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Abstract—Design space subsetting has been used to select
configurations that are suitable for a target design objective.
However, given the growing number of design constraints and
objectives (energy, performance, EDP, temperature, user expec-
tations, etc.) selecting the best subset for a single objective may
no longer satisfy current design requirements. Additionally, the
increasing design space sizes in emerging systems, and the variety
of configurations that can satisfy multiple objectives, makes
design space subsetting very challenging. In this paper, using
a configurable cache as a case study, we evaluate the impact
of design space subsetting for multi-objective optimization of
performance, energy, and temperature. Using a design space of
243 configurations, yielding up to 1.4×1073 subsets, we evaluate
the quality of the subsets obtained for one design constraint
against the complete design space and against the remaining
design objectives (e.g., best energy subsets for performance and
thermal optimization). Our results reveal that prior subsetting
methods are insufficient to meet current design trends due to the
correlation between design objectives. Our results also suggest
that large subsets of 10 or more configurations are required to
maintain multi-objective optimization results that are within 3%
of the optimal.

Index Terms—Design space subsetting, configurable caches,
temperature reduction, low energy

I. INTRODUCTION

Resource-constrained systems (e.g., mobile phones, tablets,
embedded systems) have become ubiquitous and have strin-
gent constraints for high performance, low energy consump-
tion, and low temperature dissipation. Since these constraints
are usually conflicting, selecting a single configuration that op-
timizes multiple design objectives (e.g., energy, performance,
or temperature) is very challenging. To adhere to multiple
constraints, system architects revert to systems that offer
multiple configurations, each of which adheres to a specific
constraint during runtime. Heterogeneous systems such as
ARM big.LITTLE [1], configurable systems such as those with
dynamic voltage-frequency scaling (DVFS), and configurable
and heterogeneous systems (HaCS) with configurable caches
[2], offer a set of configurations that are selected or tuned
dynamically based on applications’ runtime requirements.

To determine the system’s constituent configurations, de-
signers evaluate the design space at design time. The subset of
configurations that most closely satisfies the design constraints
is then selected for use in the system. This process is known
as design space subsetting [3]. Whereas evaluating the full
design space allows the system to closely adhere to different
design constraints, exhaustively searching the design space for

the best subset can be prohibitively time-consuming. Further-
more, given the growing number of design objectives (energy,
performance, energy-delay product (EDP), temperature, user
expectations, etc.), determining the best subset requires an
iterative exploration process for the different objectives, thus
exacerbating the time overhead. As a result, current subsetting
techniques only target a single optimization objective, limiting
their effectiveness for any conflicting objective(s) [3], [4].

Given the variety of design constraints, optimization objec-
tives, and large design spaces, the challenges are then to: (1)
determine the minimum subset size that is required to adhere
to multiple design objectives, (2) determine the constituent
configurations of this subset, with minimal design time over-
head, and (3) determine the likelihood that a subset selected
for a specific design objective contains the best configuration
for the other objectives. Addressing these challenges will
enable highly configurable, and heterogeneous systems that
can adhere to multiple runtime design objectives.

In this paper, we evaluate the impact of design space
subsetting on performance, energy, and temperature. We an-
alyze the impact of the subset size on each of the objectives
and how subsets that satisfy the different objectives correlate
with each other. To speed up our design space subsetting
process, we propose a design-time approach that alleviates the
exploration time. Our approach builds on prior algorithms and
substantially reduces the design space exploration time (by >
99%) compared to exhaustive search. We analyze the results
obtained using our algorithm, and compare these results to
prior work [3], [4] and to exhaustive search.

Our work broadens the understanding of design space
subsetting for multi-objective optimizations. Our results reveal
that, in general, larger subset sizes are required for optimizing
multiple design objectives. For our case study of a configurable
cache featuring 243 configurations, subset sizes of 10 and 13
provided quality configurations for energy and performance,
achieving optimization results within 3% of the complete
design space. We observed that the subset sizes determined
to be optimal for single objectives, as in prior work [3],
[4], degraded multi-objective optimization results by up to
11.8% compared to the optimal. Finally, we also observed
that selecting the best subsets for energy or performance also
provided good-quality subsets for temperature. However, the
best subset for temperature did not necessarily contain high
quality configurations for the energy or performance.



II. BACKGROUND AND RELATED WORKS

There has been much prior work on optimizations and de-
sign tradeoffs in configurable systems [5]–[8], heterogeneous
systems [1], [9], [10], HaCS [2], and design space exploration
[3], [4], [11]. For brevity, we focus the background presented
herein on work related to design space subsetting.

To mitigate the overheads of design space exploration while
achieving near-optimal energy results, Viana et al. [3] argued
that it is unnecessary to evaluate all the configurations in
the design space. The authors studied the similarity of the
energy savings among different configurations, and found
that configurations that revealed similar energy savings could
be merged and not evaluated on subsequent iterations. For
a configurable cache, the authors revealed that a subset of
four configurations were representative of the complete design
space. Similarly, Palermo et al. [11] proposed a method that
iteratively eliminated configurations from the design space.
On each iteration, a set of Pareto optimal configurations was
selected. The process was repeated until the desired number
of iterations was reached, enabling feasible exploration time.

Whereas these prior works sped up the design space explo-
ration, the works required a priori knowledge of the anticipated
applications. Alsafrjalani et al. [4] extended the subsetting
methods to applications that were unknown a priori. The
proposed method evaluated the quality (energy-saving) of the
configuration subset using different number of a priori-known
applications or application-domains. The authors revealed that
complete a priori access to the applications was unnecessary,
and a limited knowledge of the anticipated applications was
sufficient to obtain high quality subsets.

Despite the provided insights on the impact of design space
subsetting on energy, prior works did not account for per-
formance and/or temperature. Additionally, these works (e.g.,
[3]), focused on a small design space of 18 configurations. In
our work, we evaluate the impact of design space subsetting
on energy, performance, and temperature, considering a design
space of 243 configurations.

III. SUBSET SELECTION AND EVALUATION

This sections motivates the selection of our design space
configurations and provides details on the subset selection and
evaluation.

A. Complete Design Space

To tractably describe and illustrate our approach, we focus
on the L1 cache, due to its high impact on performance,
energy, and temperature [4], [5]. We note that our approach
can be adapted to other microarchitectural parameters such
as instruction window, reorder buffer, and pipeline depth,
independently or collectively with the cache.

We considered a design space that comprises of the com-
binations of cache sizes (8KB, 16KB, and 32KB), line sizes
(16B, 32B, and 64B), and associativities (1-, 2-, and 4-way).
We also assumed separate instruction (i) and data (d) caches
with similar line sizes across both caches. Our design space
contained the cross product of these cache configurations.

TABLE I: Design Space Layout for a Cache Memory

Line Size
Size Asso 16B 32B 64B

8 1W c1 c2 c3
8 2W c4 c5 c6
8 4W c7 c8 c9
16 1W c10 c11 c12

. . . .

. . . .

. . . .
32 4W c25 c26 c27

Thus, our design space comprised of 243 configurations
3lineSizes× (3Sizes× 3associativities)2.

Table I depicts our design space layout for the instruction
cache—for brevity, the data cache is not shown—in a two-
dimensional layout. The rows represent cache sizes in KB
(K) and associativities in number of ways (W). For example,
a 16KB direct-mapped cache is denoted as 16K 1W). The
columns represent the different line sizes in bytes (B) (e.g., a
32 byte line size is denoted as 32B).

B. Problem Formulation

For a given design space, S, there exists a best configura-
tion, sb that most closely satisfies the optimization objective
(i.e., lowest energy or temperature, or highest performance)
for a given application a. A subset of configurations, C, is
a set of configurations such as 1 ≤ |C| ≤ |S|. For each
subset, C, there exists a best configuration, cb, that most
closely meets the design objective for a. Additionally, for
a set of n applications, A = {a1, a2, . . . , an}, we denote
the energy, performance, and temperature of application a
executing on a given configuration as e(ai, ck), p(ai, ck),
t(ai, ck), respectively, for 1 ≤ i ≤ n, and 1 ≤ k ≤ |C|.

For a given subset size, m, there exists

|N | = m!

|S|!× (m− |S|)!
(1)

different subset combinations, and the best subset, Cb, is the
subset with the configurations that best satisfy the optimization
objective, on average, for all A.

The challenge, for each optimization objective, is to deter-
mine Cb, for each subset size 1 ≤ m ≤ 243. In our case, the
following equation applies:

W =

243∑
m=1

N

(
243

m

)
≈ 1.4× 1073 (2)

That is, there are 1.4 × 1073 possible subsets to evaluate
and 243 Cb’s (one per subset size) to determine. Furthermore,
given the disjoint optimization objectives, determining the best
subset requires W 3 evaluations, if we must determine a single
Cb for all three objectives.

One way to reduce the prohibitive exploration time is to
evaluate the possibility of determining a subset which provides
best configurations for all of the optimization objective, and
thus only one exploration is required. To study this possibility,
we obtained the best subsets separately for energy, perfor-
mance, and temperature, for 1 ≤ m ≤ 243. For each Cb of



size m and constraint x, denoted Cbmx, where x is energy (e),
performance (p), or temperature (t) constraint, we evaluated
the subset’s optimization of the remaining objectives.

C. Selecting and Evaluating Subsets

To speed up our design space exploration process, we
developed a design-time algorithm that iteratively eliminates
configurations from the design space, thereby exponentially
reducing the number of configurations evaluated during sub-
sequent iterations.

Algorithm 1 Design space subsetting algorithm for energy
1: Input:

Complete cache configuration design space, S
Application-configuration matrix, EPT
Design constraint, e

2: Output:
best subset Cbme for 1 ≤ m ≤ |S|

3: Begin
4: for all 1 < m < |S| do //For all subset sizes
5: C=S
6: while i < m do
7: for all adjacent pairs of i$(cj,ck) do
8: for all adjacent pairs of d$(cj,ck) do
9: for all applications ai do

10: find µ∆
11: end for
12: end for
13: end for
14: Min pair = find pair min µ∆
15: merge pair(Min pair)
16: C = C − ci //remove merged conf.
17: end while
18: Evaluate quality(Cbme, p, t)
19: end for

For illustration, we explain our algorithm for determining
the best subset for energy optimization, using our design space
(Table I). Algorithm 1 depicts our design space subsetting
algorithm for energy optimization. The algorithm takes in as
inputs the complete design space S, the three-dimensional
configuration energy-performance-temperature EPT matrix,
and the target optimization objective, x, where x = e for
energy (this can be changed for performance p or temperature
t). The outputs of the algorithm are the best subsets, Cbme,
for each subset size 1 < m < S, and the quality of Cbmx for
p and t.

The algorithm contains two nested iterations. The first one
explores the design space for each subset size 1 < m < S
(line 4 to 19) and the second determines the best subset
Cbme (lines 6 to 17). For each subset size m, the algorithm
begins with the complete design space S (line 5) as the
starting subset. In each iteration, for adjacent pairs of data
cache (d$) and instruction cache (i$) configurations, and for
all applications, the algorithm evaluates the average energy

consumption change (µδ(cj , ck)) incurred by executing the
applications with configuration cj instead of configuration ck:

µδ(cj , ck) =
1

n

n∑
i=1

eδ(cj , ck, ai) (3)

where n is the number of applications, cj and ck are row- or
column-adjacent configuration pairs in Table I, and:

eδ(cj , ck, ai) =
e(cj , ai)− e(ck, ai)

e(ck, ai)
(4)

The algorithm searches for and merges the pair of config-
urations that resulted in the least energy change (line 14 to
16) (i.e., ck becomes cj). When i = (m − 1), the resulting
configurations of the subset are the constituent configurations
of Cbme, the best subset of size m for the energy constraint.

Finally, in line 18, using this subset, the algorithm evaluates
the adherence of this subset to the other design constraints
(similar to Equation 4), using the best configurations from the
subset (cb), compared to using the best configuration in the
complete design space (sb), expressed as follows:

pavδ(cb, sb, ai) =
p(cb, ai)− p(sb, ai)

p(sb, ai)
(5)

and
tavδ(cb, sb, ai) =

t(cb, ai)− t(sb, ai)
t(sb, ai)

(6)

.
Similarly, we note that when x = p or x = t, the

algorithm will select the best subsets using Eq. (3) and (4) for
performance and temperature, respectively. It will also evaluate
the quality of the subsets for the energy constraint using the
following equation:

tavδ(cb, sb, ai) =
e(cb, ai)− e(sb, ai)

e(sb, ai)
(7)

IV. EXPERIMENT SETUP
To evaluate the impact of the subset size on a configurable

cache’s ability to adhere to design objectives, we used our
algorithm (Algorithm 1) for the design space, S, (Section
III-A). We performed the experiments for x = e, p, and t,
separately. For each constraint x we determined the quality of
Cbmx, for m ∈ [1, |S|]. Furthermore, for each x, we evaluated
the quality of Cbmx for {e, p, t} − x, using Eq. 5-7.

To obtain application-configuration energy-performance-
temperature EPT matrix values, we used a collection of appli-
cations that represent different application domains and with
our design space |S|. In total, we used seventeen applications
from the MiBench [12] and the EEMBC [13] Automotive
suites. The benchmarks were compute kernels performing
specific tasks in different application domains, including net-
working, image processing, security, etc. We obtained the
performance results by executing the applications on the gem5
simulator [14], and modeled the energy and temperature using
McPAT [15] and HotSpot [16], respectively. To model fan-less
systems, we designed our system with a heat sink of 1mm and
spreader 0.1 mm thickness, and set the convection resistance
to 4K/W.
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Fig. 1: Impact of subset size on (a) energy, (b) performance,
and (c) temperature, using Algorithm 1

V. RESULTS AND ANALYSIS

In this section, we discuss the results of the impact of the
subset size on the design objectives using Algorithm 1 and the
qualities of these subset compared to those obtained using the
exhaustive method.

A. Impact of subset size on the design objectives

Figure 1(a), (b), and (c) depict the results of our three exper-
iments to select the best subsets for the energy, performance,
and temperature, respectively, using Algorithm 1. The results
depict the average percent increase in energy, performance,
and temperature values for all of the applications using the
best subsets, as compared to the complete design space (higher
percentage values represent lower subset quality). For each ex-
periment, the figures also depict the quality of the best subsets
for the other objectives (e.g., performance and temperature in
Figure 1(a)), using (5), (6), and (7) (Section III-C).

In general, as expected, larger subsets improve the energy,
performance, and temperature as the subset size tends towards
the full design space. However, we observed that subset sizes
larger than 50 did not result in any substantial changes for
all objectives. Increasing the subset size beyond 50 did not

improve any objective by more than 0.49%. Thus, in the
depicted results, we only show subset sizes less than 50.

1) Energy: The results revealed that, on average, a smaller
subset size decreased the subset quality for energy. However,
only subsets smaller than 11 degraded the quality by 2.6%
or more. Furthermore, the quality of the subset degrades
substantially for subset sizes smaller than 5 (e.g., 10% for size
of 1). This increase was due to the variability in application
characteristics; subsets smaller than 5 were insufficient to
satisfy the different applications’ cache requirements.

We also observed that the best energy subsets provided
high quality subsets for performance and temperature. The
best energy subsets (Cb10e) provided quality subset for per-
formance and temperature within 3.1% and 0.4%, respectively,
of the complete design space. The smallest best energy subset
(Cb1e) provided performance and temperature within 11.2%
and 0.7%, respectively, of the complete design space. Although
performance and temperature are degraded by smaller subsets,
the performance degradation was much larger than the temper-
ature degradation. Regardless of the subset size, we observed
that when Algorithm 1 selected the subsets for the energy
objective, the quality of the subsets for energy were always
higher than the quality for performance. Since Algorithm 1
used (3) and (4) to select the subsets, the algorithm priori-
tized the energy objective over performance and the resulting
subsets provided better energy savings than performance.
Furthermore, the configurations required to adhere to energy
savings were not sufficient for the performance.

On the other hand, the best subset for energy only increased
the temperature by 0.4% and 0.7%, for Cb10e and Cb1e,
respectively. Since temperature is a byproduct of energy and
high energy input (e.g., large currents) dissipates energy in
form of heat, low energy configurations are likely to reduce
temperature dissipation. As a result, subsets that prioritized
energy also maintained low average temperatures.

2) Performance: Similar to energy, the smaller sizes re-
duced the quality of the subsets. However, unlike energy,
larger subset sizes were required to maintain less than 2%
degradation in performance. For instance, to maintain the
performance within 2.6% of the optimal, a subset of size 13
(Cb13p) was required, whereas a subset of size 10 (Cb10e)
was required to maintain energy within 2.6% of the the com-
plete design space. These results suggest that maintaining the
applications’ performance requires more configurations than
meeting applications’ energy constraints. Due to the higher
variation in the hardware requirements for performance, larger
subsets, with more configurations, are required to provide high
quality cb’s compared to the complete design space. Since
our design space considered independent instruction and data
caches, more configurations were required to satisfy design
objectives for both caches.

Furthermore, Cb1p degraded the performance by 9.5%
compared to the full design space, since one configuration
is insufficient to sustain high performance for all of the
applications. However, we note that Cb1p provided better
performance quality, as compared to Cb1e (Section V-A1),



since the algorithm obtained Cb1p by merging the average per-
formances of the different configurations. Additionally, Cb1p
incurred 1.7% temperature increase compared to the complete
design space, which was more than the temperature increase
for Cb1e. Since high performance configurations typically con-
sume more energy, and thus dissipate more temperature, the
best performance subsets also contained higher temperature
configurations.

3) Temperature: Unlike for energy and performance, sub-
setting the design space for temperature did not increase the
average temperature of the system. On average, the applica-
tions required at least two-configuration subsets to execute
with temperatures equivalent to the complete design space.
A subset of size one Cb1t incurred 1.1% increase in average
temperature. We observed that smaller cache sizes always
dissipated the least temperature, and there was not much
difference between the other cache configurations with respect
to temperature. That is, as long as the cache size was kept
small (e.g., 8KB), regardless of line size and associativity,
average temperature dissipation was low. However, using Cb1t
significantly degraded the energy and performance. For in-
stance, while Cb13p degraded energy by 4.6%, Cb13t degraded
energy by 7.5%. In order to maintain energy savings within
4.6% of the complete design space, a temperature subset of
size 39 was required.

Furthermore, Cb1t incurred 12.6% and 12.3% energy and
performance overhead, respectively, and increase of 24.7%
and 29.4%, compared to Cb1e and Cb1p, respectively. Since
temperature optimization tends to favor configurations with
smaller cache sizes, those configurations were not suitable for
all of the performance and energy requirements of all of the
applications A. In addition, since the applications required
caches of disparate sizes, the applications’ performance and
energy degraded significantly when the design space was
reduced to a single cache size.

4) Comparison to prior work: Prior work ( [3], [4]) re-
quired a subset of 4 configurations (Cb4e) to provide energy
savings within 3% of the complete design space for a design
space of 18 configurations. However, given our design space
of 243 configurations, prior work degraded the energy and
performance by 6.6% and 8.1%, respectively. Also, prior work
required a separate subset for each design objective, whereas
our algorithm determined a single subset that simultaneously
improved multiple objectives. For instance Cb10e (Figure 1
A) shows a subset of ten configurations that achieved energy,
performance, and temperature within 3.0%, 3.4%, and 0.4%
of the complete design space.

Furthermore, prior work required 22.2% of the complete
design space to maintain energy savings within 3% of the
optimal. However, our work was able to maintain energy,
performance, or temperature within 3% of the optimal using
only 4.1% of the complete design space.

5) Broader impact of the best subsets: To determine the
best single configuration for multi-objective optimization, if
only one configuration could be selected, we analyzed the
tradeoffs of a single-configuration best subset Cb1x.

Energy Perf. Temp.

Energy
c132 10.1% 11.2% 0.7%

Perf.
c46 11.5% 9.5% 1.7%

Temp.
c184 12.6% 12.3% 1.1%

Quality

Obj.

Fig. 2: Summary of the best subset Cb1x’s configuration for
each design objective and quality of that subset for energy,
performance, and temperature
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Figure 2 depicts a summary of the best subset Cb1x’s con-
figuration for each design objective and quality of that subset
for energy, performance, and temperature. The rows represent
the target objectives and the columns represent the remaining
objectives. For example, Perf.C46 contains configuration 46
and is the best subset of size 1 (i.e., best single configuration)
for performance, resulting in performance within 9.5% of the
complete design space.

Figure 2 provides insights on the design opportunities for
multi-objective optimizations. For energy-constrained system,
a single core with c132 will provide energy, performance, and
temperature within 10.1%, 11.2%, and 0.7% of the complete
design space. However, if the system is also required to
perform real-time tasks, the designer can elect to include
another core with c46. Alternatively, for systems with relaxed
hardware area constraints, the designer could elect to include
several cores with all of the c132, c46, and c184 configurations,
configurable cores with the aforementioned configurations, or
replicated cores with similar configurations.

B. Algorithm 1 vs. exhaustive

Compared to exhaustive search, Algorithm 1 reduced the
exploration time by > 99% for each objective. To select the
subset Algorithm 1 compares adjacent configurations only, in-
stead of all possible configuration combinations, which results
in exponential reduction of time. For instance, to select Cb121x
(largest number of possible combinations given Equation (2)),
Algorithm 1 performs ≈ 1.2×107 comparisons vs. 7.2×1071

in exhaustive search.
We also analyzed the quality of subsets achieved by Al-

gorithm 1, compared to exhaustive search. Figure 3 depicts
the results of the absolute values of the quality of sub-
sets obtained with Algorithm 1 normalized to the absolute



values of those obtained using exhaustive exploration, for
energy, performance, and temperature. Values above/below
1.0 represent worse/better qualities. As expected, Algorithm
1 produced lower-quality subsets compared to the exhaustive
search. However, the difference in qualities converged for
smaller subset sizes.

1) Energy: For the energy objective Algorithm 1 provided
lower quality subsets for large subset sizes (e.g., 38). However,
large subset sizes did not necessarily result in worse qualities.
For instance, Algorithm 1 determined higher quality for Cb50e
than Cb36e. Since Algorithm 1 compared only adjacent con-
figurations, the algorithm merged equally high-quality config-
urations, whereas the exhaustive search evaluated all possible
configuration combinations before eliminating configurations
from the design space. Alternatively, for the smallest subset
size, both Algorithm 1 and the exhaustive search provided the
same subset Cb1e. This result revealed that the design space
layout (Table I) affects the outcome of Algorithm 1 and that
different arrangement of configurations will impact the quality
of the selected subset.

2) Performance: Similar to energy, Algorithm 1 met or
under performed the exhaustive search method. Also, the
quality of the subsets converged with the quality of the subsets
obtained with the exhaustive search. However, by examining
Figure 3 we observe that lowest divergence occurred for subset
sizes 28—19. This result revealed that merging neighboring
configurations in the design space degrades the quality of
the subsets for intermediate subset sizes, with respect to the
complete design space. However, to select a subset of single
configuration, the algorithm was on par with exhaustive search.

3) Temperature: Since a very small subset was required
to maintain temperature quality, Algorithm 1 did not degrade
the subset quality for temperature, compared to exhaustive
search. To determine Cb1p, both methods provided the same
configuration.

In general, for all design objectives, we observed that as the
subset size decreased the variance between our algorithm and
the exhaustive method converged. Furthermore, both methods
resulted in cb1e, cb1p, cb1t, with configurations c32, c46, and
c184 as the constituent configuration for energy, performance
and temperature, respectively.

VI. CONCLUSIONS

In this paper we evaluated the applicability of design
space subsetting to the multi-objective optimization of en-
ergy, performance, and temperature. As a case study, we
used a configurable cache featuring a design space of 243
configurations with 1.4× 1073 possible subsets. We used our
proposed subsetting algorithm to make the subsetting design
space more tractable. Our results revealed that the design
space subsetting does not need to be repeated for the different
design objectives. For our design space, a 10-configuration
subset for energy provided high quality configurations, within
3% of exhaustive search, for all of the design objectives.
Similarly, a 13-configuration subset for performance provided
high quality configurations, within 3% of exhaustive search,

for all of the design objectives. However since temperature-
specific subsets contained small cache sizes only, temperature-
specific subsets resulted in poor quality configurations for
energy and performance optimization.

Our future work involves extending our algorithm to other
parameters such as clock frequency, reorder buffer, and issue
window. We also plan to explore include hardware area as an
additional design objective.
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