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Abstract—Prior studies have shown that the retention time
of the non-volatile spin-transfer torque RAM (STT-RAM) can
be relaxed in order to reduce STT-RAM’s write energy and
latency. However, since different applications may require differ-
ent retention times, STT-RAM retention times must be critically
explored to satisfy various applications’ needs. This process can
be challenging due to exploration overhead, and exacerbated by
the fact that STT-RAM caches are emerging and are not readily
available for design time exploration. This paper explores using
known and easily obtainable statistics (e.g., SRAM statistics) to
predict the appropriate STT-RAM retention times, in order to
minimize exploration overhead. We propose an STT-RAM Cache
Retention Time (SCART) model, which utilizes machine learning
to enable design time or runtime prediction of right-provisioned
STT-RAM retention times for latency or energy optimization.
Experimental results show that, on average, SCART can reduce
the latency and energy by 20.34% and 29.12%, respectively,
compared to a homogeneous retention time while reducing the
exploration overheads by 52.58% compared to prior work.

Index Terms—Spin-Transfer Torque RAM (STT-RAM) cache,
configurable memory, low-power embedded systems, adaptable
hardware, retention time.

I. INTRODUCTION

Spin-transfer torque RAM (STT-RAM) has emerged as
a popular alternative to SRAM for implementing caches.
STT-RAMs offer several benefits, such as high density, low
leakage power, compatibility with CMOS, high endurance,
etc. However, STT-RAMs suffer from high write latency and
write energy, which may impede their widespread adoption
in state-of-the-art resource-constrained systems. A promising
optimization involves relaxing STT-RAM’s retention time—
the duration for which data is retained in the absence of
power—from the intrinsic duration, which could be up to 10
years [1]. Reducing the retention time offers much promise
for latency and energy improvements because the long write
latency and high write dynamic energy directly result from
the long retention times of a non-volatile STT-RAM [1].
Thus, prior works [2], [1], [3], [4] have studied the benefits
of reducing/relaxing the retention times, especially in caches
since cache data blocks are usually only needed in the cache
for short periods of time (typically less than 1 second).

Given a relaxed retention STT-RAM cache (hereafter re-
ferred to simply as STT-RAM cache), prior work has shown
that different applications may require different retention

times. An application’s retention time requirements are dic-
tated by its cache block lifetimes, i.e., how long the blocks
must remain in the cache. To yield maximal benefits from
STT-RAM caches, the retention time must be specialized
to the needs of the executing applications or application
domains. If the retention times are not specialized, they may
be over-provisioned, thus wasting energy/latency, or under-
provisioned, thus requiring additional schemes (e.g., the dy-
namic refresh scheme [3]) to maintain data integrity after the
retention time elapses. Both cases accrue overheads that may
substantially limit optimization potential [4, 2].

To enable right-provisioned retention times for STT-RAM
caches, the retention times must be critically explored for
different applications and metrics (e.g., energy, latency). An
exhaustive exploration of retention times is a challenging task,
given that a wide variety of applications, application character-
istics (e.g., read/write behaviors, cache block characteristics),
and objective functions (e.g., energy, latency, energy delay
product, user experience) must be considered. Furthermore, in
systems with adaptable retention times, such as the logically
adaptable retention STT-RAM (LARS) cache proposed in
[2], an exhaustive exploration can incur substantial runtime
overheads, including hardware, switching, time, and energy,
especially in complex systems.

In this paper, we propose an approach—STT-RAM Cache
Retention Time (SCART) Model—that utilizes machine learn-
ing to predict right-provisioned retention times for a variety
of systems, applications, and metrics. Since SRAM caches
are widely available and accessible to researchers and design-
ers, whereas STT-RAM caches are still nascent, we explore
using SRAM characteristics that can easily be obtained via
simulations as input labels to enable the prediction of right-
provisioned retention times for STT-RAM caches for target
applications or application domains. During runtime in a
system with multiple retention time units (e.g., [2]), based on
execution statistics from one cache unit (SRAM, in a hybrid
design [5] or STT-RAM), our approach can directly predict the
best unit on which to run the application, without the need for
overhead-prone design space exploration.

Our contributions are summarized as follows:

• We show, for the first time (to our knowledge), that right-
provisioned retention times for STT-RAM caches can be
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predicted using easily obtainable SRAM characteristics.
• We compare several machine learning classifiers, and

propose a machine learning-based model (SCART) that
enables fast runtime retention time prediction. SCART
can be implemented with low overhead for runtime
prediction in a system with multiple retention times or
in a hybrid system.

• Using extensive simulations with three benchmark suites
(SPEC CPU2006 [6], MiBench [7], and GAP [8]), to
represent different kinds of applications, we show that our
model reduces exploration time by 52.58%. Furthermore,
in a runtime implementation, our approach achieves av-
erage latency and energy savings of 20.34% and 29.12%,
respectively, compared to a homogeneous system.

II. RELATED WORK

The STT-RAM bit cell’s basic structure comprises of a
transistor and a magnetic tunnel junction (MTJ). STT-RAM’s
characteristics and operations of the STT-RAM have been
discussed in the prior work [9]. Smullen et al. [1] showed
that for implementation in caches, STT-RAM’s retention time
can be substantially reduced (e.g., by reducing the planar
area) in order to mitigate the attendant write latency and
energy overheads of non-volatile STT-RAMs. In this section,
we summarize a few related prior works that leverage reduced
retention STT-RAMs and briefly overview prior work on cross-
architectural prediction to motivate our work.

A. Multi-retention and Hybrid STT-RAM Caches

Sun et.al. [3] proposed to use a hybrid STT-RAM L2 cache
with multiple retention times in order to more closely match
the needs of executing applications. The authors used a coarse-
grained approach, featuring a long retention time for read-
intensive applications and a short retention time for write-
intensive applications. Cache blocks that needed to remain
in the cache beyond the retention time were refreshed via a
DRAM-style dynamic refresh scheme to maintain data correct-
ness. To reduce the overheads introduced by the need to refresh
cache blocks, Kuan et.al [2] further analyzed application cache
block characteristics and showed that the refresh overheads
could be mitigated by more closely matching the applica-
tions’ runtime execution requirements. The authors proposed
a logically adaptable retention STT-RAM (LARS) L1 cache
featuring multiple retention time units, and used a sampling-
based algorithm to dynamically determine applications’ right-
provisioned retention times.

Since STT-RAM is generally more prone to overheads when
running write-intensive applications, due to the high write la-
tency, hybrid (SRAM+STT-RAM) caches have been proposed.
To minimize overheads, the STT-RAM is used to run read-
intensive workloads and the SRAM is used for write-intensive
workloads. While multiple hybrid (SRAM+STT-RAM) caches
[5] have been proposed, they typically only feature a single
retention time. We anticipate that hybrid caches featuring
multiple retention times will be explored in the near future. In
all these systems, an important existing challenge, which our

STT-RAM Cache 
Retention Time 
(SCART) Model

Task 1 Task 2 Task NInput … Output

Machine learning classifier

…

New 
application

STT-RAM 
retention time

Target application

Retention time prediction

Feature selection

Execution statistics

Feedback

Fig. 1: High-level overview of predictive model

work addresses, is how to rapidly explore the right-provisioned
retention times with which to design the systems, or how to
rapidly select the best retention time during runtime, in order
to maximize the energy or latency benefits of reduced retention
STT-RAM caches.

B. Cross-Architectural Prediction

The work proposed herein is along the lines of prior work
where a known architecture is used to predict the behavior of
an unknown architecture. For instance, Ardalani et.al. [10] pre-
sented cross-architecture performance prediction using CPU
implementation to predict the performance of GPUs. Yang
et.al. [11] presented techniques for predicting the performance
of parallel applications using partial execution. Guo et.al. [12]
presented a model to provide inter-architecture performance
prediction for sparse matrix vector multiplication to help
researchers choose the appropriate GPU architecture for the
application. Similarly, Zheng et.al. [13] presented a phase level
cross-platform prediction for performance and power for CPU
architectures. These works are orthogonal to ours, but illustrate
the viability of the approach proposed herein.

III. STT-RAM CACHE RETENTION TIME PREDICTION
(SCART)

Unlike SRAM caches, where easily observable statistics
from performance counters (e.g., cache miss rates) can be
used to directly determine the best cache configurations, the
correlations between miss rates and retention times are not that
direct in STT-RAM caches. Therefore, in this work, we focus
on using machine learning to predict the best retention times
for STT-RAM L1 data cache energy and latency minimization
based on hardware performance statistics. We chose to focus
on the data cache since our experiments showed that the
instruction cache blocks exhibit low variability in the retention
time needs of the considered applications. A static retention
time of 10ms sufficed for the applications considered.

SCART incorporates a low-overhead machine learning clas-
sifier for design time or runtime fast and accurate prediction
of retention times. For a design time exploration scenario,
we assume that the target applications are first profiled on an
SRAM cache with any arbitrary configurations. These statistics
can be obtained via simulators (e.g., GEM5 [14]) or by
running the application on an actual computer. The execution
statistics are then provided as input labels to SCART, which
then outputs the best STT-RAM retention time for the target
applications and specified objective function. This scenario is



suitable for designing STT-RAM caches for an application-
specific processor or provisioning a processor with a range
of retention times in order to satisfy a variety of runtime
retention time requirements [3, 2]. For a runtime scenario, the
application can be run for a brief interval on one cache unit,
and SCART uses the execution statistics to directly predict the
best unit on which to run the rest of the application. SCART
will substantially reduce the runtime complexity and migration
costs for three system scenarios: 1) Multi-retention time cache
designs (similar to [2]) for which the best cache unit must
be determined during runtime; 2) hybrid caches to determine
which unit to execute the application on; and 3) a multi-core
system with a combination of SRAM and/or heterogeneous
retention time STT-RAM caches [15].

A. SCART Model Architecture

Figure 1 presents a high level overview of our machine
learning-based model. We model executing applications as
task graphs, wherein each task may have one or more im-
plementations, called task options (e.g., different algorithmic
implementations). These tasks are equivalent to application
phases in our work. The different tasks and task options may
have different execution characteristics, which also affect the
target objective functions (energy or latency). Furthermore,
each task may have different data configurations (e.g., data
size, bit-width, etc.) that may change based on the inputs.

The training data points are composed of execution statistics
obtained from hardware performance counters. To generate
the training data, we used GEM5 to gather the execution
statistics of the different phases of a random subset of SPEC
2006, MiBench, and GAP benchmarks. We observed that 1
million instructions was sufficient to obtain stable statistics
for predicting full phase behaviors. Thus, we used an interval
size of 1 million instructions. As such, our model can predict
retention times after executing an application or application
phase for only 1 million instructions.

Based on the SRAM characteristics of the training data,
we performed feature selection to determine the most rel-
evant features (i.e., hardware characteristics) for the STT-
RAM retention time. We explored 59 features1 based on
SRAM performance characteristics. These features can be
either directly obtained from hardware performance counters
or calculated from performance counter statistics. Some of the
most important features included L1 and L2 cache miss rates,
number of branches, cache read and write statistics while some
less important features included the DRAM read and write
bursts, number of integer and floating point instructions etc.

To enable extensive testing, our initial training label size
was 256 and the test label size was 64 (representing all the
application phases). Our training label also consisted of six
retention times: 10µs, 26.5µs, 50µs, 75µs, 100µs, and 1ms.
We empirically found that longer retention times were not
beneficial for any of the considered applications. Given the

1The data can be found at www.ece.arizona.edu/tosiron/downloads.php

selected features, we then fed the labels into a machine learn-
ing classifier (Section III-B) to develop SCART for predicting
the best retention time for a new application.

To prevent substantial energy or latency degradation in run-
time execution, the model also features a feedback mechanism
that monitors the statistics of the predicted retention time. If
the predicted retention time degrades the energy or latency
compared to the base, the configuration is reverted to the base.
To prevent data corruption resulting from the reduced retention
time, we incorporate a low-overhead monitor counter, similar
to prior work [2, 3], to keep track of each cache block’s
lifetime and invalidate the block (or write back to lower level
memory if dirty) before the retention time expires. The counter
can be implemented as an N -state finite state machine, which
begins at the initial state when a block is written into the
cache, counts up until the retention time is about to expire,
and raises a flag to evict the block or write back to a lower
memory level. We assumed N = 4 in our work, resulting in a
hardware overhead of only two bits per block.

B. Machine Learning Classifier Comparison and Selection

SCART features a machine learning classifier that comprises
of two stages: the training stage and the prediction stage.
In the training stage, the model learns the patterns in the
input data (benchmarks and execution characteristics) and
their correlations to the different retention time labels. In the
prediction stage, the model takes as input new benchmarks
and their characteristics, and outputs the predicted retention
time labels for the new benchmarks.

To select the best classifier, we considered several different
classifiers and evaluated their accuracy. The classifiers we
explored included: linear SVC, radial basis function SVC,
decision tree, random forest classifiers, decision trees-based
bagging, adaptive boosting, gradient adaptive boosting [16],
extra-tree classifiers based ensemble technique [17], and K-
nearest neighbor (KNN) classifiers [18]. For brevity, we
omit detailed descriptions of these classifiers, since they are
described in prior work.

Table I presents the different classifiers’ F-scores [19]. The
F-score is an evaluation metric that considers both precision
and recall, and is a measure of a classifier’s accuracy. The
classifiers with the highest F-score were KNN and extra trees.
However, we chose KNN classifier for use in our model due
to its simplicity and lower prediction time (which makes it
suitable for runtime predictions). Furthermore, KNN offers
other advantages, such as lack of generalization (resulting
in rapid training), and its non-parametric qualities. That is,
KNN does not make any assumptions on the underlying data
distribution. Thus, our model is amenable to applications
that may not obey the typical theoretical assumptions (e.g.,
Gaussian mixtures, linearly separable, etc.). In general, KNN
operates based on feature similarity; it determines how closely
out-of-sample features resemble a training set, and classifies a
given data point based on the similarity. Additional low level
details of the KNN classifier can be found in [18].

www.ece.arizona.edu/tosiron/downloads.php


TABLE I: Classifier F-scores
Linear SVC Decision Tree Extra Trees Random Forest KNN RBF-SVC Bagging Adaboost Gradient Boost

F-score (0-1) 0.54713 0.70989 0.78098 0.73437 0.78203 0.66875 0.75625 0.67552 0.76692

C. KNN Classifier Tuning

We observed that predicting the best retention times for
latency vs. energy required different sets of features and KNN
classifier characteristics. This observation was due to the con-
flicting nature of latency and energy with respect to retention
time requirements. Thus, we tuned the KNN classifier and
number of features to enable high accuracy for predicting
retention times for latency or energy settings. Furthermore, to
ascertain the robustness of our model, we randomly shuffled
the data and performed five-fold cross-validation to ensure the
validity of the classifier for a wide variety of applications.

We empirically determined that the KNN classifier with
three nearest neighbors and uniform weights achieved the
highest F-score for latency and energy optimization. To se-
lect the appropriate features, we determined the features’
importance values (that is, the features’ impacts on prediction
accuracy) using the scikit-learn tools [20], ordered the features
in order of their importance, and eliminated the least important
features for both latency and energy.

Figure 2 illustrates our selection of the optimal number of
features for energy and latency. We compared the F-score and
prediction time while iteratively eliminating the least important
or redundant features in every run. The goal of iteratively
eliminating the least important features was to find the optimal
number of features that enabled the classifier to achieve the
highest F-score. That is, we selected the fewest number of
features, while eliminating features that did not change the
F-score, since fewer features also reduce the prediction time.

From Figure 2a, we observe that the highest F-score for
latency optimization was obtained using 9 to 15 features.
Thus, we used 9 features for latency in order to achieve
a fast prediction time. For energy, as depicted in Figure
2b, 10 features achieved the highest F-score. Therefore, for
both latency and energy, we eliminated the least important
features until 9 and 10 features, respectively, remained. We
also observed from our experiments that even though the
highest accuracy was approximately 75%, the false predictions
still resulted in near-optimal retention times. As a result,
SCART was able to achieve substantial latency and energy
savings despite the error rate (Section V-B).

IV. EXPERIMENTAL SETUP

We modified the GEM5 simulator [14] to model accurate
STT-RAM behavior for different retention times and to capture
the L1 and L2 cache statistics. We simulated single and quad-
core processors with configurations similar to the ARM Cortex
A-15 processor, with a 2GHz clock frequency. Each core
had private instruction and data STT-RAM L1 caches, and
a shared SRAM L2 cache (in the quad-core processor). Table
II depicts the cache parameters for both the SRAM and STT-
RAM caches.
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Fig. 2: Selection of optimal number of features for latency
and energy optimization. Tuning began with 59 features, and
features were iteratively removed to maximize F-score and
minimize prediction time.

To represent a variety of workloads, we used 34 benchmarks
in total (for both training and testing—see Section III-A); 22
from SPEC CPU2006 [6] (high performance benchmarks), 6
from MiBench [7] (embedded systems benchmarks) and 6
from GAP [8] (graph algorithms). We ran simulations for
a maximum of one billion instructions for all the bench-
marks, using the reference and large input sets for SPEC
and MiBench, respectively, and 2048 nodes for the GAP
benchmarks. We used Simpoint [21] to obtain the program
phases for all the benchmarks, with intervals of 1 million
instructions. We used execution statistics gathered after 1
million instructions for prediction.

For a thorough analysis, we initially considered nine re-
tention times: 10µs, 26.5µs, 50µs, 75µs, 100µs, 1ms, 10ms,
100ms, and 1s. However, we found that the best latency
or energy retention times for different applications were,
for the most part, in the range of 10µs to 1ms. Thus, we
eliminated 10ms to 1s from our modeling and analysis. To
model the different retention times, we used the MTJ modeling
technique proposed in [9] to compute the write pulse, write
current and MTJ resistance value RAP . We then applied the
values to NVSim [22] and integrated with statistics obtained
from GEM5 [14] to calculate the cache latency and energy.
To model the SRAM cache in the hybrid cache, we used
NVSim’s SRAM settings. Table II shows different latency and
energy specifications for SRAM and STT-RAM used in our



TABLE II: SRAM and STT-RAM cache parameters
L1 cache configuration 32KB, 64B line size, 4-way
L2 cache configuration 1MB SRAM, 64B line size, 16-way

Memory device SRAM STT-RAM
Retention times – 10µs 26.5µs 50µs 75µs 100µs 1ms

Hit latency 0.486ns 0.464ns 0.454ns 0.448ns 0.445ns 0.443ns 0.438ns
Write latency 0.350ns 0.601ns 0.769ns 0.894ns 0.981ns 1.045ns 1.647ns

Read energy (per access) 0.0076nJ 0.003nJ 0.003nJ 0.003nJ 0.003nJ 0.003nJ 0.003nJ
Write energy (per access) 0.0066nJ 0.026nJ 0.030nJ 0.033nJ 0.035nJ 0.036nJ 0.051nJ

Leakage power 34.265mW 4.659mW

experiments. For stringent comparison, we used a hit cycle of
1 for both SRAM and STT-RAM, unlike prior work that used
higher hit cycles for SRAM (e.g., [3]), thus resulting in lower
optimization compared to SRAMs. To implement the machine
learning algorithms, we used Python’s scikit learn (Sklearn)
library [20].

V. RESULTS

In this section, we first evaluate SCART in the context of a
single-core processor, in comparison to a base retention time
and exhaustive search. Thereafter, we evaluate SCART in the
context of a quad-core processor running multi-programmed
workloads, and finally compare SCART to prior work.

A. Comparison to the Base Retention Time

To evaluate SCART’s effectiveness, we compared the la-
tency and energy savings achieved by our model with a base
retention time. We selected the base retention time as 1ms
to be conservatively large enough to satisfy the cache block
lifetimes of the considered applications, in order to prevent the
need to refresh any blocks. Thus, the base configuration elim-
inates the additional overheads from refreshing data blocks
[3]. For each benchmark, we report the overall results as the
weighted combination of the phase results, as is the common
practice in phase-based optimization [21].

Figure 3 depicts the latency and energy improvements
achieved using SCART as compared to the base. On average
across all the benchmarks, SCART improved the latency
by 20.34%, with improvements of up to 35.19% for bfs
(breadth-first search algorithm). We observed different trends
for different benchmark suites. For instance, SCART achieved
substantial improvements over the base for the GAP bench-
marks, since the base retention time was over-provisioned for
the benchmarks. Most of the cache blocks needed to remain
in the cache for much less than 1ms. On the other hand,
SCART did not achieve substantial latency improvements for
some SPEC and MiBench benchmarks, such as patricia, for
which there was no improvement, and hmmer, for which
SCART reverted to the base retention time in order to prevent a
latency degradation. For patricia, the base 1ms retention time
was sufficient for its cache block lifetimes, while hmmer’s
cache blocks required more than 1ms retention time to prevent
premature eviction. A closer look at hmmer’s cache blocks
revealed that while several of the blocks required less than
1ms, there were also several blocks that required closer to
10ms to prevent premature expiry. However, using a 10ms
base retention time would have incurred overall overheads for
our mix of benchmarks.

Similar to latency, SCART improved the energy, compared
to the base, by an average of 29.12%, with savings of up
to 34.54% for libquantum. The energy trends varied for the
different benchmark suites, and we also observed that the
retention time that was best for energy was not necessarily best
for latency. For example, when SCART was set to optimize
for energy, there was a latency overhead of 15.45%; when it
was set to optimize for latency, there was an energy overhead
of 10.81%. For a few benchmarks (e.g., hmmer), however,
similar retention times sufficed for both latency and energy
optimization. In general, SCART was able to trade off the
non-optimized metric for the specified metric, as necessary.

B. Comparison to Exhaustive Search

To further evaluate SCART, we compared the results ob-
tained to exhaustive search of the retention time design space.
Note that while the retention time design space will typically
not be expansive (six options, in our case), the design time
overhead from exhaustive search comes into play when several
applications or application domains must be explored. Thus,
SCART must be able to rapidly determine retention times that
are close to the optimal.

Figure 4 depicts the comparison of the latency and energy
achieved by SCART and exhaustive search (i.e., optimal) to
the base. For brevity, we only show the geometric means
for each benchmark suite considered. As seen in the figure,
SCART’s results were very close to exhaustive search for
the different benchmark suites. For the GAP benchmarks,
using SPEC benchmarks as training data, SCART achieved
identical savings to exhaustive search for latency, and achieved
energy savings within 0.07% of the optimal. Similary, using
SPEC benchmarks as training data for the MiBench work-
loads, SCART achieved latency and energy savings that were
0.4% and 1.9%, respectively, less than exhaustive search. The
degradation with respect to exhaustive search resulted from
false prediction penalty of the labels. However, the penalty was
low, since SCART predicted retention times that were close
to the optimal, further illustrating SCART’s effectiveness.

To further evaluate SCART’s robustness, we also performed
experiments to predict the retention times for GAP and SPEC
benchmarks using training data from MiBench benchmarks
(MiBench → GAP). We indicate the summary of the results
for MiBench → GAP and MiBench → SPEC predictions in
Figure 4 with an asterix (*). SCART achieved similar results
to exhaustive search for MiBench → GAP predictions with
average latency and energy savings of 34.71% and 39.11%
over the base. However, while MiBench → SPEC yielded av-
erage latency and energy improvements of 10.3% and 20.71%,
respectively, these results were farther from the optimal by



0.00%

10.00%

20.00%

30.00%

40.00%

Pe
rc

en
ta

ge
 im

p
ro

ve
m

en
t

Latency Energy

Fig. 3: Percentage latency and energy improvements using SCART model compared to the base retention time of 1ms.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

GAP
latency

GAP
energy

MiBench
latency

MiBench
energy

GAP
latency*

GAP
energy*

SPEC
latency*

SPEC
energy*

P
er

ce
n

ta
ge

 o
p

ti
m

iz
at

io
n

SCART Exhaustive search

Fig. 4: SCART vs exhaustive search latency and energy
improvements compared to the base (1ms) retention time.
Geometric means of the results are presented.

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

Pe
rc

en
ta

ge
 o

f 
la

te
n

cy
 a

n
d

 e
n

er
gy

 
o

p
ti

m
iz

at
io

n
 o

ve
r 

1
m

s

Latency Energy

Fig. 5: SCART latency and energy savings in a multi-
programmed scenario

3.26% and 4.87%, respectively. We attribute this to the fact that
the SPEC benchmarks’ labels featured much higher variation
than MiBench. As a result, a MiBench → SPEC prediction
afforded less coverage in predicted characteristics than the
SPEC → MiBench prediction. Overall, these results further
illustrate SCART’s ability to effectively predict latency and
energy-saving retention times.

C. SCART Execution in a Multi-Programmed Scenario

To further evaluate our model, we tested SCART in a
multi-programmed execution scenario featuring a quad-core
processor with a shared 1MB L2 cache. The experiments
performed herein enable us to evaluate SCART’s scalability
in a more complex system, since resource sharing in the L2
cache can impact the L1 cache behavior of the applications
running on each core [23]. We assume that each core features
multiple retention time units as in [2], and SCART predicts
the best retention time unit for each application on each core.

For the multi-programmed workloads, we created twelve
workloads featuring a random combination of four bench-
marks per workload, wherein each core runs one benchmark.
The workloads used are shown in Table III. For the experi-
ments in this subsection, we used the SPEC benchmarks (66%
of the total benchmarks) as training data and MiBench and
GAP benchmarks (33%) as testing data.

Figure 5 summarizes the percentage latency and energy
optimizations achieved by SCART in the multi-programmed
scenario compared to a base retention time of 1ms. On average
across all the workloads, SCART achieved latency and energy
savings of 25.07% and 36.13%, respectively. As seen in Figure
5, the latency and energy savings were relatively consistent
across the different workloads, demonstrating SCART’s effec-
tiveness in various execution scenarios.

D. Comparison to Prior Work and Implementation Overhead

To further evaluate the effectiveness of our approach, we
compared the exploration time to prior work [2] that pro-
posed different retention time units within each STT-RAM
cache. We chose this prior work, called LARS, since it is
the most related to ours and determined the optimal latency
and energy configurations during runtime using exhaustive
sampling. However, unlike LARS, which had four retention
times, our implementation featured six retention times. In our
implementation, each benchmark was first run on the base
STT-RAM unit (1ms) for 1 million instructions, and the data
was then used by SCART to predict the best retention time unit
on which to run the rest of the application. Overall, SCART
achieved similar results to exhaustive search (Section V-B).

Given SCART’s similar performance to exhaustive search,
we also evaluated SCART’s benefit for reducing the explo-
ration/tuning time. In LARS, the applications were sampled
on each STT-RAM cache unit. Thus, LARS required six
migrations between cache units for each tuning decision, with
each migration taking 4608 cycles, which translates to 2.304µs
at a 2GHz frequency. In total, the migration overhead was
13.824µs. SCART, for most of the cases, required only one
migration if a different retention time than the base was deter-
mined to be the best. Therefore, SCART’s average overhead
(prediction + migration) was 6.554µs, reducing the exploration
overhead by 52.58% compared to LARS, while achieving
similar latency and energy savings. Furthermore, unlike LARS,
which runs the application on potentially sub-optimal retention
times before arriving at the best, SCART directly predicts the
best without exploring sub-optimal retention times.

We assume that SCART is implemented in software (e.g.,
in the operating system). As such, SCART does not incur any
hardware overhead other than the monitor counter described
in Section III-A. However, SCART incurs some memory
overhead. We used memory profiling to observe the memory
consumed by SCART, and found that SCART consumes 0.156
MB of memory during the training stage and 2.5 KB of
memory for the runtime prediction stage.



TABLE III: Multi-programmed workload distribution
# Workload1 Workload2 Workload3 Workload4 Workload5 Workload6 Workload7 Workload8 Workload9 Workload10 Workload11 Workload12
1 bc 20 dijkstra m djpeg cc 20 pr 20 gsm tc 20 m cjpeg patricia bfs sssp 20 lame
2 patricia sssp 20 lame gsm sssp 20 pr 20 bc 20 bfs 20 m cjpeg tc 20 m djpeg dijkstra
3 gsm sssp 20 tc 20 bc 20 pr 20 cc 20 patricia bfs 20 lame m cjpeg m djpeg dijkstra
4 sssp 20 gsm tc 20 dijkstra patricia pr 20 m cjpeg lame bc 20 cc 20 bfs 20 m cjpeg

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed an STT-RAM Cache Retention
Time (SCART) model that uses a KNN classifier to predict
the best retention time for an STT-RAM L1 cache. SCART
uses execution statistics obtained from hardware performance
counters. In a runtime single-core scenario, SCART predicted
retention times that achieved average latency and energy
savings of 20.34% and 29.12%, respectively, compared to a
base 1ms retention time. In a quad-core scenario with multi-
programmed workloads, SCART achieved average latency and
energy savings of 25.07% and 36.13%, respectively, compared
to a base 1ms retention time. Compared to prior work, SCART
reduced the exploration time by 52.58%, while achieving
similar latency and energy savings. Future work involves
exploring a hardware implementation of SCART, extending
SCART to predict other architecture parameters, and reducing
the number of required labels in order to reduce the memory
overhead, without sacrificing prediction accuracy.
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