
MirrorCache: An Energy-Efficient Relaxed Retention L1
STTRAM Cache

Kyle Kuan and Tosiron Adegbija
{ckkuan,tosiron}@email.arizona.edu

Department of Electrical & Computer Engineering
University of Arizona, Tucson, AZ, USA

ABSTRACT
Spin-Transfer Torque RAM (STTRAM) is a promising alternative to
SRAMs in on-chip caches, due to several advantages, including non-
volatility, low leakage, high integration density, and CMOS compat-
ibility. However, STTRAMs’ wide adoption in resource-constrained
systems is impeded, in part, by high write energy and latency. A
popular approach to mitigating these overheads involves relaxing
the STTRAM’s retention time, in order to reduce the write latency
and energy. However, this approach usually requires a dynamic
refresh scheme to maintain cache blocks’ data integrity beyond the
retention time, and typically requires an external refresh buffer. In
this paper, we proposemirrorCache—an energy-efficient, buffer-free
refresh scheme. MirrorCache leverages the STTRAM cell’s compact
feature size, and uses an auxiliary segment with the same size as
the logical cache size to handle the refresh operations without the
overheads of an external refresh buffer. Our experiments show that,
compared to prior work, mirrorCache can reduce the average cache
energy by at least 39.7% for a variety of systems.

CCS CONCEPTS
• Computer systems organization → Processors and mem-
ory architectures;

KEYWORDS
Spin-Transfer Torque RAM (STTRAM); cache; retention time; non-
volatile memory; energy efficient systems; write energy; write la-
tency; emerging memory technologies.
ACM Reference format:
Kyle Kuan and Tosiron Adegbija. 2019. MirrorCache: An Energy-Efficient
Relaxed Retention L1 STTRAM Cache. In Proceedings of ACM Great Lakes
Symposium on VLSI, Tysons Corner, VA, USA, May 9–11, 2019 (GLSVLSI ’19),
4 pages.
https://doi.org/10.1145/3299874.3318022

1 INTRODUCTION
The Spin-Transfer Torque RAM (STTRAM) has emerged as a promis-
ing alternative for replacing traditional SRAMs in future on-chip

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6252-8/19/05. . . $$15.00
https://doi.org/10.1145/3299874.3318022

caches. STTRAMs offer several attractive characteristics, such as
non-volatility, low leakage, high integration density, and CMOS
compatibility. However, some of STTRAM’s most important chal-
lenges include its long write latency and high write energy [1, 2].
These challenges are attributed, in part, to the STTRAM’s long
retention time, which refers to how long data is retained in the
memory in the absence of power [3]. Intrinsically, the retention
time can be as long as 10 years. However, long retention time is typ-
ically over-provisioned for most cache data blocks [3]. Data blocks
typically only need to remain in the cache for less than 1s before
they are either replaced or invalidated. Thus, a viable STTRAM
optimization is to substantially relax its retention time, thereby
reducing the STTRAM’s write latency and energy [3].

Even though relaxed retention time enables substantial energy
and latency savings, several blocks may still need to remain in the
cache beyond the retention time. To maintain the data correctness
beyond the retention time, different techniques [1, 2] have been
proposed to dynamically refresh the data block after the retention
time has elapsed. Without loss of generality, we collectively refer to
these techniques as the dynamic refresh scheme (DRS). DRS typically
writes a data block to a refresh buffer and back into the STTRAM
cache to restart its retention clock in the cache. DRS also imposes
overheads as a result of the buffer (leakage and area overheads) and
the refresh operations (dynamic energy and time overheads). Our
goal in this work is to mitigate these overheads.

We propose and explore the idea of mirrorCache as an energy-
efficient relaxed retention L1 STTRAM cache that substantially miti-
gates the refresh buffer overheads.MirrorCache leverages STTRAM’s
density to enable an in-cache refresh function that eliminates the
need for an external buffer. MirrorCache features a main segment
and an equal-sized auxiliary segment. The cache’s effective capac-
ity is the size of the main segment. Rather than writing/reading
refreshed data blocks to/from an external buffer as in prior work,
mirrorCache writes to its auxiliary segment, and cache blocks can
be fetched from either the main or auxiliary segments. Thus, mirror-
Cache eliminates the overheads concomitant to the external buffer
(including its peripheral circuitry), and also substantially reduces
the energy accrued during each refresh operation.

Using experiments with STTRAM caches designed with different
retention times, our results reveal that mirrorCache reduces the
overall cache energy by at least 39.7% on average, compared to
prior work, without introducing substantial overhead. Our results
also show that mirrorCache reduces the energy as compared to
SRAM by at least 19.8%, on average, while trading off the latency
for energy savings.

https://doi.org/10.1145/3299874.3318022
https://doi.org/10.1145/3299874.3318022

0

50000

100000

150000

200000

250000

300000

350000

400000

100us 1ms 10ms 100ms

N
um

be
r o

f r
ef

re
sh

es

astar
bzip2
calculix
h264ref
hmmer
leslie3d
libquantum
mcf
namd
omnetpp

Figure 1: Number of cache block refreshes for SPEC
CPU2006 benchmarks

2 BACKGROUND AND RELATED WORK
STTRAM uses a magnetic tunnel junction (MTJ) cell as the binary
storage cell. MTJ contains two ferromagnetic layers separated by
an oxide barrier/tunnel layer [4, 5]. Updating the MTJ cell’s data
bits relies on the magnetization switching of MTJ’s free layer [4].
As a result, it takes more time and energy than conventional SRAM
to change the free layer’s magnetization state [5].

An approach for reducing the write energy and latency is to
substantially relax STTRAM’s data retention time, since it directly
impacts the write energy and latency. The retention time can be
relaxed by decreasing the MTJ cell’s thermal stability or reducing
the planar area [3]. Given a relaxed retention time STTRAM cache,
dynamic refresh schemes (DRS) have been proposed to refresh data
blocks that must remain beyond the retention time [1–3].

DRS incurs energy overheads due to the large number of re-
freshes and the need for a refresh buffer. Several techniques have
been proposed to reduce the number of refreshes. For example, Jog
et al. [1] refreshed only the first eight most recently used (MRU)
blocks, and used awrite buffer to bridge the surge of refresh requests
and long STTRAM write time. Other techniques used compiler-
assisted techniques to make refresh more efficient (e.g., [6]). How-
ever, DRS still requires a buffer to temporarily hold data blocks
during refresh. Our work aims to minimize the overheads of DRS
by leveraging the STTRAM’s high density to eliminate the refresh
buffer and its overheads. In effect, mirrorCache substantially re-
duces the leakage power and overall cache energy compared to
DRS.

3 MIRRORCACHE
3.1 Cache block refresh analysis
To demonstrate the significance of the number of refreshed blocks
and interplay with cache retention time, we analyzed the number
of cache block refreshes required to maintain data correctness in
different SPEC CPU2006 benchmarks. Figure 1 depicts the number
of refreshes for different SPEC CPU2006 benchmarks running on
32KB L1 caches with retention times: 100µs, 1ms, 10ms, and 100ms.

As expected, smaller retention times, which consume less write
energy andwrite latency, require substantiallymore refreshes. How-
ever, even though a longer retention time reduces the number of
refreshes (e.g., the 100ms cache reduces the number of refreshes

by 15x, on average), this comes at the expense of higher write en-
ergy and latency. Thus, it is important to minimize the overheads
associated with the refresh operations.

3.2 Overview of mirrorCache
Figure 2 illustrates mirrorCache’s operation. MirrorCache com-
prises of two equal-sized segments with identical organizations: the
main and auxiliary (or mirror) segments. When a block must be re-
freshed, it is written to the auxiliary segment, and future references
to the block are serviced from the auxiliary segment. If a block in
the auxiliary segment needs to be refreshed, it is written back to the
main segment and referenced from there. Block replacements are
performed using normal replacement policies, e.g., least-recently
used (LRU) or pseudo-LRU [7].

MirrorCache trades off physical area in favor of refresh efficiency,
and offers a few advantages compared to DRS. First, mirrorCache
eliminates the need for a refresh buffer, thereby eliminating the
buffer’s leakage power. Second, since the auxiliary segment is of
equal size to themain segment, mirrorCache eliminates any chances
of an oversubscribed buffer when several blocks must be refreshed
simultaneously [8]. Third, since data can be directly fetched from
the auxiliary segment, pipeline stalls are unnecessary when ac-
cessing data that is being refreshed. To prevent the overheads of
tag comparisons for a larger cache, the tag array remains in 32KB
setting, wherein a single status bit determines whether a block
request is serviced from the main or auxiliary segment. Finally,
mirrorCache reduces the dynamic energy incurred by each refresh
operation since the writes to and reads from the external buffer are
eliminated.

3.3 Identifying blocks to refresh
For simplicity, we opted to simply refresh all the blocks with longer
lifetimes than the retention time (details in Section 4.2). To deter-
mine if and when blocks must be refreshed, we employ a refresh
counter for each block, similar to prior work [2]. We implement the
counter as a four-state finite state machine (FSM), resulting in a
2-bit per block overhead. The counter has a clock periodC = 1

P ∗R,
where R is the retention time, P = S − 1, and S is the number of
counter states (four in our case). When a block is written into the
cache, the cache controller initializes the counter to zero, enables it,
and then writes the block to the mirror segment when the counter’s
state reaches P .

Block 1

Block 2

Block 3

Block 4

Block 5

Main
segment

STTRAM cache Mirrored STTRAM blocks

Block 1’

Block 2’

Block 3’

Block 1’

Block 2’

Block 3’

Block 4’

Auxiliary
segment

Figure 2: Illustration of mirrorCache

Table 1: Cache parameters of SRAM and STTRAM with different retention times

Cache Configuration SRAM: 32KB, STTRAM: 64KB physical size, 64B line size, 4-way; Buffer: 1KB
Memory device SRAM STTRAM-100µs STTRAM-1ms STTRAM-10ms STTRAM-100ms STTRAM-buffer

Write energy (per access) 0.125nJ 0.095nJ 0.107nJ 0.122nJ 0.141nJ 0.156nJ
Hit energy (per access) 0.494nJ 0.3nJ 0.3nJ 0.3nJ 0.3nJ 1.089nJ

Leakage power 186.264mW 154.686mW 285.666mW
Hit latency (cycles) 2 1 1 1 1 1

Write latency (cycles) 2 3 4 5 7 1

Block 1

Block 2

Block 3

Block 4

Block 5

Status array for
Main/Auxiliary
selection

Block 1’

Block 2’

Block 3’

Block 5’

Auxiliary
segment

Block 4

0

1

1

1

0

Refresh demux

“0” when inserting
a new block CPU write, or refill

from lower level

Read/Refresh Mux

Figure 3: mirrorCache architecture

3.4 MirrorCache architecture and overhead
Figure 3 illustrates mirrorCache’s architecture and datapath for the
main and auxiliary segments. To indicate the segment holding a
cache block, we use a status array comprising of a status bit per
block. Thus, the array size is equal to the number of logical cache
blocks. For example, a 32KB cache would have a 512-element array,
with one bit per element. When a block is inserted by CPU or
refilled from lower level memory, the block would be allocated to
the main segment, and the status bit is set to 0. When the counter
FSM triggers a refresh, the status bit is read and inverted, indicating
that the block is in the auxiliary segment; the datapath is then
established for the block to be written to the auxiliary segment.
Similarly, a refresh from the auxiliary segment writes the block
into the main segment, and the status bit is set back to 0. For a
fetch request, the status array indicates the active segment for the
block; tag comparison is then performed as usual. The status array
can be implemented in relaxed retention time STTRAM in order
to easily integrate into the STTRAM cache. Overall, the overheads
of implementing mirrorCache are from the status array and the
muxes, as shown in Figure 3.

4 SIMULATION RESULTS
4.1 Experimental Setup
We modified GEM5 [9] to model both mirrorCache and DRS, for
comparison to prior work. We used configurations similar to the
ARM Cortex A15 [10], featuring a 2GHz clock frequency, and a
private L1 cache with separate instruction and data caches. We
focused on the data cache, since our analysis revealed that the
target refresh problem was predominant in the data cache.

To explore the benefits of mirrorCache in various retention time
scenarios, in comparison to prior work (DRS) and SRAM, we used
a 32KB cache with 64B line size and 4-way set associativity. For

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

m
irr

or
Ca

ch
e

no
rm

al
ize

d
to

 D
RS

100us 1ms 10ms 100ms

Figure 4: mirrorCache energy normalized to DRS (baseline
of one)

a rigorous comparison, we implemented DRS as a best-case amal-
gam of prior methods assuming an ideal refresh scenario. That is,
blocks are only refreshed if they are reused, no blocks expire be-
cause of insufficient refresh buffer space, and buffer bandwidth does
not constitute a bottleneck. DRS featured a fully-associative 1KB
STTRAM buffer, which is appropriately scaled from prior work [1].
The buffer’s dynamic energy was 1.245nJ per refresh and 285.67mW
leakage power from the buffer’s peripherals and high associativity.

We considered four retention times: 100µs, 1ms, 10ms, and 100ms,
which we empirically found to be sufficient for the range of con-
sidered benchmarks. We modeled the retention times using MTJ
modeling techniques proposed in [11] and used NVSim [12] to con-
struct the STTRAM cache for the different retention times. Table
1 depicts the STTRAM and SRAM cache parameters used in our
experiments as obtained from the modeling tools and techniques.
We used ten SPEC CPU2006 benchmarks [13], compiled for the
ARM instruction set architecture. Each benchmark was run using
the reference input sets for 100M instructions after fast-forwarding
for 100M instructions.

4.2 Results
In this section, we present the results of our experiments to illustrate
the benefits of mirrorCache as compared to DRS. Throughout this
section, we refer to our proposed work as mirrorCache, and a cache
featuring the dynamic refresh scheme simply as DRS.

4.2.1 Energy Savings. Overall, mirrorCache substantially re-
duced the refresh energy compared to DRS. Unlike DRS, where
the average refresh energy for each application was approximately
47% of the total energy, mirrorCache reduced the refresh energy to
an infinitesimal portion (< 1%) of the total energy, thereby resulting
in substantial cache energy savings.

Figure 4 depicts the overall cache energy of mirrorCache normal-
ized to DRS. On average across all the benchmarks, mirrorCache

0
0.2
0.4
0.6
0.8

1
1.2
1.4

m
irr

or
Ca

ch
e

no
rm

al
ize

d
to

 D
RS 100us 1ms 10ms 100ms

Figure 5: mirrorCache latency normalized to DRS (baseline
of one)
reduced the cache’s energy by 39.7%, 44.9%, 45.7%, and 47.2% for the
100µs, 1ms, 10ms, and 100ms caches, respectively. Energy savings
were up to 52.8% for leslie3d on the 100ms cache. We observed that
mirrorCache was more beneficial in higher retention time caches.
Since fewer refreshes occur in high retention caches, the refresh
buffer in DRS was over-provisioned and wasted energy.

We observed that astar and namd improved the least over DRS
by 34.7% and 35.3% in the 100µs cache. These two benchmarks’ data
blocks were frequently updated, had high dynamic read and write
activities, and low refresh activity. Thus, the energy consumption
of these benchmarks was dominated by the dynamic energy. How-
ever, by eliminating the refresh buffer, mirrorCache still achieved
substantial energy savings for these benchmarks despite their low
refresh activity.

4.2.2 Latency. We also evaluated mirrorCache’s access latency
benefits compared to DRS. In general, mirrorCache only achieved
marginal latency benefits compared to DRS due to the additional
write latency of the larger physical cache (Table 1) and the circuits
to check the status bits.

Figure 5 depicts mirrorCache’s latency normalized to DRS. For
the 1ms , 10ms , and 100ms caches, mirrorCache achieved similar la-
tency to DRS. For the 100µs cache, however, mirrorCache degraded
the latency for majority of the benchmarks by 14.93% on average,
and by up to 24.29% for astar. We observed that in the 100µs reten-
tion time, the latency overhead was dominated by the additional
decoding circuits due to mirrorCache’s increase in physical size.
For the longer retention times, however, the overhead was domi-
nated by the STT-RAM cell’s write latency, which was equivalent
for both DRS and mirrorCache, despite mirrorCache’s increase in
size. Across all benchmarks, calculix and leslie3d suffered the least
latency degradation of 1.25% and 4.57%, respectively, in the 100µs
cache. We observed that calculix had few writes compared to other
benchmarks and leslie3d’s latency was dominated by the miss la-
tency. As such, neither benchmark was significantly affected by
mirrorCache’s increase in write latency.

4.2.3 Comparison to SRAM. We summarize the results of mir-
rorCache’s comparison to SRAM, but omit graphs due to space
constraints. On average, mirrorCache reduced the overall cache en-
ergy by 34.7%, 31.2%, 27.2%, and 19.8% for the 100µs, 1ms, 10ms, and
100ms caches, respectively, as compared to SRAM. MirrorCache
reduced the overall cache latency by 17.5% and 6.8% for the 100µs
and 1ms, respectively, as compared to SRAM. For higher retention
times (10ms and 100ms), however, mirrorCache increased the la-
tency by 3.8% and 25.2%, respectively, with the most substantial

increases occurring for write-intensive benchmarks like omnetpp
and h264ref. We attribute these observations to STTRAM’s long
write latency (Table 1). We observed similar trends for DRS, so this
was not a deficiency unique to mirrorCache.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we proposedmirrorCache as an energy efficient design
for mitigating the overheads of utilizing a refresh buffer in relaxed
retention STTRAM caches. MirrorCache leverages the STTRAM’s
high density to feature a main segment and an auxiliary segment
that enables in-cache refresh operations without the need for an
external buffer. Results show that, compared to prior related work,
mirrorCache reduced the cache energy, on average, by 39.7%, 44.9%,
45.7%, and 47.2% for the 100µs, 1ms, 10ms, and 100ms caches, re-
spectively. Compared to an SRAM cache, mirrorCache reduced the
cache energy by 34.7%, 31.2%, 27.2%, and 19.8% for the 100µs, 1ms,
10ms, and 100ms caches, respectively. For future work, we plan to
explore mirrorCache’s benefits in complex multi-level caches, and
develop techniques for mitigating the latency overheads compared
to SRAM.

REFERENCES
[1] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and C. R. Das, “Cache

revive: Architecting volatile stt-ram caches for enhanced performance in cmps,”
in DAC Design Automation Conference 2012, June 2012, pp. 243–252.

[2] Z. Sun, X. Bi, H. Li, W. F. Wong, Z. L. Ong, X. Zhu, and W. Wu, “Multi retention
level stt-ram cache designs with a dynamic refresh scheme,” in 2011 44th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), Dec 2011, pp.
329–338.

[3] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan, “Relaxing
non-volatility for fast and energy-efficient stt-ram caches,” in 2011 IEEE 17th
International Symposium on High Performance Computer Architecture, Feb 2011,
pp. 50–61.

[4] Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L.-C. Wang, and Y. Huai,
“Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer
torque random access memory,” Journal of Physics: Condensed Matter, vol. 19,
no. 16, p. 165209, 2007.

[5] C. Xu, D. Niu, X. Zhu, S. H. Kang, M. Nowak, and Y. Xie, “Device-architecture
co-optimization of stt-ram based memory for low power embedded systems,” in
2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Nov
2011, pp. 463–470.

[6] K. Qiu, J. Luo, Z. Gong, W. Zhang, J. Wang, Y. Xu, T. Li, and C. J. Xue, “Refresh-
aware loop scheduling for high performance low power volatile stt-ram,” in 2016
IEEE 34th International Conference on Computer Design (ICCD), Oct 2016, pp.
209–216.

[7] H. Ghasemzadeh, S. Mazrouee, and M. R. Kakoee, “Modified pseudo lru replace-
ment algorithm,” in 13th Annual IEEE International Symposium and Workshop on
Engineering of Computer-Based Systems (ECBS’06). IEEE, 2006, pp. 6–pp.

[8] J. Ahn, S. Yoo, and K. Choi, “Dasca: Dead write prediction assisted stt-ram cache
architecture,” in 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), Feb 2014, pp. 25–36.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News,
vol. 39, no. 2, pp. 1–7, Aug. 2011.

[10] “Cortex-A15 Processor.” [Online]. Available: https://www.arm.com/products/
processors/cortex-a/cortex-a15.php

[11] K. C. Chun, H. Zhao, J. D. Harms, T. H. Kim, J. P. Wang, and C. H. Kim, “A scaling
roadmap and performance evaluation of in-plane and perpendicular mtj based
stt-mrams for high-density cache memory,” IEEE Journal of Solid-State Circuits,
vol. 48, no. 2, pp. 598–610, Feb 2013.

[12] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory,” Trans. Comp.-Aided
Des. Integ. Cir. Sys., vol. 31, no. 7, pp. 994–1007, Jul. 2012.

[13] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH Comput. Archit.
News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

https://www.arm.com/products/processors/cortex-a/cortex-a15.php
https://www.arm.com/products/processors/cortex-a/cortex-a15.php

	Abstract
	1 Introduction
	2 Background and Related Work
	3 MirrorCache
	3.1 Cache block refresh analysis
	3.2 Overview of mirrorCache
	3.3 Identifying blocks to refresh
	3.4 MirrorCache architecture and overhead

	4 Simulation Results
	4.1 Experimental Setup
	4.2 Results

	5 Conclusions and Future Work
	References

