM Thread blocks Warp
configuration per SM

64 1344 (65.0%) 21 (65.00%) 42 (65.0%)
128 1280 (62.5%) 10 (31.25%) 40 (62.5%)
256 1280 (62.5%) 5 (15.62%) 40 (62.5%)

to utilize all the available multiprocessors of the P100 GPU.
For the n-nucleotide lengths of less than seven, the thread
utilization is below 14% as the total number of required
threads is less than 214, while 114, 688 threads are available
in the P100. However, for an n-nucleotide length of greater
than seven, the workload increases such that more than 60%
of the available GPU threads are utilized.

There is a 20% performance degradation for the n-
nucleotide length of seven for the 256 threads per block config-
uration compared to other configurations. For the n-nucleotide
length of seven, the recombination process completes in one
iteration for all thread block configurations since the total
number of required threads is 47 (16, 384), which is less than
the total number of available threads in a single P100 GPU.
The lower thread block utilization per SM is the root cause
for this performance loss, as shown in Table II.

For the n-nucleotide length of eight, if 64 threads per block
are employed, we can have maximum 1, 365 active threads
per SM based on the register usage constraint, while based on
the thread block configuration, we can have a maximum of
21 blocks with 64 threads. This results in a total of 75, 264
(21×64×56) threads, which is greater than the required num-
ber of threads for an n-nucleotide length of eight. Therefore,
the recombination process completes in one iteration for 64
threads per block configuration, while it can not be completed
in one iteration with 32 threads per block. The difference
between the performance of 64, 128, and 256 threads per block
configurations is negligible with normalized values of 1, 0.961,
and 0.95, respectively, as the recombination process completes
in one iteration for all the three configurations.

For the n-nucleotide length of nine, the total number of
required threads is 49 (262, 144), which is greater than avail-
able threads in a single GPU. This will result in completing
the recombination process in more than one iteration. For
the 64, 128, and 256 threads per block configurations, four
iterations are required to complete the recombination process.
As a result, there is a negligible difference between their
performances with normalized values of 0.984, 1, and 0.994,
respectively. For the n-nucleotide length of ten, for all threads
per block configurations, the GPU is fully utilized, and execu-
tion takes the same number of iterations. Thus, we observe a
negligible difference in terms of execution time among them.

In summary, based on Fig. 4, we set 64 threads per block
configuration for the n-nucleotide lengths four to eight, and
128 for lengths nine and ten. In the following subsection, we
evaluate the performance of bit-wise and multi-GPU imple-
mentations compared to the baseline implementation.

TABLE III
THE MEMORY FOOTPRINT FOR THE BIT-WISE IMPLEMENTATION IN

COMPARISON WITH THE BASELINE APPROACH

Gene Memory Baseline [9] Bit-wise Reduction
(byte) (byte) (%)

V Constant 1448 425 70.65

J Constant 3107 913 70.61

D Constant 3210 908 71.71

in vivo Global 6517568 1629392 75.00

TABLE IV
EXECUTION TIME (IN MINUTES) ON A SINGLE GPU: BASELINE VS.

BIT-WISE IMPLEMENTATIONS

N-length Baseline Bit-wise
0 8.36 9.16

1 10.17 9.82

2 12.57 10.62

3 15.38 11.40

4 18.47 11.95

5 21.73 13.04

6 25.67 14.17

7 32.09 16.71

8 102.03 50.30

9 426.90 197.24

10 1755.35 798.20

Total 2428.72 1142.61

B. Bit-wise Simulation Results
In order to evaluate the bit-wise implementation, we first

executed the baseline implementation on a single Tesla P100
GPU. We use the timing results and memory footprint of the
baseline implementation as the reference points for perfor-
mance comparison.

Table III shows the total amount of required memory for V ,
D, and J genes that are stored in the constant memory, and in
vivo data set stored in the global memory by the baseline and
bit-wise implementations. As stated in Table III, the memory
footprint for constant memory reduces by a factor of 3.4
compared to the baseline implementation, while the required
global memory reduces by a factor of 4.

Table IV shows the execution times for the n-nucleotide
lengths from zero to ten for the baseline and bit-wise im-
plementations. The last row shows that the total execution
time for the recombination process is 2.1× faster with the
bit-wise implementation compared to the baseline implemen-
tation. Note that the execution time for the conversion process
is 29 seconds. We include this one time cost across all n-
nucleotide lengths in the total execution time. For the n-
nucleotide length of eight, we utilize 87.5% of the available
SMs on a single GPU with a thread block configuration of
64 (shortest execution time). After the n-nucleotide length of
eight, the execution time increases by about a factor of 4 for
each increment of n-nucleotide length since the SMs become
fully utilized and the execution turns into an iterative flow.

C. Multi-GPU Simulation Results
Table V shows the execution time of the multi-GPU version

of the bit-wise implementation for each n-nucleotide length.
We ran experiments by using up to eight GPUs to evaluate the



TABLE V
EXECUTION TIME IN MINUTES FOR EACH N-NUCLEOTIDE LENGTH (0 TO 10) WITH RESPECT TO THE NUMBER OF GPUS (1 TO 8) FOR THE BIT-WISE

IMPLEMENTATION

N-length 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs 7 GPUs 8 GPUs
0 9.16 9.71 9.76 9.57 9.57 9.57 9.58 9.57

1 9.82 10.39 10.45 10.25 10.25 10.26 10.26 10.26

2 10.62 11.17 11.23 11.03 11.04 11.04 11.03 11.04

3 11.40 11.96 12.03 11.82 11.83 11.83 11.83 11.83

4 11.95 12.77 12.85 12.60 12.61 12.60 12.61 12.60

5 13.04 13.66 13.72 13.51 13.51 13.49 13.49 13.45

6 14.17 14.82 14.87 14.39 14.38 14.38 14.37 14.36

7 16.71 17.09 16.14 15.91 15.80 15.76 15.74 15.71

8 50.30 28.37 23.25 19.40 18.10 18.05 18.03 18.00

9 197.24 113.34 82.48 59.08 47.07 40.70 34.84 29.18

10 798.20 456.21 301.66 231.85 185.79 159.96 140.10 116.70

Total 1142.61 699.49 508.44 409.41 349.95 317.64 291.88 262.70

trends in execution time improvement with respect to change
in the number of GPUs.

The key observation from Table V is that the execution
time increases slightly if multiple GPUs are utilized for n-
nucleotide lengths that are less than eight. The reason behind
this observation is the fact that the P100 GPU is over-
provisioned; the total number of required threads for any n-
nucleotide length less than eight are less than the maximum
2048×56 (57, 344) active threads. Moreover, the extra reduc-
tion step during the multi-GPU execution introduces a slight
execution time overhead. For example, we notice this overhead
with the two-GPU implementation where execution time is
higher compared to the single GPU implementation for the
n-nucleotide lengths of up to seven. The reduction overhead
is compensated for larger n-nucleotide lengths as we observe
smaller execution times as we increase the number of GPUs.

We observe a reduction in the execution time with multiple
GPUs for n-nucleotide lengths greater than seven. This hap-
pens because a single GPU is almost fully utilized at 87.5%
for an n-nucleotide length of more than seven, as explained in
section VIII-B. Since the required number of threads exceed
the active thread count per GPU, we observe the benefit of
the multi-GPU implementation for n-nucleotide lengths of
eight or more. For these lengths, we expect to observe a
relatively linear reduction in the execution time for a given n-
nucleotide length as we increase the number GPUs. However,
for the n-nucleotide length of eight, the simulation results
show a saturating trend in execution time reduction where
adding another GPU resource not reduce the execution time
beyond four GPUs. For the n-nucleotide length of nine, the
required number of threads is 49 (262, 144), which is more
than the available threads in a single P100 GPU. Based on the
register resource constraint, the recombination process can be
completed in four iterations (ceil(49/1365×56)) using a single
GPU. In this case, there are 32, 824 active threads in the last
iteration utilizing only 29% of the GPU threads. Employing
two GPUs results in completing the process in two iterations,
with 54, 632 threads in the last iteration. In this case, during
the last iteration, we are only utilizing 47% of the threads on
each GPU. Therefore, we do not observe a 2× speed up with
two GPUs. Utilizing four GPUs for the n-nucleotide length

of nine results in completing the process in one iteration with
the thread utilization for each GPU being 85.7%. Beyond this
point, we observe a linear reduction in execution time with
respect to an increase in the number of GPUs.

For the n-nucleotide length of ten, the required number
of threads is 410 (1, 048, 576). The recombination process is
completed in 14 iterations (ceil(410/1365×56)) using a single
GPU while there are 54, 856 active threads in the last iteration
(47% GPU thread utilization). However, employing two GPUs
results in completing the process in 7 iterations while the GPU
thread utilization is at 57% for each GPU in the last iteration.
Using three GPUs results in completing the recombination
process in 5 iterations while the GPU thread utilization is
at 38.2% in the last iteration. When we employ four GPUs,
iteration count becomes 4 while each GPU is at 28% thread
utilization in their last iteration. For the configurations with
two to four GPUs, the underutilization of the threads during
the last iteration is the root cause for not observing a linear
reduction in the execution time with respect to the increase
in GPU count. However, beyond the four GPUs configuration,
we observe an almost linear reduction in execution time.

For the single GPU version, in the section VIII-B, we
showed that execution time increased by about a factor of
4 at each increment of the n-nucleotide length. Since we
distribute the workload equally across the GPUs, we observe a
similar trend for the multi-GPU implementation. For example,
as shown in Table V, the execution time using two GPUs
for the n-nucleotide length of nine is about 4× the execution
time for the n-nucleotide length of eight. We observe a factor
of about 4 consistently as we increase the length from nine
to ten for all GPU configurations. Furthermore, we should
expect the similar execution times for two consecutive n-
nucleotide lengths, while using one GPU for the first one
and using four GPUs for the second one. As highlighted in
Table V, the execution time for the n-nucleotide length of nine
is 197 minutes for a single GPU. However, we observe that
execution time as 231 minutes for n-nucleotide of ten with
four GPUs. We identify three factors for this discrepancy. The
first factor is the overhead of the reduction process with the
increase in the number of GPUs that was explained earlier
in this section. The second factor is the difference between



the total number of nDn′ combinations, which indicates the
number of different cuts that can be applied by a D sequence.
As stated in Section II, an n-nucleotide sequence can be cut
by a D sequence at any position, and each thread needs to
generate all possible combinations of D with an n-nucleotide
sequence. As the length of n-nucleotide increases by one, the
total possible combinations of nDn′ increases by one for the
given D and n-nucleotide sequences. We note that an extra
sequence needs to be combined with all possible forms of V
and J gene sequences. The third factor is the variation in the
number of times each thread finds a match in the database
or terminates early. Similarly, the difference in execution time
reduces to around 9 minutes between n-nucleotide length eight
with a single GPU and n-nucleotide length of nine with four
GPUs. This discrepancy is about 2.6 minutes for the length
pair of seven and eight with one and four GPUs respectively.
We also attribute this discrepancy in reduction trend to the
three factors listed above.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a bit-wise implementation of
the V (D)J recombination algorithm, which reduces the con-
stant memory and global memory footprint by factors of
3.4× and 4×, respectively. On a single GPU, the bit-wise
implementation reduces the total execution time by a factor
of 2.1× compared to the baseline implementation. We then
present the multi-GPU version of the bit-wise implementation
and conduct a scalability analysis. We show that beyond
n-nucleotide lengths of eight, we observe a reduction in
execution time with the increase in the number of GPUs
since we fully occupy the thread blocks on a single GPU.
As we transition from mouse data set to human data set,
we expect the time scale of the experiments to increase by
three orders of magnitude. In this scale, the ability to reduce
the simulation time from 40.5 hours to 19 hours on a single
GPU and to 4.4 hours on an eight-GPUs system for mouse
data set is a significant gain that will allow us to count the
number of unique pathways a TCR sequence can be generated,
and conduct statistical analysis to correlate those frequently
generated TCR sequences to certain diseases much faster than
the baseline version. We should also mention that as we move
from the mouse to human data set, the number of V , D,
J genes along with the in vivo sequences increases. More
importantly, the length of n-nucleotide is expected to grow up
to 14 [4] to be able to model the entire TCR repertoire. Our
bit-wise and multi-GPU implementations enabled with the n-
level parallelization approach is still applicable to the human
data set, with increased workloads per thread due to larger
combinatorial search space for longer n-nucleotide lengths.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation (NSF) research project under award num-
ber CNS-1624668.

REFERENCES
[1] M. Gellert, “ V(D)J Recombination: RAG Proteins, Repair Factors, and

Regulation,” Annual Review of Biochemistry, vol. 71, pp. 101–132, July
2002.

[2] M. M. Davis, J. J. Boniface, Z. Reich, D. Lyons, J. Hampl, B. Arden, and
Y. Chien,“ Ligand recognition by αβ T cell receptors,” Annual Review
of Immunology, vol. 16, pp. 523–544, April 1998.

[3] Y. Ping, C. Liu, and Y. Zhang,“ T–cell receptor–engineered T cells for
cancer treatment: current status and future direction,” Protein and Cell
Journal, vol. 9, pp. 254–266, March 2018.

[4] B. Vincent, A. Buntzman, B. Hopson, C. McEwen, L. Cowell, A.
Akoglu, H. Zhang, and J. Frelinger, “iWAS–A novel approach to
analyzing next generation sequence data for immunology,” Cellular
Immunology, vol. 299, pp. 6–13, January 2016.

[5] R. M. Welsh, J. W. Che, M. A. Brehm, and L. K. Selin, “Heterologous
immunity between viruses,” in Immunological Reviews Journal, pp.244–
266, April 2010.

[6] G. Du, C. Y. Chen, Y. Shen, L. Qiu, D. Huang, R. Wang, and Z. W.
Chen, “TCR repertoire, clonal dominance, and pulmonary trafficking of
mycobacterium-specific CD4+ and CD8+ T effector cells in immunity
against tuberculosis,” Journal of Immunology, vol. 185, pp. 3940–3947,
October 2010.

[7] D. G. Schatz, and Y. Ji, “Recombination centers and the orchestration
of V(D)J recombination,” Nature Reviews Immunology, vol. 11, No. 4,
pp. 251–263, April 2011.

[8] J. MansillaSoto, and P. Cortes,“V(D)J recombination: artemis and its in
vivo role in hairpin opening,” The Journal of Experimental Medicine,
vol. 197, no. 5, pp. 543–547, April 2003.

[9] G. Striemer, H. Krovi, A. Akoglu, B. Vincent, B. Hopson, J. Frelinger,
and A. Buntzman, “Overcoming the limitations posed by TCRβ reper-
toire modeling through a GPU-Based in-silico DNA recombination
algorithm,” in Parallel and Distributed Processing Symposium, pp. 231–
240, May 2014.

[10] NVIDIA, “NVIDIA CUDA C programming guide,” 2018.
[11] M. M. Davis, and P. J. Bjorkman, “T-Cell Antigen Receptor Genes and

T-Cell Recognition,” Nature, vol. 334, pp. 395–402 October 1988.
[12] A. Zapata, and C. Amemiya, “Phylogeny of lower vertebrates and

their immunological structures,” Current Topics in Microbiology and
Immunology, vol. 248, pp. 67–107, October 2000.

[13] M. Pedemonte, E. Alba, and F. Luna, “Bit-wise operations for GPU
implementation of genetic algorithms,” The Proceeding on Genetic and
evolutionary computation, pp. 439–446, July 2011.

[14] NVIDIA, “TESLA P100 PCIe gpu accelerator,”
http://images.nvidia.com/content/pdf/tesla/NV-tesla-p100-pcie-PB-
08248-001-v01.pdf/, 2016.

[15] L. MR, “Site-specific recombination in the immune system,” The Journal
of the Federation of American Societies for Experimental Biology, vol.
5, pp. 2934–2944, November 1991.

[16] V. Venturi, H. Chin, D. Price, D. Douek, and M. Davenport, “The role of
production frequency in the sharing of simian immunodeficiency virus-
specific CD8+ TCRs between macaques,” Journal of Immunology, vol.
181, no. 4, pp. 2597–2609, May 2008.

[17] B. D. Rudd, V. Venturi, M. P. Davenport, and J. Nikolich-Zugich,
“Evolution of the antigen-specific CD8+ TCR repertoire across the life
span: evidence for clonal homogenization of the old TCR repertoire,”
Journal of Immunology, vol. 186, no.4 pp. 2056–2064, March 2011.

[18] M. V. Pogorelyy, A. A. Minervina, D. M. Chudakov, I. Z. Mamedov,
Y. B. Lebedev, T. Mora, and A. M. Walczak, “Method for identification
of condition-associated public antigen receptor sequences,” Journal of
Elife, vol. 7, no. 13, March 2018.

[19] E. Yuval, S. Zachary, C. Curtis, G. Mora, Thierry, and W. Aleksandra,
“Predicting the spectrum of TCR repertoire sharing with a data-driven
model of recombination,” Immunology Reviews, vol. 284, no. 1, pp.167–
179, July 2018.

[20] V. Venturi, K. Kedzierska, D. A. Price, P. C. Doherty, D. C. Douek, S. J.
Turner, and M. P. Davenport, “Sharing of T Cell Receptors in Antigen
Specific Responses is Driven by Convergent Recombination ,” National
Academy of Sciences, vol. 103, no. 49, pp. 18691–18696, April 2006.

[21] M. F. Quigley, H. Y. Greenaway, V. Venturi, R. Lindsay, K. M.
Quinn, R. A. Seder, D. C. Douek, M. P. Davenport, and D. A. Price,
“Convergent Recombination Shapes the Clonotypic Landscape of the
Nave T-cell Repertoire,” National Academy of Sciences, vol. 107, no.
45, pp. 19414–19419, April 2010.


