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Abstract—Adaptable computing is an increasingly important paradigm that specializes system resources to variable application
requirements, environmental conditions, or user requirements. Adapting computing resources to variable application requirements (or
application phases) is otherwise known as phase-based optimization. Phase-based optimization takes advantage of application
phases, or execution intervals of an application that behave similarly, to enable effective and beneficial adaptability. In order for
phase-based optimization to be effective, the phases must first be classified to determine when application phases begin and end, and
ensure that system resources are accurately specialized. In this paper, we present a survey of phase classification techniques that
have been proposed to exploit the advantages of adaptable computing through phase-based optimization. We focus on recent
techniques and classify these techniques with respect to several factors in order to highlight their similarities and differences. We divide
the techniques by their major defining characteristics—online/offline and serial/parallel. In addition, we discuss other characteristics
such as prediction and detection techniques, the characteristics used for prediction, interval type, etc. We also identify gaps in the
state-of-the-art and discuss future research directions to enable and fully exploit the benefits of adaptable computing.

Index Terms—Phase classification; adaptable computing; workload characterization; variable program behavior; dynamic
optimization; edge computing; multithreaded applications; big data; emerging applications
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1 INTRODUCTION

Much prior research has shown that applications have
variable resource requirements throughout execution. Thus,
for optimal execution, system resources (e.g., memory re-
sources, clock frequency, functional units, etc.) must adapt
to changes in application resource requirements. To enable
this adaptability, application phases [31] [94] specify execution
intervals—typically measured by number of instructions
executed or time periods—that exhibit similar execution
behavior. Since a phase typically exhibits stable execution
characteristics, the resource requirements for that phase are
also stable [9] [43] [59] [95] [101]. Phase classification groups
intervals with similar characteristics to form phases, and
represents a vital first step in adaptable computing [48]
[57] [58] [75] [86] [93] [101] [108]. Phase classification offers
several benefits for adaptable computing in the form of ef-
fective configuration of system components (at design time
or during runtime), scheduling in heterogeneous systems,
design-time rapid system evaluation and simulation, etc.

Fig. 1 illustrates phase classification in the context of
an application’s execution. Rather than using a single con-
figuration of system resources throughout the application’s
execution, phase classification determines the different ap-
plication phases, such that each phase can be executed using
the system configuration that most closely meets the phase’s
resource requirements. Prior work has shown that adapting
system resources to application phases—phase-based opti-
mization—enables much higher optimization potential than
application-based optimization [2] [43] [48] [59] [60] [84] [92]
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Fig. 1: Illustration of phase-based execution

[93] [96] [97]. Phase-based optimization evaluates an appli-
cation’s characteristics and determines the best system con-
figurations that meet each phase’s execution characteristics.
For example, Gordon-Ross et al. [43] found that phase-based
cache optimization could yield 37% and 20% improvements
in performance and energy usage, respectively, compared to
application-based execution.

Similarly, several other optimizations depend on phase
classification [32] [59] [60] [93] [75] [57] [58] [86] [101].
For example, Khan et al. [57] used phase classification to
facilitate thread-to-core assignment in asymmetric multicore
systems, in order to optimize throughput, power, or perfor-
mance per watt. Dhodapkar et al. [32] used adaptable in-
struction caches to meet each phase’s instruction execution
needs for optimized performance efficiency.
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Other optimizations, such as just-in-time compilers [6]
[7], dynamic instruction optimizations (e.g., [8] [70]), and
performance bottleneck analysis [42] also rely on accurate
phase classification. Furthermore, phase classification en-
ables rapid system evaluation and shorter simulation time
during research. Rather than completely simulating an ap-
plication, only a few phases that represent the full applica-
tion’s execution characteristics are simulated [95] [96].

Since phase classification is so important in the anal-
ysis and optimization of modern computing systems and
applications, this paper focuses on surveying recent ad-
vances in phase classification. Several phase classification
techniques have been proposed that cater to different system
scenarios and tradeoffs. Phase classification techniques are
usually categorized by the application characteristics used
for classifying the phases. For example, Sherwood et al. [95]
found that an application’s behavior is directly linked to
the application code. The authors used the frequency of
basic block execution—called basic block vectors (BBVs)—to
classify an application’s phases. A basic block is a section of
code with one entry and one exit that is executed from start
to finish.

Dhodapkar et al. [33] compared three phase classification
techniques that use instruction working sets [32], basic block
vectors (BBVs) [96] [97], and conditional branch counts [9].
The authors found that the three techniques agree on phases
85% of the time; BBVs, however, were the most effective
at detecting performance changes, finding stable phases,
and providing higher sensitivity, i.e., higher probability that
the phases are accurately predicted [45]. The authors also
found that classifying phases using instruction working sets
identified phases that were 30% longer than using BBVs.
Gu et al. [46] presented an overview of various phase
classification techniques and metrics, such as the minimum
possible size of detected phases, online/offline phase classi-
fication, and types of application characteristics used for the
classification.

In this paper, we discuss recent phase classification
techniques, focusing on the advances since the techniques
discussed in [33] and [46]. We survey the phase classification
techniques with respect to the characteristics they analyze,
the types of applications for which the techniques are ef-
fective, when phases are classified, etc. We specifically em-
phasize discussions of new phase classification techniques
for multithreaded applications, which have become more
mainstream in the past few years. Finally, we explore the
gaps in the state-of-the-art, and propose future research
directions for addressing those gaps.

The remainder of the paper is organized as follows:
in Section 2, we consider some important uses of phase
classification. In Section 3, we present a brief overview of
phase classification techniques presented prior to 2006. In
Section 4 we present a taxonomy of phase classification, and
discuss some defining characteristics of phase classification
techniques in Section 5. We discuss online and offline phase
classifications techniques in Sections 6 and 7, respectively.
Within each of these sections, we separate the techniques
into those developed for serial and parallel applications.
Even though phase classification has been widely studied,
there are still some major gaps in the existent techniques,
with respect to multithreaded applications, big data appli-

cations, Internet of Things computing paradigms, etc. Thus,
in Section 8, we discuss some of these current gaps and
future research directions to address them.

2 MOTIVATIONS FOR PHASE CLASSIFICATION

Several optimization techniques rely on accurate phase clas-
sification to detect changes in application characteristics.
Much research has shown that leveraging phase charac-
teristics enables a finer grained optimization potential by
specializing the system configurations to different execution
phases. To motivate this survey, we briefly discuss some
of the optimizations that use phase classification, including
adaptable hardware, thread-to-core assignment, sampled
simulations, and hotspot temperature analysis.

2.1 Hardware Resource Adaptability

Phase-based optimizations use adaptable hardware, such
as the adaptable cache presented by Zhang et al. [107],
to specialize hardware to phases’ resource requirements
without incurring performance overhead [32] [53] [97] [23]
[43]. Adaptable hardware allows specialized hardware con-
figurations (e.g., cache associativity, capacity, and line size
[107]; issue width [38]; processor voltage and frequency [55]
[83]; instruction windows [20]; and global history register
length [56]) for different application phases. Phase-based
optimization techniques use phase classification to deter-
mine the best points at which hardware configurations must
be changed in order to best satisfy application needs.

Adegbija et al. [2] presented a technique that used adapt-
able caches and phase-based cache optimization to achieve
an average energy delay product (EDP) savings of 26%.
The authors developed a phase distance mapping (PDM)
approach that mapped the difference in characteristics be-
tween a new phase and a base phase to the configuration
space, in order to determine the new phase’s best configura-
tion. Key to the effectiveness of PDM for EDP optimization
was the phase classification stage. Similarly, Meng et al. [69]
used an adaptable cache to reduce processor power con-
sumption. The authors implemented a power manager that
monitored the processor’s overall power usage to dictate
configuration changes.

Although cache optimization is a common focus of
phase-based optimization techniques, other adaptable com-
ponents benefit from phase-based optimization. For exam-
ple, Dynamic Voltage and Frequency Scaling (DVFS) [55]
[83] [104] [10] [17] is commonly used to adapt the clock fre-
quency/voltage to variable runtime execution needs. Other
components/configurations that benefit from phase-based
optimization include the issue queue [79, 19], reorder buffer
[1, 35], pipeline [37, 105], register files [1, 35], etc.

2.2 Thread-to-Core Assignment

Thread-to-core assignments offer another means of opti-
mization. Given a heterogeneous-core system, the effec-
tiveness of specialization using heterogeneity is predicated
on the scheduling of execution threads to the core that
most closely satisfies the thread’s execution requirement. By
assigning application threads/tasks to different cores based



3

on phases, fine-grained energy or temperature optimization
can be achieved [86] [57] [101].

In multicore systems, phase changes indicate when the
ideal thread-to-core assignments might change. Phase-based
thread-to-core assignment policies consider each phase’s
resource requirements and migrate threads to the cores
that most closely match those requirements. For example,
Kumar et al. [59] [60] used dynamic phase mapping on
heterogeneous multicore systems to reduce the overall en-
ergy consumption of a system by 39% on average and
achieved a maximum of 31% speedup over a static policy.
Their techniques ensured that the threads stayed mapped to
the optimal cores throughout application execution despite
changing execution requirements.

2.3 Rapid Design Evaluation and Sampled Simulation
During system design (e.g., in computer architecture), the
design must be extensively evaluated to determine the
system’s functionalities and efficiency. Evaluation is typ-
ically initially performed through simulations. In several
cases, however, simulating entire benchmarks is unfeasible
due to prohibitive simulation times, especially when using
cycle-accurate simulators. For example, SimpleScalar [18], a
commonly cycle-accurate simulator, is capable of executing
400 million instructions per hour. SPEC benchmarks [65],
many of which execute well over 300 billion instructions
would take about a month to run using Simplescalar (or
other similar simulators, such as GEM5 [13]).

Since application phases are typically repetitive through-
out the application’s execution [95] [96], each distinct phase
only needs to be simulated once to estimate the application’s
overall behavior. Thus, phase sampling, predicated by accu-
rate phase classification, can be used to substantially reduce
simulation time as compared to running full applications.
Sherwood et al. [96] used random linear projection followed
by k-means clustering [66] to group phases with similar
characteristics. They found that they were able to accurately
represent the entire application’s execution by simulating
a single section of each cluster. Their phase classification
technique, called SimPoint [96] [49], is commonly used for
sampled simulation [74] [76] [5] [50] [59] [60] [63] [62] [69]
[72].

2.4 Hotspot Temperature Analysis
An accurate estimate of the highest possible hotspot temper-
ature on a chip can help circuit designers to reliably verify
new circuits and accurately estimate lifetime degradation of
chips before the circuits reach market [15]. Srinivasan et al
[99] used phases to test system limits. By rearranging ap-
plication phases, they found that they were able to estimate
worst-case hotspot temperatures.

3 PRE-2006 PHASE CLASSIFICATION

To provide a background for the more recent phase clas-
sification techniques, this section presents an overview of
the popular phase classification techniques presented before
2006. Many modern techniques are based on these older
techniques or use these older techniques as a baseline for
testing modern techniques [76] [75] [93] [84] [57] [58] [89]
[108] [16]. We direct the reader to [33] for a survey that
details these pre-2006 techniques.

3.1 Basic Block Vectors
Sherwood et al. [96] [97] presented a phase classification
technique that uses basic blocks as a microarchitecture in-
dependent way to identify phase changes. To implement
this classification technique, the frequency information for
each basic block—a block of code with one entry and one
exit—is stored in Basic Block Vectors (BBVs). The BBVs of
different instruction intervals are then compared (e.g., using
Euclidean distance) to determine the similarity between the
different intervals. Similar intervals are thereafter clustered
to form phases. Dhodapkar et al. [33] determined that BBV
techniques provide more stable phases and higher sensi-
tivity than other phase-classification techniques. However,
BBVs have since been shown to be inaccurate when appli-
cations have a large amount of last level cache (LLC) misses
[4] [21] [54].

3.2 Instruction Working Sets
Dhodapkar et al. [32] presented a phase classification tech-
nique that utilizes the Instruction Working Set for char-
acterizing the different phases. Instruction working sets
are application instructions that are executed at least once
during application execution. The authors used working set
signatures, a lossy-compressed working set representation.
In a working set signature, a hash function is used to map
working set elements into vectors. The authors recorded
working set signature vectors every 100,000 instructions.
The proposed technique featured a user-defined threshold
value to determine the sensitivity of phase classification.
A larger threshold value means that a greater change in
application characteristics must occur for a phase change
to be detected. As such, there will be fewer phase changes
detected, and phase-based optimizations will occur less
frequently.

The authors compared the Manhattan distance, or the
sum of differences of each element, between the working
set signature vectors after every interval. If the Manhattan
distance was below the threshold value, the intervals were
considered to be similar and belonging to the same phase.
Otherwise, when two intervals’ working set signatures dif-
fered beyond the threshold, the intervals were considered
to belong to different phases for which the system resources
must be specialized to optimize execution.

3.3 Conditional Branch Counts
Balasubramonian et al. [9] proposed using conditional
branches to determine phase changes. They determined
phases by the number of conditional branches executed over
an interval. A significant change in the number of branches
executed between two intervals indicates a phase change.
Unlike most phase classification techniques, the authors did
not use a fixed threshold value to determine a significant dif-
ference between phases. Rather, the threshold value varies
dynamically as the application executes. The conditional
branch counter technique and the BBV technique detect a
similar percentage of phase changes—phase changes de-
tected vs. total phase changes. However, Dhodapkar et al.
[33] found the conditional branch counter technique to be
less effective at detecting major phase changes, i.e., phase
changes during which application characteristics change
significantly.
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Fig. 2: High level overview of the phase classification pro-
cess

4 TAXONOMY OF PHASE CLASSIFICATION

Fig. 3 depicts our taxonomy of phase classification tech-
niques. Given the the state-of-the-art in phase classification,
our taxonomy is based on several factors, including classi-
fication parameters, number of threads handled, the target
objective functions, when the classification occurs, and the
granularity of classification. The taxonomy also includes
existent challenges that still remain to be addressed. These
different factors and challenges are described in the rest of
the paper.

5 CHARACTERISTICS OF PHASE CLASSIFICATION

Most phase classification techniques follow the same gen-
eral procedure, depicted in Figure 2. First, the application is
divided into instruction [54] [76] [93] [75] [58] [89] [86] [108]
[101] or time [91] [99] [100] [41] intervals. For each interval
i, the application characteristics (char(i)) are generated, for
example, via design-time simulations or at runtime using
statistics from hardware performance counters [22] [40] [47]
[48] [75] [76] [86] [91]. Application characteristics that can be
used include basic block vectors [94, 95], memory accesses
[54] [93] [48], power consumption [99], stalls [101], etc.

The different intervals’ application characteristics are
then analyzed to determine intervals that differ by less than
or equal to a threshold δ. Although the analysis techniques
vary for different phase classification techniques, a sample
technique is to use the Manhattan distance between two
intervals’ application characteristics [96] [24] [58] [75] [84]
[89] [16] [100] [108]. Intervals with similar characteristics
are then clustered to form phases. When new intervals are
encountered, the intervals are added to existent phases or
used to form a new phase, depending on the disparity
between the new interval’s and previously encountered
intervals’ characteristics.

Different factors and characteristics come into play when
choosing a phase classification technique, or when design-
ing a new one. As such, it is important for users to under-
stand the different possible phase classification character-
istics, and how these characteristics may affect phase clas-
sification accuracy. In this section, we discuss three defin-
ing phase classification characteristics: intervals, classification
metrics, and phase detection vs. prediction.

5.1 Intervals
An interval is the length of time or number of instruc-
tions that forms the granularity with which the application
characteristics are profiled. Intervals that display similar
characteristics are clustered together to form phases. Inter-
vals vary in length depending on the application and the
phase classification technique. The granularity, or interval
length, of a phase classification technique is most commonly
measured in number of instructions.

One way to categorize intervals is with respect to their
granularity. Fine-grained intervals are shorter (e.g., on the
order of hundreds or thousands of instructions) and require
that application characteristics be recorded more frequently.
As such, application characteristics represent smaller sec-
tions of code, and smaller phases can be detected more
accurately [16]. However, this enhanced detection comes
at the cost of increased overhead—phase classification time
and storage space for each interval’s information [53] [67].
Coarse-grained intervals, on the other hand, are longer and
enable faster phase classification, since fewer intervals need
to be compared. However, coarse-grained intervals may ob-
scure smaller phases, making them more difficult to detect
[16]. Therefore, the interval granularity must be chosen to
balance both speed and classification accuracy.

Intervals can alternatively be categorized in terms of
the variability of their lengths as fixed length or variable
length intervals. Fixed length intervals [54] [99] [58] [101]
[16] [58] [91] [86] [93] [100], as the name implies, remain
static throughout phase classification. As a result, they
are simpler to implement and are more commonly used.
However, because the interval size does not change during
phase classification, fixed-length intervals can lead to inac-
curate phase classification if the phase behavior changes
at a different periodicity than the intervals. Lau et al. [61]
found that fixed-length intervals can become mismatched
with the naturally-periodic behavior of applications. This
mismatch results in phase changes occurring in the middle
of an interval instead of near the edge, thus reducing the
accuracy of phase classification.

Variable length intervals [75] [48] [25] [108], on the other
hand, allow the intervals to closely match the periodicity
of the different phases and enable more accurate phase
classification. However, variable length intervals are more
complex, since they may require more detailed application
analysis at design time or an online algorithm with a feed-
back loop for runtime phase classification [44].

5.2 Classification Metrics
Classification metrics refer to the application char-
acteristics that are used to determine the similarity
or variability between intervals. Classification metrics
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can be broadly categorized into two: microarchitecture-
dependent and microarchitecture-independent metrics [77, 78].
Microarchitecture-dependent metrics, as the name implies,
are application characteristics that are a function of the sys-
tem microarchitecture on which the application is run. These
metrics are typically obtained using hardware performance
counters or simulators, and would change if the application
is run on a different microarchitecture or configuration.
Examples of microarchitecture-dependent metrics include
cache miss rates, instructions per cycle (IPC), translation
look-aside buffer (TLB) miss rates, branch misprediction
rates, etc. These characteristics depend on specific hardware
structures (e.g., cache, branch predictor) and would change
if different architectures or configurations are used.

Microarchitecture-dependent metrics are straightfor-
ward to obtain, given that simulators and hardware per-
formance counters are ubiquitous in modern-day computer
systems. In addition, microarchitecture-dependent metrics
make phase classification techniques that use them more
amenable to being used during runtime. Furthermore, these
metrics may better detect dynamic changes in application
behavior, such as new data inputs or a previously unknown
stimuli. However, a major downside of these metrics is
that they can hide underlying inherent program behav-
ior, potentially leading to inaccurate phase classification
[52]. It is possible for two applications to exhibit similar
microarchitecture-dependent characteristics on one system
but behave drastically different on another. To prevent this
downside, microarchitecture-independent metrics [52, 36, 80]
use characteristics that depict the inherent characteris-
tics of the applications being characterized. Examples of
microarchitecture-independent metrics include basic block
vectors, memory access patterns, working set size, branch
behavior, etc. These metrics typically need to be collected
using binary instrumentation tools, such as ATOM, Pin,
Valgrind, and are easier to collect at design time [85, 73, 103].

5.3 Detection vs. Prediction
Phase classification techniques can be divided into two
types—detection and prediction—depending on when the ac-
tual classification occurs. Detection techniques are reactive;
they compare application execution metrics after they are
recorded—i.e. after the interval has ended—to those of the
previous interval [22] [58] [99] [100] [41] [24] [86] [14] [25]
[101] [16] [71] [12]. Since the comparison happens after an
interval, phase classification occurs after a phase change has
occurred [46].

Conversely, the goal of a prediction technique is to clas-
sify a new phase before the new phase change occurs [93] [47]
[89] [88] [26] [29] [28]. These techniques feature a training
period, which occurs at design time or during the beginning
of application execution. During the training period, in-
formation (e.g., execution statistics) about the application’s
variable phase patterns are gathered. After the training
period, a phase prediction technique analyzes newly ac-
quired application characteristics and information about the
application’s typical phase patterns. These characteristics
and analyses are then used to predict phase changes. While
the analyses used vary between prediction techniques, the
general idea is that predictions can be made about when and
how an application’s execution characteristics will change
based on previously recognized and detected patterns. The
biggest drawback to phase prediction techniques is that
they are most effective with applications that have pre-
dictable phases or applications whose phase structure does
not differ with new inputs [93]. Since detection techniques
are significantly more common than prediction techniques,
this survey focuses on detection-based phase classification
techniques.

6 OFFLINE PHASE CLASSIFICATION

Offline phase classification techniques use execution char-
acteristics, such as basic blocks and execution traces, which
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TABLE 1: Overview of offline phase classification techniques

Serial

Interval type Variable [48] [93]; fixed [108] [54] [99] [91] [14]
Interval width 10M [108] [14] and 1M instructions [54]; 666.6 us [99]; 10ms [91]; context switch

points [48]; reuse distance [93]
Classification Basic blocks [108] [84] [91]; cache misses [54] [48] [91]; power consumption [99];

metrics memory accesses [93]; instructions per cycle [91]; static/dynamic
instruction ratios [14]

Analysis method Manhattan distance [108] [14]; basic block execution frequency [84] [91];
digital signal processing [54] [99] [93]; pattern analysis [48]; principal component analysis [52];

genetic algorithm [52]

Parallel

Interval type Variable [75] [40]
Interval width Several billion instructions [75]
Classification Instruction execution [75]; function execution [40]; instructions per cycle [22]

metrics
Analysis method Manhattan distance [75]; pattern analysis [40]; digital signal processing [22]

are gathered during compile time or through a priori ap-
plication analysis. These techniques are generally easier to
develop than online phase classification techniques, since
online techniques have stringent constraints where negative
impacts on application execution time must be minimized.
In addition, offline techniques need fewer runtime resources
for storing application characteristics during classification.
Only information about phase IDs and phase change loca-
tions need to be stored during runtime.

Table 1 summarizes the surveyed offline phase classifi-
cation techniques, which we categorized as serial—for clas-
sifying single-threaded applications—and parallel—for clas-
sifying multi-threaded applications. This section describes
different serial and parallel phase classification techniques.

6.1 Serial Offline Phase Classification

Several techniques have been developed to classify phases
in single execution threads. These techniques are typically
simple to design, since they must only record and ana-
lyze application characteristics for one application thread,
without needing to coordinate phase information among
multiple threads.

Zhang et al. [108] focused on improving the accuracy of
basic block vector techniques for single-threaded applica-
tions. The authors examined the execution sequence of fine-
grained phases and found that these phases’ patterns could
be used to predict course-grained phase execution. The au-
thors presented multilevel phase analysis, a technique that
combines analyses of different phase granularities. During a
training period, their technique identified both fine-grained
and coarse-grained phases, and stored a list detailing the
sequence of fine-grained phases in each new coarse-grained
phase. The authors classified fine-grained phases by com-
paring the Manhattan distance between basic block vectors.
They used an interval size of 10 million instructions while
determining fine-grained phases and used outermost loop
boundaries to determine coarse-grained phases. After the
training period, the classification technique identified x fine-
grained phases—the authors found 5 to be sufficient in their
experiments. The technique then compared the execution
sequence to that of previously-identified course-grained
phases. If the technique discovered the same sequence of
course-grained phases in the look-up table, it would accu-
rately predict the rest of the fine-grained intervals in the
course-grained phase. If the fine-grained phase sequence

did not match any sequence in the table, execution contin-
ued until a course-grained phase was identified.

Ratanaworabhan et al. [84] also used basic blocks to clas-
sify single-threaded application phases. The authors used
ATOM [102], an application analysis tool, to identify basic
blocks and assign each basic block a unique identification
number. During phase classification, the authors identified
a phase change when a significant number of new basic
blocks executed in a short period of time. They then cre-
ated a phase identification signature by storing the basic
block identification numbers of the new basic blocks that
indicated the phase change. By comparing this signature to
future sequences of basic blocks, they were able to identify
any repetitions of a phase.

Huffmire et al. [54] presented a wavelet-based technique
that used a fixed-length interval of 1 million instructions
and a digital signal processing technique to classify phases
in single-threaded applications. Wavelets, commonly used
in digital signal and image processing, are mathematical
functions that encode both frequency and spatial informa-
tion, unlike BBVs, which store only frequency data [54]
[95]. For their phase classification technique, the authors
used wavelets to store L1 cache access data. They began by
gathering an application trace of memory accesses, and then
used k-means clustering to analyze the wavelets. Specifi-
cally, the authors were interested in analyzing wavelet sig-
natures of all L1 cache accesses to predict L2 cache misses.
By comparing these predictions across subsequent intervals,
they were able to detect phases.

Srinivasan et al. [99] also proposed an offline phase
classification technique that used fixed-length intervals.
However, instead of tracking their intervals by number of
instructions like most other techniques, they used an execu-
tion time—666.6 us. They also used the simulated power
traces within the different intervals to determine phases,
based on the observation that spatial power dissipation
remains unchanged within a phase. From the power trace,
they created a power vector that stores a moving average of
500 power values. They detected the beginning of a phase if
three consecutive power vectors were similar, and detected
the end of a phase if two consecutive power vectors were
dissimilar. Conversely, most other offline phase classifica-
tion techniques use simulated hardware counters or other
frequency-based metrics, such as cache miss rates [54] [48]
[91] [47] and basic block execution frequency [108] [84] [91]
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for characterizing application phases.
Traditional interval lengths—on the order of several

thousands to millions of instructions or cycles—are not
always acceptable for accurate phase classification. Bui
et al. [16] studied past interval lengths and found that
traditionally-sized intervals do not always detect a signifi-
cant number of application phases. This behavior occurs be-
cause the interval sizes are too coarse to detect small phases,
and phase based optimization opportunities are missed. The
authors found that classifying smaller phases can improve
the optimization gained by phase-based optimization tech-
niques. They argued that modern hardware optimizations
offset much of the overhead from using fine-grained phases
and proposed using ’super fine-grained intervals’ to better
classify phases in single threaded applications. The ’super
fine-grained intervals’ they suggested are on the order of
tens, hundreds, or thousands of application cycles.

Although there are some phase classification techniques
that use factors other than hardware data to determine
phase changes—such as Srinivasan et al.’s [99] use of power
consumption—many phase classification techniques use
some combination of hardware data. Gu et al. [48] presented
one such technique of hardware data use in applications
run by a Java Virtual Machine. To classify phase changes,
they analyzed a trace of the number of L1 instruction cache
misses. Using pattern analysis, they looked for changes in
the density of L1 instruction misses across intervals. Gu et
al. aimed to classify variable and course-grained phases.

Shen et al. [93] presented another phase classification
technique that utilizes hardware counters—specifically, they
used a memory access trace and wavelet analysis to identify
phase changes during a training period. During the training
period, the authors executed several different iterations of
an application, using different inputs each time. They used
a digital signal processing technique—a Discrete Wavelet
Transform—to analyze a memory access trace and find sig-
nificant changes in the access pattern. Their technique was
designed for applications with large, well-defined phases
whose phase sequences do not differ significantly with dif-
ferent inputs. More specifically, ideal applications differ only
in the number of times sections of the phase sequence are
repeated, referred to as ”exponents.” A well-defined phase
is one that exhibits a significant change in performance char-
acteristics from that of the code surrounding it. To predict
phases, the authors analyzed new application inputs and
phase pattern exponents. However, their technique does not
work if many phase pattern exponents did not change in
conjunction with an input parameter.

Sometimes, only a limited knowledge of the executing
application exists—the phase classification mechanism may
not have access to characteristics such as hardware counters.
Shen et al. [91] proposed active profiling, a phase classifica-
tion technique that works on applications in binary form
and requires no knowledge of loop or function structure,
as in several offline phase classification techniques. The
authors found that they could detect phases by controlling
the application input. By controlling the input—specifically,
by issuing a series of nearly identical requests—they were
able to get the application to output an artificially regular
pattern, or a particular behavior that repeats a prearranged
number of times. To execute phase classification, the authors

acquired a basic block trace of an application using the
repeated request input. In their active profiling technique,
the authors selected basic blocks that executed exactly the
same number of times as the input was repeated. Next, they
verified that the execution of all the basic blocks of one type
were evenly spaced during execution. The authors ignored
basic blocks with executions that were not evenly spaced,
and removed false positives by running the application with
a real input. Basic blocks that were not executed the same
number of times as there are input requests were identified
as false positives. Of the remaining basic blocks, the first
instance of each indicated a phase change.

Thus far, we have discussed phase classification
techniques that were designed to work on hardware-
only processors or virtual machines. However, hard-
ware/software (HW/SW) co-designed processors behave
differently. Brankovic et al. [14] found that traditional
phase-classification techniques are unsuited for HW/SW co-
designed processors. The authors analyzed BBVs for use as
a phase classification metric and found that each BBV’s exe-
cution time varies significantly more when run on HW/SW
co-designed processors versus hardware-only processors.
Therefore, the authors theorized that one cannot assume
that phases of applications classified with BBVs will behave
as expected when run on a HW/SW co-designed processor.
For HW/SW co-designed processors, the authors proposed
Transparent Optimization Layer Description Vector Phase
Classification (TDV). The Transparent Optimization Layer is
the software layer in a HW/SW co-designed processor that
dynamically analyzes, profiles, translates, and optimizes
instructions from a guest instruction set architecture (ISA)
to the host ISA. TDV uses intervals and stores 19 execution
statistics that contain information about the static/dynamic
instruction ratio and the instructions mix of the application
to be executed. The technique then compares the statistics
for each interval with the statistics from previous intervals
to determine the different phases.

6.2 Parallel Offline Phase Classification
Parallel phase classification techniques cater to multi-
threaded or multiprogrammed applications by determining
the application phases while taking into account the indi-
vidual application threads. In general, due to multithreaded
applications’ intrinsic characteristics, parallel techniques
are more complex than serial techniques. Since executing
threads may be competing for the same resources, parallel
thread execution can affect commonly used performance
metrics such as cycles per instruction (CPI) and cache
misses, rendering such performance metrics ineffective for
phase classification [75].

In addition, parallel applications can have data-sharing
or resource-sharing threads, which complicate phase classi-
fication [98] [51]. Although serial phase-classification tech-
niques are simpler, multithreaded applications are becom-
ing increasingly common in emerging computer systems.
Thus, phase classification in multithreaded applications re-
mains an important research area that necessitates novel
techniques.

Peleg et al. [75] addressed multithreaded phase classifi-
cation by using changes in code execution frequency to clas-
sify phases. Since traditionally used hardware counters such
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as cache misses and CPI can be influenced by all threads in a
multithreaded application, the authors used a performance
metric that would not be influenced by other threads. The
proposed technique sampled instruction addresses to cap-
ture the profile of the code execution frequency. The authors
then created a histogram of sampled addresses to represent
the applications’ BBV.

Furlinger et al. [40] also used code execution frequency
to classify phases. However, the authors recorded connec-
tions between functions and manually determined phase
start and end locations. They used ompP [39], a profiling
tool, to record a call graph—the connections between dif-
ferent functions—of the executing application. For accurate
phase classification, the authors modified ompP to track
all predecessor nodes in the call graph, and the number
of times each predecessor node was executed. The authors
defined a predecessor node as a parent node or a sibling
node of the same level as the current node. They then
manually analyzed the call graph to detect patterns in the
execution. Their phase classification technique required the
designer to determine which nodes classify as a pattern, and
thus could not be automated.

Casas et at. [22] used a signal processing technique—
a discrete wavelet transform—to classify phases in multi-
threaded applications. They found that, by using a signal
processing technique on data from a trace file, they could
detect only the most relevant frequencies of an applications
execution—the frequencies most strongly related to the
loops of an applications source code. By using a discrete
wavelet transform, they were able to acquire information
about the frequency and the locations of the signal. They
found several different signals to be suitable for phase
classification—the number of processes computing, the total
duration of computing bursts, the number of point-to-point
MPI calls, the number of collective MPI calls, the instruc-
tions per cylce, and the number of outstanding messages at
a given point.

7 ONLINE PHASE CLASSIFICATION

Although offline phase classification has fewer design con-
straints than online classification, it is often impractical.
Offline techniques require a priori knowledge of the ex-
ecuting applications, and many systems, such as general
purpose systems (e.g., smartphones and tablets), may not
have complete design time application knowledge. In ad-
dition, runtime application variability, such as new data
inputs, may cause the application to behave differently.
Online phase classification addresses these drawbacks by
classifying the phases during runtime. However, runtime
applications must execute quickly to avoid adversely im-
pacting the executing application’s latency. In addition,
online phase classification techniques must be reliable and
accurately classify phases with minimal overheads (e.g.,
energy, storage, etc.). Table 2 summarizes the serial and
parallel online phase classification techniques described in
this section.

7.1 Serial Online Phase Classification
Hardware characteristics are often used to classify phases
in online techniques. Unlike microarchitecture-independent

characteristics gathered from traces in offline techniques,
online techniques gather hardware characteristics directly
from system hardware counters during execution. Srini-
vasan et al. [101] used hardware characteristics to track
the frequency of resource bottlenecks experienced by ap-
plications. Specifically, they recorded cache stalls, branch
mispredicts, IPC, and resource stalls—the number of cycles
the instruction dispatch is stalled due to a blocked instruc-
tion queue, re-order buffer, or issue width. They stored
this information in a vector referred to as a Bottleneck
Type Vector (BTV). As with BBVs, the Manhattan distance
between BTVs were compared to determine which intervals
behaved similarly to form phases.

Chesta et al. [24] used hardware counters, network bits
sent/received, and disk read/write counts to classify phase
changes. The authors used hardware counters to record
the number of retired instructions, last level cache refer-
ences and misses, and branch instructions and misses. The
proposed technique utilized fixed-length intervals with a
sampling frequency of one second. System characteristics
were stored in execution vectors and phase changes were
determined using the Manhattan distance between two ex-
ecution vectors. When the distance exceeded a predefined
threshold, the phase was considered to have changed.

Gu et al. [47] used microarchitecture-level hardware
events to classify and predict longer-than-average phases of
different lengths. During the training period for their predic-
tion phase classification technique, the authors recorded the
density of L1 instruction cache (i-cache) misses. They then
computed the difference of L1 i-cache misses between two
intervals. If the difference was more significant—exceeding
a higher threshold—than that of the previous two intervals,
a new pattern was started. The prediction used a table-
based technique that stored information gathered during the
training period in a table. The technique then referenced the
table during phase prediction. The authors stored identified
patterns in a pattern database, or table. Along with the pat-
terns, the table also stored three common repetition distances.
A repetition distance is the number of instructions between
two occurrences of the same phase. Analyzing the repetition
distance enabled the proposed technique to predict phase
changes before they occurred.

Rather than using hardware characteristics for phase
classification, Khan et al. [58] presented a classification tech-
nique that counted executed instruction types and stored the
information in an Instruction Type Vector (ITV). The authors
considered various instruction types: integer ALU, complex,
branch, load, store, floating point ALU, multiply, and divide
instructions. Their technique utilized fixed-length intervals
of 10 million instructions, and counted occurrences of the in-
struction types within each interval. The authors then used
the Manhattan distance between two intervals to cluster
the intervals into application phases. One key feature of
this technique is that it uses microarchitecture-independent
application characteristics for phase classification. However,
the technique may accrue additional computation and stor-
age overhead, since the ITV must be computed and the
intermediate data must be stored during runtime.

Chiu et al. [25] found that they could use variable-length
intervals to improve classification accuracy. The authors
proposed a technique that first traced an application’s ex-
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TABLE 2: Overview of online phase classification techniques

Serial

Interval type Fixed [101] [24] [47] [58] [89]; variable [25]
Interval width 10K-15K instructions [101]; 10M [58]; 100M [89] instructions; 1s [24]; 100K branches [25]
Classification Resource bottlenecks [101]; execution vectors [24]; cache misses [47];

metrics instruction type vectors [58]; branch edges/method entry/returns [25];
conditional branches [89]

Analysis method Manhattan distance [101] [24] [47] [89]; digital signal processing [58] [25]

Parallel

Interval type Fixed [86] [88] [41]
Interval width 50K - 200K instructions [86]; 100M instructions [88]; execution time [41]
Classification Instruction type vector [86]; conditional branch execution [88]; task execution

metrics frequency [41]
Analysis method Manhattan distance [86] [41]; Clustering algorithm [88]

ecution, profiling the function calls/returns and conditional
branch instructions every 100,000 branches. Then, the tech-
nique applied a Gaussian mixture model [68] to cluster
the different intervals based on the number of executed
branches. If a cluster’s number of executed branches was
different from previous clusters, the cluster was determined
to belong to a different phase. The major drawback to this
technique is that it requires an offline training period, and
cannot be fully implemented as a runtime technique.

Sembrant et al. [89] presented work to reduce the over-
head of BBVs. They suggested using Precise Event Based
Sampling (PEBS) [27] to directly measure sparse BBVs, or
randomly sampled BBV execution frequencies. PEBS, de-
veloped by Intel, tracks the number of events that have
occurred and records the CPU’s state after N events, where
N is a value chosen by the user. By declaring a perf event
to record the address of of every Nth branch instruction,
the authors were able to record basic block frequency
vectors. The authors found that counting only conditional
branches sufficed for achieving accurate BBV identification.
In addition, the authors developed a C/C++ library, called
ScarPhase, that consolidates their phase-classification tech-
niques for easy use.

7.2 Parallel Online Phase Classification

Some phase classification techniques modify a more simple
serial and/or offline technique for online use with parallel
applications. For example, Rodrigues et al. [86] modified
the serial technique presented by Khan et al. [58]. The
proposed technique reduced the number of entries in the
Instruction Type Vector (ITV) to four—INT (integer), FP
(floating point), iBJ (branch), and Mem (load and store).
The authors then used the Manhattan distance between
ITVs to detect phases. The authors found that they could
combine phase classification with dynamic core morphing
[87] to significantly improve the performance/watt of most
multithreaded workloads.

Sembrant et al. [88] analyzed the phase size in various
applications and found that data-parallel applications have
shorter phase sizes as the number of threads increases.
Because smaller phases indicate that hardware/software
changes occur more frequently, runtime phase-guided op-
timizations often become more costly as the number of
threads increases. This makes runtime phase optimization
more difficult in highly parallel applications. In addition

to their analysis, the authors presented a prediction phase
classification technique. Their technique used ScarPhase [89]
to classify application behavior. To accomplish phase classi-
fication, The authors [88] extended the ScarPhase library to
support parallel applications by including the functionality
to alternate between threads. ScarPhase classifies a phase
for a particular thread and then classifies the phase for
whichever thread finishes an interval next.

Ganeshpure et al. [41] designed a phase classification
technique to run on an multi-processor system on chip (MP-
SoC). An MPSoC is a system with multiple processor cores
(processing elements—PEs) connected by a Network on
Chip. The authors’ phase classification technique required
one processing element to act as a leader and the rest as
followers. The leader could also act as a follower by sharing
resources with thread execution. In the classification tech-
nique, the followers detected local phases independently
and transferred the information to the leader. Each follower
stored a Follower Phase Vector (FPV), which is updated
every interval. The FPVs stored execution clock cycles for
task execution and destination PEs as well as the number
of times the task information is encountered. When a new
FPV is generated, it is compared to the previous FPV. If
the Manhattan distance between FPVs was below a certain
threshold, the FPVs were considered matching. A local
phase was detected if three consecutive FPV pairs match.
If all of the PEs detected local phases before one of the local
phases ended, the system detected a global phase. These
global phases were then used for thread scheduling.

8 FUTURE RESEARCH DIRECTIONS

Even though, as illustrated in this survey, phase classifica-
tion is a relatively mature research area, there are still gaps
in the state-of-the-art that have not yet been fully addressed.
This section briefly highlights some of the existing chal-
lenges that must be addressed—and areas of computing in
which the challenges exist—to fully leverage the benefits of
emerging adaptable systems.
Phase classification for emerging multithreaded applica-
tions: One of the most important gaps is the fact that the
majority of current effective phase classification techniques
are designed for single-threaded applications. However,
multithreaded applications are now ubiquitous in modern
computer systems, including resource-constrained comput-
ing systems. Multithreaded applications are becoming even
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more important with the emergence of new classes of big
data applications, such as machine learning, graph process-
ing, image processing, and databases. As prior work has
shown, adaptability will be a necessary feature for comput-
ing architectures that target these application domains [34].

A distinguishing feature of these applications is that
they are typically massively parallel with threads that run
on large-scale architectures, such as many-core architectures
with tens, hundreds, or even thousands of threads [11]. In
addition, several of these threads may need to interact with
each other to enable functional correctness of the executing
applications. As such, to enable optimal performance of the
architectures for these applications, novel phase classifica-
tion techniques must be developed for a wide variety of
multithreaded applications, from small-scale applications to
large-scale massively parallel multithreaded applications.
The few currently existing phase classification techniques
for parallel applications typically assume independent ap-
plication threads without explicit consideration of data
sharing. There are currently no known phase classification
techniques designed to explicitly cater to multithreaded
applications that exhibit data sharing.

Multithreaded data-sharing applications, especially,
pose significant new challenges for phase classification.
Accurately classifying multithreaded applications’ phases is
much more difficult due to shared resources, inter-core de-
pendencies, and shared data. Data sharing cores may share
working sets; a thread’s runtime characteristics may depend
on the characteristics of another thread running on another
core. These kinds of data sharing multithreaded applications
are expected to remain a prominent feature of emerging
embedded systems. Currently, there is a critical knowledge
gap on the implications of inter-core dependencies and data
sharing for runtime phase classification in multithreaded
applications.
Embedded, mobile, and edge computing: Despite the
prevalence of embedded systems and mobile computing,
there are currently no phase classification techniques specif-
ically designed for mobile devices. Previous work [82]
suggests that the phases of mobile applications may be
different from those of traditional desktop application, but
a comprehensive study of mobile applications’ phases still
remains elusive. While existent techniques may be applica-
ble to resource-constrained embedded systems, most phase
classification techniques introduce hardware, runtime, or
energy overheads. These overheads may be prohibitive
for embedded systems with stringent resource constraints.
There is still much room for improvement in minimizing
the overheads imposed especially by runtime phase classifi-
cation.

An emerging area of computing that is amenable to
adaptability is edge computing [106]. Edge computing has
emerged as a paradigm, in the framework of the Internet
of Things (IoT), where computation is moved closer to edge
data-gathering devices in order to mitigate the bandwidth
and latency overheads of transmitting data to the cloud for
computation. An important characteristic of edge comput-
ing systems is the ability of the systems to be adaptable,
not only to applications’ changing requirements, but also
to execution contexts, environmental factors, etc. [30]. Edge
computing design choices like computation migration [90],

for example, rely on the classification of application phases
or tasks that will run on the edge device vs. the cloud or fog
level of the IoT hierarchy. To fully satisfy the adaptability
requirements of edge computing, new phase classification
techniques must be developed to specifically satisfy the
requirements of edge computing systems, including context
awareness, low energy consumption, the need for computa-
tion migration, etc.
Security-aware phase classification: Phase classification
may also come into play in security applications. Due to
the fact that computer systems operate in dynamic environ-
ments, security mechanisms must also be adaptable to the
inherent dynamism of the computing environments [81, 3].
Furthermore, different application phases may have differ-
ent threat levels, and the phases must be classified in order
to enable the design of security mechanisms that guarantee
the required levels of protection for the different phases. As
such, security-aware phase classification techniques need to
be developed to incorporate security objective functions as
part of the metrics for evaluating the characteristics of the
different phases.
Transient phases: Another area that warrants further study
in phase classification is the impact of transition phases
[64] on the overall classification accuracy. Transition phases
refer to the execution periods between stable phases. Most
current techniques ignore these transition phases, which,
if considered, may substantially change the classification
technique’s accuracy. Conversely, transition phases, if ac-
curately detected and characterized, may offer additional
opportunities for improving the specialization of system
resources to application requirements.
User-aware phase classification: Finally, most current phase
classification techniques are monolithic. Even though the
main goal of phase classification is to exploit the variety of
application execution characteristics for system adaptability,
several factors can impact the application behavior during
runtime. An application’s phase characteristics may change
drastically throughout execution as a result of multiple fac-
tors, such as new data inputs, system execution conditions,
or user requirements. The design of phase classification
techniques is currently disjoint with these factors, which can
limit the achievable optimization from dynamically adapt-
able computing. Thus, new dynamic phase classification
techniques are required to robustly handle and integrate
known application and system information with predic-
tive models for runtime application and system behavior
changes, and variable user requirements, which may be
unknown at design time.

9 CONCLUSIONS

The benefits derived from adaptability are directly tied to
the accuracy of identifying the points at which the system
configurations must be changed. Thus, phase classification
is an important initial step in the design of adaptable com-
puter systems that can be specialized to variable application
requirements. Phase classification also offers other benefits,
including speeding up research simulations, enabling effi-
cient runtime thread-to-core assignments, etc.

In this paper, we presented a survey of phase clas-
sification techniques for identifying program phases. We
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categorized the different techniques based on several im-
portant characteristics, in order to highlight the techniques’
similarities and differences. We also highlighted some of
the gaps in the state-of-the-art to expose future important
research directions on phase classification. We hope that this
survey will provide researchers with valuable insights into
the state-of-the-art in phase classification, and direction on
how to further enhance the benefits of adaptable computer
systems for a wide variety of emerging applications.
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[38] D. Folegnani and A. González. Energy-effective issue logic. In
ACM SIGARCH Computer Architecture News, volume 29, pages
230–239. ACM, 2001.

[39] K. Fürlinger and M. Gerndt. ompp: A profiling tool for openmp.
In OpenMP Shared Memory Parallel Programming, pages 15–23.
Springer, 2008.

[40] K. Fürlinger and S. Moore. Detection and analysis of iterative
behavior in parallel applications. In International Conference on
Computational Science, pages 261–267. Springer, 2008.

[41] K. Ganeshpure and S. Kundu. On runtime task graph extraction
in mpsoc. In VLSI (ISVLSI), 2013 IEEE Computer Society Annual
Symposium on, pages 171–176. IEEE, 2013.

[42] A. Georges, D. Buytaert, L. Eeckhout, and K. De Bosschere.
Method-level phase behavior in java workloads. ACM SIGPLAN
Notices, 39(10):270–287, 2004.

[43] A. Gordon-Ross, J. Lau, and B. Calder. Phase-based cache recon-
figuration for a highly-configurable two-level cache hierarchy. In
Proceedings of the 18th ACM Great Lakes symposium on VLSI, pages
379–382. ACM, 2008.

[44] A. Gordon-Ross and F. Vahid. A self-tuning configurable cache.
In Proceedings of the 44th annual Design Automation Conference,
pages 234–237. ACM, 2007.

[45] D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun. Confidence
estimation for speculation control. In ACM SIGARCH Computer
Architecture News, volume 26, pages 122–131. IEEE Computer
Society, 1998.

[46] D. Gu and C. Verbrugge. A survey of phase analysis: Techniques,
evaluation and applications. Technical Report SABLE-TR-2006–1,
2006.

[47] D. Gu and C. Verbrugge. Using hardware data to detect repetitive
program behavior. Technical report, Technical Report SABLE-
TR-2007-2, Sable Research Group, School of Computer Science,
McGill University, Montréal, Québec, Canada, 2007.
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