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Abstract—Spin-Transfer Torque RAM (STT-RAM) is widely considered a promising alternative to SRAM in the memory hierarchy due
to STT-RAM’s non-volatility, low leakage power, high density, and fast read speed. The STT-RAM’s small feature size is particularly
desirable for the last-level cache (LLC), which typically consumes a large area of silicon die. However, long write latency and high write
energy still remain challenges of implementing STT-RAMs in the CPU cache. An increasingly popular method for addressing this
challenge involves trading off the non-volatility for reduced write speed and write energy by relaxing the STT-RAM’s data retention time.
However, in order to maximize energy saving potential, the cache configurations, including STT-RAM’s retention time, must be
dynamically adapted to executing applications’ variable memory needs. In this paper, we propose a highly adaptable last level
STT-RAM cache (HALLS) that allows the LLC configurations and retention time to be adapted to applications’ runtime execution
requirements. We also propose low-overhead runtime tuning algorithms to dynamically determine the best (lowest energy) cache
configurations and retention times for executing applications. Compared to prior work, HALLS reduced the average energy
consumption by 60.57% in a quad-core system, while introducing marginal latency overhead.

Index Terms—Spin-Transfer Torque RAM (STT-RAM) cache, configurable memory, low-power systems, adaptable hardware, retention
time, last level cache, multicore systems, computer architecture, energy-efficient, runtime adaptable systems.
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1 INTRODUCTION

Multicore architectures have become mainstream due to
the growing demand of compute- and memory-intensive
applications. Consequently, to bridge the processor-memory
performance gap, much effort is being placed on designing
more efficient memory hierarchies, especially for resource-
constrained systems. Such designs typically involve pro-
visioning the system with a larger last level cache (LLC)
to enable higher computing throughput and alleviate chal-
lenges associated with limited main memory bandwidth [1].
For example, the ARM Cortex A15 [2] allows implementa-
tions that feature four cores with a shared 1MB L2 cache.
However, the LLC, which is typically implemented using
conventional SRAM, imposes significant overheads with
respect to leakage power and silicon area; these overheads
could be prohibitive for resource-constrained systems.

To address some of these challenges, non-volatile mem-
ory (NVM) technologies have emerged as a viable alterna-
tive to SRAMs for implementing LLCs [3]. Among several
emerging NVM technologies, the Spin-Transfer Torque RAM
(STT-RAM) is considered to be one of the most promis-
ing candidates to replace the SRAM [4]. STT-RAM, apart
from its non-volatility, has other advantages, including high
storage density, low leakage current, and compatibility with
CMOS technology [5]. However, implementing caches using
STT-RAMs is still challenging due to the overheads imposed
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by STT-RAM’s long write latency and high dynamic write
energy [6]. Prior studies have revealed that the STT-RAM
consumes 6-14 times more energy per write access than the
SRAM [7].

A popular approach for reducing STT-RAM’s write la-
tency and energy involves reducing the STT-RAM cell’s data
retention time. Smullen at al. [8] showed that relaxing the re-
tention time—the duration for which data blocks remain in
memory in the absence of power—can substantially reduce
both latency and energy. Furthermore, Jog et al. [9] observed
that several benchmarks did not require data retention time
of more than one second. Consequently, the STT-RAM’s
intrinsic retention time, which could be up to ten years, is
unnecessary, and even undesirable in terms of energy and
latency. However, the reduced retention time can sometimes
be shorter than the cache blocks’ requirements. To maintain
data correctness, prior works propose the dynamic refresh
scheme (DRS) [10], [8], [6], [9], which refreshes data blocks
to prevent premature expiry. The refreshes incur additional
overhead, which are especially worse in the LLC. Compared
to the level one (L1) cache, the LLC typically requires longer
cache block lifetime for data reuse. In addition, a larger
number of cache blocks—as is the case in the LLC—increase
the minimum number of refreshes required to hold cached
data, which can drastically impact the scalability of the STT-
RAM cache [11].

Our work aims to mitigate the overheads imposed by
STT-RAM’s write energy, especially in resource-constrained
systems. To this end, the work proposed herein is inspired
by two important observations: 1) due to the variability in
data block lifetimes, different applications may require dif-
ferent retention times, and these requirements may change
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during runtime and 2) different applications, and combina-
tion of applications (i.e., workloads) may require different
STT-RAM cache configurations (i.e., cache size, line size, and
associativity) in order to minimize the energy consumption.

In this paper, we propose and explore a highly adaptable
last level STT-RAM cache (HALLS) as a viable alternative for
reducing STT-RAM’s write energy for LLC implementation.
HALLS exploits the synergies of cache configurability [12]
and retention time adaptability. HALLS features a multi-
banked cache that enables cache configuration through bank
shutdown (to configure the cache size), bank concatena-
tion (to configure the associativity), and multi-line fetch
(to configure the line size). The different cache banks are
provisioned with different retention times that can satisfy
a variety of applications’ requirements. Based on runtime
profiling, data blocks are opportunistically placed in cache
banks that offer the right-provisioned retention time for
energy minimization, without substantially degrading the
latency.

Our contributions are summarized as follows:

• We propose to design the STT-RAM LLC with
different retention times in the different cache
banks, and at finer granularity than prior work
[6]. Furthermore, our work leverages the syn-
ergy of adapting both the cache configuration
and retention time to different application re-
quirements.

• We explore and evaluate simple and easy-to-
implement algorithms to determine the best
cache configurations and retention time for each
executing application.

• We show, through extensive analysis, that com-
pared to prior work in a quad-core system,
HALLS can reduce the energy by an average
of 60.57%, while introducing minimal hardware
overhead and a latency overhead of 1.47%. Com-
pared to SRAM, HALLS achieved average en-
ergy savings of 70.12%, with a latency overhead
of 5.16%.

2 BACKGROUND, RELATED WORK, AND MOTIVA-
TION

From the system-level perspective, two popular approaches
exist for mitigating STT-RAM’s write latency and energy
overheads in caches. The first involves removing as many
unnecessary writes as possible. For example, dead write
prediction (e.g., DASCA [11]) identifies dead writes—blocks
that are written to the cache, but not reused thereafter—and
bypasses cache accesses for those blocks. Wang et al. [13]
also used dead write prediction to guide block placement in
a hybrid SRAM/STT-RAM bank LLC. Flip-N-Write (FNW)
[14] uses bit-wise comparisons to detect the difference be-
tween a block to be replaced, and the new block. The
replaced block’s contents are then updated by flipping bits
that are different, in order to minimize unnecessary bit-
writes, thereby reducing the write energy consumption as
well as the latency. Similarly, the Encoded Content-Aware
cache Replacement (ECAR) scheme [15] features a block
replacement policy that reduces the number of switching

bits by replacing the block whose contents are most similar
to the missed block. While these prior works do not enable
runtime adaptability, we consider them to be orthogonal
and complementary to the work presented herein.

The second approach, on which we focus the related
work discussion herein, involves substantially relaxing
the retention time and incorporating the dynamic refresh
scheme to ensure data correctness after the retention time
elapses [8], [6], [9], [10], [16].

In this section, we present a brief background and
overview of related work in order to motivate our approach.
For brevity, we omit details of the circuit-level design [4],
since that is not the focus of our work.

2.1 Refresh Schemes in Volatile STT-RAM Cache
STT-RAM stores data bits using a magnetic tunnel junction
(MTJ) cell [4], [17]. Prior work [8] has shown that decreasing
the MTJ cell’s thermal stability can substantially reduce the
STT-RAM’s write latency and write energy. In effect, the MTJ
cell only retains data for a limited time period—the retention
time—beyond which the data would become unstable and
lose correctness. To maintain data correctness, prior work
[6], [9], [10] proposed techniques that dynamically refresh
the cache blocks after the retention time has elapsed. Sun
et al. [6] used a global clock to track all valid blocks and
refreshed the blocks as needed. Jog et al. [9] refreshed only
the first eight most recently used (MRU) blocks. The authors
used a write buffer to handle the surge of refresh requests,
given STT-RAM’s long write time. Other techniques used
compiler-assisted techniques to optimize data object orga-
nization in order to make refreshes more efficient [10], [16].
However, compiler-oriented techniques, which are typically
static, are not amenable to dynamic runtime changes in
application requirements.

2.2 Overhead of DRS
One of the key drawbacks of the dynamic refresh scheme
(DRS) is the overhead accrued as a result of the refresh op-
erations [9]. Typically, DRS requires a buffer that holds data
blocks during the refresh operations. In [9], the authors used
a 121.6 KB STT-RAM buffer that had 1900 slots. Assuming a
128 KB direct mapped buffer with 16B line sizes and a 10ms
retention time, this buffer can consume up to 141.425mW
of leakage power. Ideally, the buffer should have high
associativity and larger block sizes, thus consuming even
more power. Furthermore, each refresh operation consists of
four physical operations: 1) STT-RAM cache read, 2) buffer
write, 3) buffer read, and 3) STT-RAM cache write. Given
a 1MB L2 STT-RAM cache with 100ms retention time, for
example, our analysis revealed that each refresh operation
would accrue about 1.311nJ in energy.

Similarly, the refresh scheme used in [6] accrued over-
heads due to the refresh buffer and its peripheral arbitration
circuits. As such, leakage power was accrued during the
refresh process, especially since every single L2 cache write
took 3ns to 4ns. Also, even though the DASCA technique,
for example, got rid of the need for refreshes by directly
predicting and removing dead writes, the technique still
accrued a 6.44 KB overhead for the SRAM buffer that was
used to store the prediction table for a 1MB STT-RAM cache.
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Fig. 1: Refresh energy percentage for different retention
times

To further illustrate the impacts of refreshes on overall
energy, we analyzed the refresh energy for different reten-
tion times while running a subset of SPEC CPU2006 bench-
marks. Fig. 1 depicts the percentage of the overall energy
that comprises of refresh energy (details of our experimental
setup are in Section 4).

We observed that for some memory-intensive bench-
marks like leslie3d and bzip2, the total number of refreshes,
and thus, refresh energy, was very low. These benchmarks
had several blocks that exhibited short lifetimes and were
not needed in the cache beyond the retention times. How-
ever, the refresh mechanism still constituted about 3% of the
total energy as a result of the buffer’s leakage power. On
the other hand, compute-intensive benchmarks like h264ref
and calculix had blocks with longer lifetimes and higher
number of refreshes, resulting in higher refresh energy.
For example, calculix’s refresh energies were 35.06%, 7.25%,
3.08%, and 2.69% of the total energy for the 100µs, 1ms,
10ms, and 100ms retention times, respectively. Based on
these observations, we sought to develop techniques to
minimize—if possible, eliminate—the need for refreshing
the cache blocks.

2.3 Adaptable STT-RAM caches

Prior works [18], [19], [13] have discussed the benefits of
resource specialization in the STT-RAM cache. Most of these
works focused on leveraging a hybrid SRAM/STT-RAM
cache to gain the benefits of both SRAM’s low access latency
and STT-RAM’s low leakage power. In general, these prior
works proposed data placement techniques to determine
when data blocks should be placed in either SRAM or STT-
RAM array. For example, Chen et al. [19] proposed tech-
niques to monitor the access counts of a set and predicted
the set’s future usage. Similarly, Wang et al. [13] used execu-
tion characteristics on the CPU, such as prefetch and current
program counter (PC), to determine block placement. Imani
et al. [18] proposed a cache swap policy to intentionally
place majority-zero data in STT-RAM and majority-one in
SRAM, thus reducing the number of writes of ’1’ in order to
reduce the STT-RAM’s energy consumption.

Another category of techniques for enabling STT-RAM
cache adaptability focuses on profiling running applications
and adapting the cache configurations based on the appli-
cations’ cache requirements [12], [20]. These works focus
on optimizing the L1 cache due to its impact on overall
processor performance and energy consumption. Our work

focuses on optimization opportunities for the shared last
level caches since multicore systems are becoming increas-
ingly ubiquitous in resource-constrained systems [21]. How-
ever, we note that the prior techniques discussed herein are
orthogonal to our work, and can be complementary to our
proposed approach.

3 HIGHLY ADAPTABLE LAST LEVEL STT-RAM
(HALLS) CACHE

3.1 Access Pattern and Retention Time Analysis in LLC

Unlike the L1 cache, which is usually separated into instruc-
tion and data caches, L2 caches—we use the L2 cache to
represent the LLC in this work—are usually unified. That
is, L2 caches do not distinguish between instruction and
data cache blocks. Since instruction blocks would not be
updated or written into from CPU, they simply rely on
the memory cell to hold the block’s value. Thus, intuitively,
instruction blocks would require longer retention times than
data blocks. Data cache blocks, on the other hand, may be
updated frequently by the CPU, and would require a new
retention period every time they are updated by a higher level
cache (i.e., the L1 cache in our work).

Based on these observations, we hypothesized that LLC
cache blocks can be sorted into different retention time groups
depending on an executing application’s code and data
object behaviors. To test this hypothesis, we performed
experiments using a quad-core processor featuring a shared
4-way, 128KB L2 cache with 64B blocks. We grouped ten
multi-programmed workloads’ data blocks into way-sized
chunks of 32KB each, performed an exhaustive design space
exploration of four retention times for each chunk, and then
calculated the energy for each run. We empirically selected
the retention times to satisfy a variety of applications’ re-
quirements, but note that these retention times may change
for a different set of benchmarks.

Fig. 2 illustrates the combination of retention times that
achieved the lowest energy for a workload (for brevity, only
four workloads are shown, but the analysis and insights
applied to all the workloads). Our first observation was
that for each workload, the placement of instructions and
data blocks dictated the retention time requirement. For
example, in Fig. 2a, way0 was a hot region for data block
write activities and short block lifetimes. Hence, the 100µs
retention time consumed the lowest energy for that way.
Way1 and way3 frequently stored instructions or read-only
tables; thus, the 100ms retention time achieved minimum
energy for those ways. Across the different workloads,
we observed that the retention time requirements were
indicative of the applications’ execution behavior. These
observations implied that energy savings can be achieved
by provisioning the L2 cache with different retention time
values to satisfy a variety of runtime retention needs.

3.2 HALLS Architecture

Fig. 3 illustrates the HALLS architecture. We assume a
physical 1MB, 16-way STT-RAM L2 cache, since this size
is found in state-of-the-art architectures [22], but note that
the idea can be extended to any arbitrary size L2 (or L3)
cache. Since the retention time is a physical characteristic of



4

100us 100ms 1ms 100ms

Way0 Way1 Way2 Way3
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100ms 10ms 10ms 1ms

Way0 Way1 Way2 Way3

(d) Workload4
Fig. 2: Best energy retention time selection for different workloads in a 128KB, 64B line size, 4-way L2 cache. Each multi-
programmed workload comprises of four benchmarks run in a quad-core system
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Fig. 5: An example of virtual bank layout

the STT-RAM [4], it cannot be easily dynamically adapted,
unlike other cache configurations such as the cache size, line
size, and associativity. Thus, we use a logical adaptation of
the retention time [20], wherein different cache banks are
designed with different physical retention times. During
runtime, cache blocks can be written into the cache banks

that most closely match the blocks’ retention time require-
ments.

As illustrated in Fig. 3, the HALLS cache architecture is
designed using 32KB banks, i.e., 32 banks in the 1MB STT-
RAM cache. Runtime adaptability is achieved using similar
mechanisms to SRAM-based configurable caches [23], which
have been widely studied and analyzed in prior work. The
cache size can be configured by shutting down cache banks,
e.g., the 1MB L2 cache can be configured into a 512KB
cache by shutting down 16 banks or into a 128KB cache by
shutting down 28 banks. The associativity can be configured
by concatenating different banks as shown in Fig. 4a. Finally,
given a physical line size of 16B, multiple lines can be
fetched to logically configure the line size, from 16B to
64B, as shown in Fig. 4b. As detailed in prior work [23],
augmenting the cache for this adaptability is low-overhead
and does not adversely impact the cache’s critical path.

Fig. 3a shows details of a cache bank. Each cache bank
contains a tag and a data array, along with a valid bit
checker and a tag comparator. As such, each bank can oper-
ate independently, even when other banks are shut down to
save power[12], [19]. Thus, apart from enabling the adapt-
ability proposed herein, the 32-bank structure also lends
itself to higher memory bandwidth in the L2 cache. The 32
banks are organized in 8-bank clusters, with each cluster
designed with a different retention time. We used a total
of four retention times—100µs, 1ms, 10ms, and 100ms—to
satisfy a range of application requirements based on empir-
ical analysis. However, more (or different) retention times
can be used depending on the executing applications. We
useClusterID to indicate these four retention time clusters.
Cluster0, Cluster1, Cluster2, and Cluster3 represent 100µs,
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Fig. 6: Block diagram of HALLS flow

1ms, 10ms, and 100ms retention time clusters, respectively.
To complete the tag look up for different configurations

and different retention time clusters, we propose a modified
set address decoder. As shown in Fig. 3b, the set address
decoder receives the request address from CPU. Based on
the cache configuration and retention time (as determined
by the tuner) and the requested address, the set address
decoder dispatches Index, Tag, and the corresponding
BankID to the appropriate retention time clusters and
monitors hit bits. We define virtual bank (V Bank) as a
specific location of cache ways and set address from the
point of view of the CPU request address. Based on the
outcome of cache tuning, VBank represents the mapping of
requested data blocks to the physical cache banks with the
appropriate retention times. Fig. 5 shows a sample layout
of virtual banks, given a best cache configuration output
(from the tuner) of 128 KB, 2-way, and 64B line size. VBank0
represents the cache blocks located in set address 0-511 and
way 0, VBank1 represents blocks in set address 0-511 and
way 1, and so on.

The dotted boxes in Fig. 3b illustrate an example of
virtual-to-physical bank mapping. When a request address
has set address between 0 and 511, the set address decoder
sends the index, tag, and the corresponding BankID to
the 100µs-cluster (Cluster0) for VBank0 and 100ms-cluster
(Cluster3) for VBank1. The BankID allows HALLS to per-
form bank-to-bank mapping between virtual and physical
banks if multiple banks must be accessed in the same cluster.
For example in Fig. 3b, 100ms-cluster (Cluster3) is able to
distinguish VBank1’s index and tag from VBank3’s using
the BankID.

The HALLS architecture also features a low-overhead
hardware tuner that orchestrates the process of determining
which cache configuration and retention time to use for an
executing application. We decided to use a hardware tuner,
as opposed to a software tuner, in order to make the tuner’s
operations non-intrusive to executing applications’ behav-
iors (e.g., cache accesses). When a new application is run, the
tuner begins sampling the application based on the tuning
algorithm (Section 3.3) for a tuning interval to determine
the best (i.e. minimum energy) cache configuration. After
configuration tuning, HALLS has determined the cache
configuration (cache size, line size, and associativity), and
then constructs a virtual bank layout based on the determined
configuration. For example, in Fig. 5, the virtual bank layout
defines a 128 KB cache with 2-way set associativity and 64B
line size. Thereafter, HALLS performs the retention time
tuning and establishes the mapping of the virtual banks to
physical banks. Tuning details are described in Section 3.3.

Even though HALLS eliminates the need for a refresh
mechanism, we still incorporate a per-block counter to keep
track of the cache blocks’ lifetimes [9]. HALLS uses the
counter to detect the expiration of a cache block and evicts
the block when the retention time has elapsed. Dirty blocks

are first written to the main memory before eviction. We
implemented the counter as a state machine, with a clock
period defined as the retention time divided by N , where
N defines the granularity of block eviction. When a block
is written to the cache, the counter’s state advances from
the initial state until it reaches the maximum state. The
block is then evicted, and the counter is reset to the initial
state whenever a new write operation occurs for the block.
HALLS overheads are described in Section 5.

Algorithm 1: HALLS configuration tuning algorithm
Data: Size S = {smin, ..., smax}
Data: Line size L = {lmin, ..., lmax}
Data: Associativity A = {amin, ..., amax}
Result: Best cache size, line size, associativity

1 CurConfig.size← smax;
2 CurConfig.linesize← lmax;
3 CurConfig.ways← amax;
4 Config← CurConfig;
5 MinLatency← Latencymax;
6 foreach p ∈ [size, linesize, ways] do
7 for (pi = pmax; pi >= pmin; pi = pi/2) do
8 CurConfig.p← pi;
9 CurLatency← samplingLatency(CurConfig);

10 if CurLatency < MinLatency then
11 MinLatency← CurLatency;
12 Config← CurConfig;
13 end
14 else
15 break;
16 end
17 end
18 end
19 return Config,MinLatency;

3.3 Determining the best configuration

Fig. 6 depicts the high level flow of HALLS. HALLS first
determines the best cache configuration using the configu-
ration tuning algorithm (Algorithm 1). This algorithm yields
the best cache configuration and the virtual bank layout.
We used the latency as the algorithm’s objective function
based on our observation that tuning the configurations for
latency improved the energy consumption, whereas tuning
for energy substantially degraded the latency. We tested
the algorithm using energy as the objective function and
found that much smaller cache sizes were favored, thereby
reducing the dynamic and leakage power. However, the
resulting caches were severely under-provisioned for the
applications’ access requirements. On the other hand, tuning
for latency allowed HALLS to tradeoff achieving optimal
energy savings for reduced latency degradation.

After determining the best cache configuration, HALLS
determines the best retention time using the retention time
tuning algorithm (Algorithm 2). The retention time tuning
algorithm uses the energy delay product (EDP) as the ob-
jective function in order to achieve energy savings without
substantial latency degradation, and outputs the virtual-to-
physical bank mapping that satisfies the executing applica-
tion’s requirements. In this work, we used application-based
tuning, but plan to explore phase-based tuning in future
work.
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Algorithm 2: HALLS retention time tuning algorithm
Data: Retention time tuning sets T = {Set0, Set1, Set2, Set3}
Data: Requested virtual banks V = {V Bank0, V Bank1, ..., V Bank31(as the highest)}
Result: Virtual-to-physical banks mapping table

1 foreach t ∈ T do
2 AllPhysicalBanksEDP← samplingEDP(t);
3 foreach v ∈ V do
4 ClusterID,BankID← findPhysicalBank(t, v);
5 BankEDP← findPhysicalBankEDP(ClusterID,BankID,AllPhysicalBanksEDP);
6 v.EDP[ClusterID ]← BankEDP;
7 end
8 end
9 foreach v ∈ V do

10 MinEDPCluster← findMin(v.EDP);
11 ClusterID,BankID← popAvailablePhysicalBank(MinEDPCluster);
12 MappingTable.push(v,ClusterID,BankID);
13 end
14 return MappingTable;

3.3.1 Configuration tuning algorithm
Algorithm 1 depicts the HALLS configuration tuning al-
gorithm. The inputs to the algorithm are the cache design
space, and the outputs are the best cache size, line size,
and associativity. When a new application is executed, the
algorithm defaults to the maximum configuration (i.e., 1MB
size, 16-way set associative, and 64B line size in our HALLS
architecture) (lines 1-3). HALLS then runs the application
using each configuration for one tuning interval—we as-
sumed an interval of 10M instructions in our experiments—
while iterating through the configurations in descending
order of the cache parameters’ energy impact (cache size,
followed by line size, followed by associativity). For each
parameter, the configurations are explored as long as re-
ducing the parameter value also reduces the latency (lines
6-18). The algorithm stops tuning if a configuration change
increases the latency as compared to the current minimum
latency (lines 14-16). The algorithm only needs to store
the minimum-latency configuration, with which the current
configuration’s latency is compared.

3.3.2 Retention time tuning algorithm
To minimize implementation overhead for dynamically de-
termining the best retention time (Fig. 6), we use a simple
algorithm that samples all four retention times for a tuning
interval. After each sampling period, HALLS collects the
cache statistics from hardware performance counters and
combines the statistics (e.g., read requests, write requests,
writebacks, etc.) with predefined STT-RAM cache access
parameters to estimate the energy consumption.

Since the HALLS cache features retention time clus-
ters featuring different retention times in each cluster (8
banks/cluster in our case), it is not possible to set a single
uniform retention time for the cache during tuning. Thus,
we defined retention time tuning sets comprising of different
retention time settings to guide the tuning process. The
retention time tuning sets represent a mapping of virtual
banks (i.e., bank-sized chunks of data blocks) to physical
banks to enable sampling of the applications’ data with the
different retention times.

Algorithm 2 depicts the HALLS retention time tuning
algorithm, which takes as input the retention time sets and

the virtual banks, and outputs the virtual-to-physical bank
mapping table. For clarity, we illustrate the retention time
tuning process using Table 1, which shows the retention
time tuning for the four virtual banks depicted in Fig. 3b.
Assume that the best cache configuration—determined by
the cache configuration tuning algorithm—is 128KB (i.e.,
requiring four banks), 2-way associativity, and 64B line size.
The first iteration starts from Set 0, where VBank 0,1,2,3
are allocated to Cluster0, Cluster1, Cluster2, and Cluster3,
respectively. HALLS then samples the cache statistics for a
tuning interval and collects the execution statistics (line 2).

Thereafter, HALLS shifts the clusters by one as shown in
Table 1 and collects statistics after every iteration. In every it-
eration, HALLS stores bank-wise EDP of physical banks into
the VBank object. For each VBank, findPhysicalBank
(line 4) extracts the ClusterID and the BankID of the physi-
cal bank being sampled in the current iteration. Based on
the collected statistics, HALLS calculates the EDP of the
physical bank and stores it in VBank’s EDP array (line 5-
6). After the last iteration (Set 3), HALLS then selects the
least EDP retention time as the best for each VBank. We
note that there may be a limited availability of retention
times, and the best retention time may not be available
if multiple VBanks select a particular retention time (e.g.,
10ms for 12 banks when there are only 8 banks with 10ms).
In this case, findMin (line 10) searches the VBank’s EDP
array, checks if the physical banks in a cluster are available,
and selects the best-performing available cluster. With the
available ClusterID, HALLS then returns the ClusterID and
the allocated BankID (line 11-12). Although we illustrate
this process using only four VBanks (one for each retention
time cluster), eight VBanks per cluster can be used, when
necessary, to complete the tuning for the 1MB cache within
four sampling intervals.

4 EXPERIMENTAL SETUP

We evaluated and quantified the benefits of HALLS through
extensive simulations using an in-house modified version of
the GEM5 simulator [24]. We modified GEM51 to implement

1. The modified GEM5 version can be found at www.ece.arizona.
edu/tosiron/downloads.php

www.ece.arizona.edu/tosiron/downloads.php
www.ece.arizona.edu/tosiron/downloads.php
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TABLE 1: Retention time tuning example

Retention time
tuning set

VBank-Cluster
mapping

Retention time
tuning set

VBank-Cluster
mapping

Set 0

VBank0: Cluster0

Set 2

VBank0: Cluster2
VBank1: Cluster1 VBank1: Cluster3
VBank2: Cluster2 VBank2: Cluster0
VBank3: Cluster3 VBank3: Cluster1

Set 1

VBank0: Cluster1

Set 3

VBank0: Cluster3
VBank1: Cluster2 VBank1: Cluster0
VBank2: Cluster3 VBank2: Cluster1
VBank3: Cluster0 VBank3: Cluster2

both HALLS and DRS to represent prior work as described
in [9], [6]. To enable a stringent comparison to our approach,
we modeled DRS as a ”perfect” refresh scenario, meaning
that there were no extra misses caused by failed refreshes,
there were no unnecessary refreshes, and there were no
refresh-related latency overheads. We used the modeling
technique proposed in [25] to estimate MTJ characteristics
for different retention times. Based on the technique, we cal-
culated write pulse, write current, and MTJ resistance value
RAP and RP . With these parameters, we used NVSim [26]
to construct the STT-RAM cache for the different retention
times. We set the technology process to 22 nm to comply
with the proper memory cell size that can exhibit a retention
time as low as 100µs [25].

To model modern-day resource-constrained processors,
we simulated dual and quad-core systems with configura-
tions similar to processors such as the ARM Cortex A15, as
shown in Table 4. We used retention times from 100µs to
100ms, which we empirically determined to satisfy a range
of application requirements. We note that more retention
times can be used at the expense of tuning complexity.

Table 2 depicts the cache parameters for the base SRAM
and STT-RAM configurations. Table 3 depicts the leakage
power and dynamic energy for different configurations to
illustrate how these characteristics change with different
STT-RAM retention times and with respect to SRAM. The
configurations are denoted as xK-yW-zB, where x, y, and
z represent the cache size (in KB or MB), associativity (in
ways), and line size (in B), respectively. Note that these
statistics change for the different cache configurations in the
design space, but for brevity, we only show the numbers
for the configurations selected by our algorithm. We also
only show the energy statistics, since the write latency was
constant for different retention times as shown in Table 2,
and hit latency was 1 cycle across the different selected con-
figurations. The STT-RAM leakage power values resulted
from the peripheral/decode circuits and optimization for
read latency in our simulations.

We observed that in the 512K-16W-64B cache, 100µs
exhibited higher leakage power and dynamic energy than
other higher retention times. This observation was an ar-
tifact of NVSim that we attribute to its bank organization
for that configuration [26]. A smaller bank size was used
for that cache size; as such, additional leakage was incurred
from the peripheral circuits. For comparisons with HALLS,
we also modeled the SRAM using NVsim [26] with 22 nm
technology.

To represent a variety of workloads, we used twelve

benchmarks from the SPEC CPU2006 benchmark suite com-
piled for the ARM instruction set architecture, using the
reference input sets. We created ten multi-programmed
workload comprising of two and four randomly selected
benchmarks for the dual- and quad-core experiments,
respectively—with one benchmark running on each core—
ensuring that all twelve benchmarks used were represented
in the workloads. The workload composition is shown in
Table 5.

5 RESULTS AND COMPARISON TO PRIOR WORK

In both dual-core and quad-core scenarios, we evaluated
HALLS’s effectiveness by analyzing the L2 cache’s energy
as achieved by a HALLS cache compared to the SRAM
and DRS with the base configuration shown in Table 2.
We used a retention time of 10ms for DRS, since it was
considered the average best in prior work [9]. Prior work
has shown that an SRAM LLC can consume up to 24%
of a processor’s power [27]; thus, replacing SRAM with
STT-RAM can substantially improve the energy efficiency,
especially in resource-constrained systems. In general, due
to a substantial reduction in leakage power, both HALLS
and DRS significantly reduced the total energy as compared
to the SRAM. Apart from adapting the retention time to
applications’ runtime needs, HALLS also provides the im-
portant advantage of enabling a right-provisioned cache for
executing applications, thereby achieving substantial energy
savings as compared to DRS.

5.1 Energy and Latency Analysis

5.1.1 Dual-core system
Fig. 7a and 7b depict the energy and latency of HALLS and
DRS normalized to the SRAM in a dual-core system. On av-
erage across all the workloads, HALLS reduced the energy
by 60.53% and 50.28% compared to SRAM and DRS, respec-
tively. We observed substantial energy reductions specif-
ically for workload3, workload4 and workload10, which
contributed over 70% and 65% energy savings from SRAM
and DRS, respectively. These workloads include gobmk,
namd, hmmer, bzip2, and sjeng, which are compute-
intensive benchmarks [28] that exhibited short block life-
times. As such, HALLS allocated data blocks to clusters with
smaller retention time (i.e. 100µs and 1ms) and achieved
smaller latency and dynamic energy.

Conversely, HALLS performed worst in energy savings
for workload5 and workload9. The energy savings for
worklod5 were 20.13% and 9.65% compared to SRAM and
DRS, respectively. Similarly HALLS decreased the energy
for workload9 by 12.82% compared to SRAM and increased
by 9.59% compared to DRS. We attribute these reduced
energy savings to the fact thatworkload5 andworkload9 in-
clude write-intensive benchmarks such as soplex, h264ref ,
hmmer, and omnetpp [9], [11]. These benchmarks increased
the dynamic energy due to the write operations, and also
incurred additional leakage energy due to the long write
latencies.

Fig. 7b compares the latency achieved by HALLS with
DRS and SRAM. On average across all the workloads,
HALLS increased the latency by 1.90% compared to SRAM,
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TABLE 2: Cache parameters of SRAM and STT-RAM for the base cache configurations

Cache Configuration 1MB, 64B line size, 16-way
Memory Device SRAM STT-RAM-100µs STT-RAM-1ms STT-RAM-10ms STT-RAM-100ms

Write Energy (per access) 0.338nJ 0.392nJ 0.404nJ 0.419nJ 0.438nJ
Cache Hit Energy (per access) 5.318nJ 5.794nJ 5.794nJ 5.794nJ 5.794nJ

Leakage Power 3234.916mW 2200.032mW
Hit Latency (cycles) 2 2 2 2 2

Write Latency (cycles) 2 3 4 6 7

TABLE 3: Cache parameters of SRAM and STT-RAM for HALLS cache configuration results

Memory Device SRAM STT-RAM-100µs STT-RAM-1ms STT-RAM-10ms STT-RAM-100ms

128K-1W-16B
Write Energy (per access) 0.033nJ 0.033nJ 0.037nJ 0.041nJ 0.047nJ

Cache Hit Energy (per access) 0.035nJ 0.028nJ
Leakage Power 277.744mW 141.139mW 141.282mW 141.425mW 141.568mW

128K-1W-32B
Write Energy (per access) 0.059nJ 0.059nJ 0.066nJ 0.074nJ 0.084nJ

Cache Hit Energy (per access) 0.061nJ 0.051nJ
Leakage Power 288.864mW 186.218mW 186.49mW 186.761mW 187.033mW

128K-2W-32B
Write Energy (per access) 0.058nJ 0.056nJ 0.062nJ 0.07nJ 0.08nJ

Cache Hit Energy (per access) 0.117nJ 0.092nJ
Leakage Power 346.743mW 185.298mW

128K-1W-64B
Write Energy (per access) 0.112nJ 0.108nJ 0.12nJ 0.135nJ 0.153nJ

Cache Hit Energy (per access) 0.113nJ 0.09nJ
Leakage Power 325.697mW 196.05mW

128K-4W-64B
Write Energy (per access) 0.130nJ 0.150nJ 0.162nJ 0.177nJ 0.196nJ

Cache Hit Energy (per access) 0.519nJ 0.519nJ 0.519nJ 0.519nJ 0.520nJ
Leakage Power 507.852mW 363.607mW

256K-8W-64B
Write Energy (per access) 0.193nJ 0.212nJ 0.224nJ 0.24nJ 0.258nJ

Cache Hit Energy (per access) 1.526nJ 1.532nJ
Leakage Power 1181.176mW 858.677mW

512K-16W-64B
Write Energy (per access) 0.309nJ 0.375nJ 0.351nJ 0.367nJ 0.385nJ

Cache Hit Energy (per access) 4.871nJ 5.577nJ 4.953nJ 4.953nJ 4.953nJ
Leakage Power 2268.544mW 1880.816mW 1566.491mW 1566.491mW 1566.491mW

1M-1W-32B
Write Energy (per access) 0.179nJ 0.128nJ 0.135nJ 0.143nJ 0.153nJ

Cache Hit Energy (per access) 0.188nJ 0.12nJ 0.121nJ 0.121nJ 0.122nJ
Leakage Power 1745.328mW 762.778mW 763.444mW 764.109mW 764.775mW

1M-1W-64B
Write Energy (per access) 0.335nJ 0.244nJ 0.257nJ 0.273nJ 0.291nJ

Cache Hit Energy (per access) 0.344nJ 0.228nJ 0.229nJ 0.229nJ 0.23nJ
Leakage Power 1866.193mW 982.701mW 983.986mW 985.271mW 986.555mW

1M-2W-64B
Write Energy (per access) 0.329nJ 0.25nJ 0.263nJ 0.278nJ 0.292nJ

Cache Hit Energy (per access) 0.663nJ 0.464nJ 0.466nJ 0.467nJ 0.458nJ
Leakage Power 2276.707mW 1472.512mW 1475.038mW 1477.564mW 1456.263mW

1M-4W-64B
Write Energy (per access) 0.354nJ 0.278nJ 0.29nJ 0.305nJ 0.323nJ

Cache Hit Energy (per access) 1.415nJ 1.035nJ
Leakage Power 3228.278mW 2767.573mW

1M-8W-64B
Write Energy (per access) 0.285nJ 0.256nJ 0.268nJ 0.283nJ 0.301nJ

Cache Hit Energy (per access) 2.261nJ 1.841nJ
Leakage Power 2839.156mW 1432.367mW

TABLE 4: System configurations

System unit Experimental setup
CPU Modeled after ARM Cortex A15 @ 2GHz

L1 SRAM I/D-Cache 32KB, 64 line size, 4-way, LRU, MOESI

L2 STT-RAM Cache

Bank size: 32KB
Size: 128KB −→ 1MB; 2*
Line size: 16B −→ 64B; 2*

Associativity: 1-way −→ 16-way
Retention time:100µs, 100ms, 10ms, 1ms

Random replacement
Main memory 8GB DRAM

but decreased the latency by 2.94% compared to DRS.
HALLS decreased the latency by up to 9.23% and 12.09%

TABLE 5: Experimental workloads
Workload Dual-core Quad-core

Workload1 calculix-leslie3d calculix-h264ref-bzip2-leslie3d
Workload2 omnetpp-xalancbmk omnetpp-sjeng-gobmk-xalancbmk
Workload3 sjeng-hmmer sjeng-hmmer-mcf-namd
Workload4 gobmk-bzip2 gobmk-bzip2-leslie3d-soplex
Workload5 soplex-h264ref soplex-h264ref-hmmer-omnetpp
Workload6 mcf-xalancbmk sjeng-mcf-calculix-xalancbmk
Workload7 gobmk-h264ref gobmk-h264ref-calculix-mcf
Workload8 bzip2-soplex bzip2-soplex-namd-leslie3d
Workload9 hmmer-omnetpp hmmer-omnetpp-h264ref-xalancbmk

Workload10 namd-hmmer namd-hmmer-calculix-gobmk

compared to SRAM and DRS for workload4, which contains
gobmk and bzip2, both of which are read-intensive appli-
cations and exhibit short block lifetimes. Due to the STT-
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(a) HALLS and DRS energy normalized to SRAM (b) HALLS and DRS latency normalized to SRAM

Fig. 7: HALLS and DRS comparison in energy and latency normalized to SRAM in a dual-core system

(a) HALLS and DRS energy normalized to SRAM (b) HALLS and DRS latency normalized to SRAM

Fig. 8: HALLS and DRS comparison in energy and latency normalized to SRAM in a quad-core system

RAM’s short hit latency and HALLS’s ability to adapt the
configurations to the executing workloads’ requirements,
HALLS reduced the latency for five of ten workloads com-
pared to SRAM. However, forworkload5—a write-intensive
workload—HALLS increased the latency by up to 17.10%
and 4.07% compared to SRAM and DRS, representing a
substantial latency tradeoff in favor of the aforementioned
energy savings.

5.1.2 Quad-core system

Fig. 8a and 8b depict the energy and latency of both HALLS
and DRS normalized to SRAM in a quad-core system. On
average across the workloads, Fig. 8a shows that HALLS
reduced the average energy by 60.57% and 70.12%, as
compared to DRS and SRAM, respectively. Compared to
DRS, energy savings were over 85% for workload4 and
workload8. This improvement was possible due to the short
block lifetimes of the benchmarks featured in this work-
load. Both of these workloads featured bzip2 and leslie3d
(Table 5), both of which featured blocks that exhibited
short lifetimes. Unlike most other benchmarks, both bzip2
and leslie3d also had low increase in miss rates for low
retention times compared to the higher retention times. As
such, HALLS was able to use a short retention time, while
also adapting the cache configurations to the benchmarks’
requirements. In most cases, HALLS’s adaptability reduced
the energy by more than 50%. These results illustrate
HALLS’s ability to adapt STT-RAM configurations to the

variety of execution requirements exhibited by applications
in multicore systems.

We note that HALLS’s substantial energy reduction was
at the expense of some latency overhead. Fig. 8b shows
that HALLS increased the latency by 5.16% and 1.47%, as
compared to SRAM and DRS, respectively. Latency over-
heads were up to 14.25% for workload5 as compared to
SRAM. These latency overheads occurred because HALLS
resulted in additional misses for several data blocks whose
lifetimes exceeded the available retention time. We also ob-
served that another important factor that caused the latency
overhead was the workloads’ reactions to the STT-RAM’s
long write latency characteristic. We observed that the most
latency degradation occurred with workloads that featured
write-intensive applications. For instance, workload5 con-
tained soplex, h264ref , and omnetpp, which are charac-
terized as write-intensive benchmarks [9], [11]. Similarly,
workload3 also featured three write-intensive benchmarks:
sjeng, hmmer, and mcf .

Compared to DRS, HALLS’s latency overheads were
down to 6.97% and 8.22% for workload3 and workload5,
respectively. We reiterate that considering our target of
resource-constrained systems, the average 1.47% latency
overhead can be considered an acceptable tradeoff for the
substantial 60.57% energy savings compared to DRS.

5.1.3 Summary of HALLS’s latency behaviors
We observed that workloads exhibited similar latency be-
havior in HALLS for both dual-core and quad-core systems.
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(a) HALLS and DRS energy normalized to SRAM (b) HALLS and DRS latency normalized to SRAM

Fig. 9: Energy and latency comparison of HALLS, DRS, and SRAM with adaptable cache configurations in the quad-core
system. To illustrate the benefits of retention time adaptability, we assume adaptable cache configurations for all three
techniques, but HALLS features adaptable retention time in addition.

We observed a strong correlation between HALLS’s perfor-
mance (compared to SRAM and DRS) and the write intensi-
ties and cache block lifetimes of the benchmarks featured
in executing workloads. To illustrate these observations,
Table 6 depicts how HALLS’s average latency compared
with SRAM and DRS for workloads featuring read vs write
intensive benchmarks, and short vs. long block lifetimes.
We defined a benchmark as having short block lifetimes if
the benchmark’s data blocks were not required in the cache
(i.e., time between successive references) beyond 1ms on
average, while benchmarks with long block lifetimes were
required in the cache for more than 1ms.

While SRAM outperformed HALLS for write-intensive
workloads, SRAM’s superiority over HALLS for latency was
less visible for workloads that had short block lifetimes.
This behavior is exemplified in the dual-core system by
workload5 and workload9 (Table 5). All four benchmarks in
these two workloads are write-intensive benchmarks. How-
ever, hmmer (in workload9) exhibits shorter cache block
lifetimes than omnetpp, soplex, and h264ref . Thus, com-
pared to SRAM, HALLS increased the latency forworkload9
by a smaller amount (11.83%) than workload5 (17.10%).

We also observed this behavior between the dual- and
quad-core systems. For workload5, for example, HALLS
increased the latency compared to SRAM by 17.10% and
14.25% in the dual- and quad-core systems, respectively. In
the dual-core system, workload5 comprises of two write-
intensive benchmarks (soplex and h264ref ) with long block
lifetimes. The introduction of hmmer, which has short block
lifetimes, to the mix for the quad-core system caused a
latency reduction, even though the other three benchmarks
had longer cache block lifetimes. We also observed that
HALLS performed best with respect to latency for read-
intensive benchmarks with shorter cache block lifetime. For
instance, workloads featuring bzip2, gobmk, or xalancbmk
(workload2, 4, 6, 7, 8) exhibited small latency overheads in
both the dual-core (1.28% on average) and quad-core sys-
tems (1.66% on average) (Fig. 7b and 8b). As shown in
Table 2, in the same cache configuration, write latency
in STT-RAM is generally higher than SRAM, and the la-
tency grows as the retention time increases. As such, read-
intensive benchmarks that issue fewer write requests would

suffer less latency overheads as compared to SRAM. If
the benchmark also exhibits shorter cache block lifetime,
HALLS can adapt to a shorter retention time requirement
without substantial overheads from cache misses, thereby
taking advantage of shorter write latency per access.

5.1.4 Benefits of retention time adaptability
To explore the benefits of exclusively adapting the retention
time using our approach in a shared L2 cache, we also
implemented and analyzed DRS and SRAM with adaptable
cache configurations as determined by the HALLS configu-
ration tuning algorithm. That is, DRS’s retention time was
kept constant, while its (and SRAM’s) cache configurations
were adapted to the different applications’ requirements
similar to HALLS.

Fig. 9a depicts the energy and latency comparison for
HALLS and DRS, normalized to SRAM, given adaptable
cache configurations for all three techniques. On average
across all the workloads, HALLS reduced the energy by
31.83% and 9.34% as compared to SRAM and DRS, respec-
tively. We observed energy savings (compared to DRS) as
high as 21.01% and 20.84% for workload4 and workload8,
respectively. As described earlier, we attribute these energy
savings to the benchmarks’ short block lifetimes. HALLS
took advantage of the energy benefits of smaller retention
times that more closely match the applications’ needs.

With the same configuration across HALLS, SRAM,
and DRS, HALLS (with variable retention times) incurred
smaller latency overhead than when compared to static
SRAM and DRS configurations. As shown in Fig. 9b, on av-
erage, HALLS increased the latency by 3.02% as compared

TABLE 6: Summary of latency behaviors in HALLS

Benchmarks Intensity Cache block
lifetime

HALLS
vs SRAM

HALLS
vs DRS

hmmer,leslie3d,
sjeng write short +4.29% +0.45%

soplex,h264ref,
mcf,omnetpp write long +13.03% +5.67%

bzip2,xalancbmk,
gobmk read short -5.44% -8.18%

calculix,namd read long +2.68% -1.67%
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to SRAM, and exhibited nearly the same latency on average
(with a marginal 0.03% improvement) as compared to DRS.
Compared to DRS, HALLS marginally decreased the latency
for seven out of ten workloads with the highest reduction
at 1.28% for workload8. The highest latency overhead was
5.48% for workload5. Apart from workload5, other work-
loads’ latency overheads were below 1%.

5.2 HALLS Overheads:

HALLS overheads result from: 1) hardware overhead: the
tuner—including the datapath for energy estimation—and
the counter (Section 3.2); 2) time overhead, including the
runtime tuning overhead, which includes the time it takes
to determine the best configuration, and context switching
overheads when swapping cache data during reconfigura-
tion.

We estimated the tuner overhead using Verilog and
analyzed using Synopsys Design Compiler. The estimated
area overhead was 0.0145 mm2, and the dynamic and
leakage power were 28.04 mW and 422.68 µW, respectively.
Compared to an ARM Cortex-A15 processor [2], the tuner’s
overhead is negligible (approximately 0.095%). The counter
required 4 bits per 64B block, resulting in a 0.78% overhead.
We assume the counter is stored in the STT-RAM along with
other meta-data (e.g., tags), in order to further reduce area
and power overheads.

We also evaluated the number of tuning intervals re-
quired to determine the best configuration for the different
applications. Overall, the highest number of intervals re-
quired was seven to determine the best cache configuration.
Retention time tuning took a constant of four tuning inter-
vals for all applications, since all the retention times were
sampled. Given our tuning interval of 10M instructions,
the tuning overheads amortize rapidly over the rest of the
application’s execution. In the worse case, context switching
incurred a latency of 114688 cycles and an energy overhead
of 14.844 µJ.

6 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we propose a highly adaptable last level STT-
RAM cache (HALLS) as a viable option for mitigating the
overheads of implementing the STT-RAM in last level
caches (LLC). HALLS allows the LLC’s configurations to
be dynamically adapted to executing applications’ cache
configuration and retention time requirements. We designed
HALLS as a 1MB L2 cache organized as 32 physical banks.
The 32 banks are organized in 8-bank clusters, with each
cluster featuring a different retention time. During runtime,
data blocks are placed in the physical banks that best suits
the applications’ retention time requirements. Furthermore,
the cache configuration can be adapted to suit executing
applications’ needs. Experiments reveal that in a quad-
core system, HALLS reduced the average energy by 60.57%
compared to prior work, while introducing 1.47% of latency
overhead. For future research, we plan to explore the design
space of retention times for multithreaded applications and
also explore techniques for reducing runtime overheads us-
ing history-based prediction of the best cache configurations
and retention times.
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