
1

ECG-based Authentication using Timing-Aware
Domain-Specific Architecture

Renato Cordeiro, Member, IEEE, Dhruv Gajaria, Graduate Student Member, IEEE, Ankur Limaye, Graduate
Student Member, IEEE, Tosiron Adegbija, Senior Member, IEEE, Nima Karimian, Member, IEEE, and Fatemeh

Tehranipoor, Member, IEEE

Abstract—Electrocardiogram (ECG) biometric authentication
(EBA) is a promising approach for human identification, partic-
ularly in consumer devices, due to the individualized, ubiquitous,
and easily identifiable nature of ECG signals. Thus, computing
architectures for EBA must be accurate, fast, energy-efficient,
and secure. In this paper, first, we implement an EBA algorithm
to achieve 100% accuracy in user authentication. Thereafter, we
extensively analyze the algorithm to show the distinct variance in
execution requirements and reveal the latency bottleneck across
the algorithm’s different steps. Based on our analysis, we propose
a domain-specific architecture (DSA) to satisfy the execution
requirements of the algorithm’s different steps and minimize the
latency bottleneck. We explore different variations of the domain-
specific architecture, including one that features the added benefit
of ensuring constant timing across the different EBA steps, in
order to mitigate the vulnerability to timing-based side-channel
attacks. Our DSA improves the latency compared to a base ARM-
based processor by up to 4.24x, while the constant timing DSA
improves the latency by up to 19%. Also, our DSA improves the
energy by up to 5.59x, as compared to the base processor.

Index Terms—Domain-specific architectures, energy efficient,
secure architectures, side-channel attacks, ECG, biometric au-
thentication, Internet of Biometric Things (IoBT), Internet of
Things (IoT)

I. INTRODUCTION AND MOTIVATION

Consumer devices, such as smartphones and wearables,
have become the fastest-growing category of Internet of
Things (IoT) devices. Many of these devices also constitute
the Internet of Medical/Health Things (IoMT/IoHT), which
enable innovative healthcare solutions and services. With the
rapid growth of the IoT, fast, energy-efficient, and secure
user authentication has become a necessity for consumer
IoT devices. IoMT devices, especially, are prone to cyber-
attacks and adversarial threats due to their interaction with
sensitive and private user information. As such, there is much
ongoing research into modalities for accurate and efficient user
authentication in consumer devices [1], [2].
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Electrocardiogram (ECG) is an increasingly popular modal-
ity for biometric user authentication. Apart from its value for
deriving health data insights and diagnosis through health-
care monitoring [3], ECG enables user authentication based
on physiological signals. ECG signals, which represent the
human heart’s electrical activity, are easy to obtain, uniquely
identifiable, permanent, and information-rich, making them an
excellent choice for user authentication in resource-constrained
systems [1]. As a result, there have been prior studies on fast
and energy-efficient EBA techniques, from the perspectives of
both the algorithm and hardware implementation [2], [3].

Most prior hardware approaches to implementing EBA at
extremely low time and energy typically involve application-
specific integrated circuits (ASIC) or FPGA-based designs
[4], [5]. While these approaches achieve high speed and
energy efficiency, they are inflexible and can only function
for the specific EBA algorithm that the hardware is designed
for. A modification of the algorithm would require a re-
implementation of the hardware, potentially from scratch [3].
Since EBA is not a persistent process, dedicated hardware
just for biometric authentication may be redundant, especially
in resource-constrained general- (or multi-) purpose devices,
such as smartphones or smartwatches. Furthermore, there is
currently a dearth of approaches that consider the security of
EBA architectures in consonance with the need for energy-
efficiency and low latency. Given the high variability in the
timing and power profile of different phases of the ECG
authentication [6] algorithm, these implementations are prone
to timing or power side-channel attacks [7], [8], [9].

In this work, we propose a domain-specific architecture
(DSA) for ECG biometric authentication. As an important
step in the direction of efficient and secure architectures for
EBA, our work aims to mitigate timing-based side-channel
attacks by ensuring that the different steps of the authentication
process exhibit both intra-step and inter-step constant timing
profiles. As such, the constant timing mitigates the variability
and timing leakage required for performing timing-based at-
tacks. Our main motivation for designing a DSA rather than an
ASIC or FPGA-based design is the runtime flexibility afforded
by domain-specific architectures. When the EBA algorithm
is not running, other processes or threads can be run on the
system and can be preempted for the EBA algorithm when
necessary.

We explore different versions of our DSA to evaluate their
latency and energy benefits and their tradeoffs. We explore
a design featuring a dedicated buffer to mitigate the latency
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and energy overheads of data movement and one featuring
a custom block to mitigate the performance bottleneck in
the EBA algorithm. We also explore an adaptable DSA (via
dynamic frequency scaling [10] and adaptable execution order
[11]) to specialize the execution resources to the variable
runtime needs of the EBA algorithm while also achieving
constant timing.

Our main contributions are summarized as follows:
• We analyze the execution characteristics of the EBA al-

gorithm to reveal the performance bottleneck and variable
timing characteristics that increase their vulnerability to
timing-based side-channel attacks.

• We design an energy-efficient domain-specific architec-
ture (DSA) to reduce the execution time of EBA. To
mitigate the vulnerability to timing-based side-channel
attacks, our architecture can also maintain constant timing
across the different authentication steps by trading off
optimization potential.

• We explore different design variants of the DSA and
analyze their tradeoffs. We compare the DSA to a base-
line ARM processor configuration commonly found in
modern smartphones and show that the proposed architec-
tures offer substantial latency and energy improvements
over the baseline architecture. The adaptable DSA can
reduce the latency and energy by up to 19% and 4.62x,
respectively, while maintaining constant timing across the
algorithm’s steps. Furthermore, our DSA eliminates the
latency overheads imposed by prior work that also used
constant timing to mitigate vulnerability to timing-based
side-channel attacks.

The rest of the paper is organized as follows. In Section
II, we describe ECG biometric authentication, various steps
of EBA, and details of our implementation of the algorithm.
In Section III, we discuss domain-specific architectures for
EBA, details of our DSA design, timing-based side-channel
attacks in EBA, the threat model considered in this paper,
and mitigation methods. We describe our experimental setup
and experimental results in Section IV and Section V, respec-
tively. Section VI provides a brief literature review of related
work. Finally, in Section VII, we present our conclusion and
overview of future work.

II. ECG BIOMETRIC AUTHENTICATION (EBA)

Electrocardiogram signals result from the human heart’s
electrical activities. Many authentication schemes in the
healthcare domain, including the burgeoning IoMT, utilize
ECG biometrics for authentication [12], due to several ad-
vantages, such as internal security, ease of implementation,
liveness detection, etc.

EBA systems, in general, apart from the sensor, are com-
prised of four major steps: filtering, segmentation, feature
extraction, and matching. The ECG sensor provides the in-
terface between the user and the authentication system, and
collects the user’s biometric traits. Filtering processes the
gathered ECG signal to remove various noise sources in order
to enhance the quality of the biometric traits. Segmentation
splits the ECG signal into its different unique component
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Fig. 1: High-level overview of an ECG biometric authentica-
tion (EBA) system.

waveforms in order to reduce redundancy and simplify the
authentication process. Feature extraction extracts information
that may enable the system to distinguish between different
users. The feature set extracted during an a priori enrollment
phase is either stored in a remote database as a template
indexed by the user’s identity information (i.e., match-on
server) or stored on a smart card (i.e., match-on card/device).
This template will be computed by averaging a set of n
enrolled ECG signals of the same user in the feature sets.
Matching, which can be implemented in hardware or software,
compares the template with a new input query and provides
a response to the query, i.e., whether the user’s biometric
matches the template or not.

A. EBA Algorithm

Fig. 1 provides a high-level overview and flow of the EBA
process, which comprises of the enrollment and authentication
phases. In the enrollment phase, the user’s ECG signal is
registered to generate the template, and in the authentication
phase, which this work focuses on, raw data from a user is
provided and compared to the previously stored template to
determine the access permissions. In what follows, we briefly
describe the various steps of the EBA algorithm and our
approach for implementing the algorithm.
Data Acquisition: ECG measures electrical activity in the
heart and electrical signals produced during muscle contrac-
tions. Generally, an ECG sensor consists of two electrodes.
In early research work, wet electrodes such as AD8232 were
dominant, while the recent advancements in sensing technolo-
gies make the use of dry electrodes more feasible than ever.
The Nymi wristband [13] and CardioWheel [14] are examples
of commercial ECG sensing products that have been developed
to improve the wearer’s daily experience.
Filtering: The presence of noise within the signals might
result in inaccurate results. Hence, denoising is a required
step in EBA systems. Different types of noise get assembled
together with ECG signals in the process of acquisition and
transmission. These signals can range from low-frequency
noise such as baseline wander (BW) to high-frequency noises
such as power line transmission motion artifact (MA) and
electrode movement (EM). To remove this artifact, we em-
ployed an infinite impulse response (IIR) bandpass filter by
cascading a low-pass (LP) and high-pass (HP) filters with
cutoff frequency 1Hz-40Hz, as shown in Fig. 2a. We aimed
to preserve the useful original information of the ECG while
attenuating low and high-frequency noise components. The
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Fig. 2: Plots illustrating ECG signal from the database for (a)
filtered vs. noisy ECG. (b) ECG segments collected from the
same subject and localization of fiducial points. After detecting
R-peak using the Pan-Tompkins algorithm, the ECG signal is
segmented by cardiac cycles.

Fig. 3: Hypothetical example representing the ECG segmen-
tation. (a) is the original ECG waveform, (b) illustrates fixed
length segmentation, and (c) illustrates the RR segmentation
techniques

.

high-pass filter with the transfer function of the second-order
low-pass filter is:

H(z) =

(
1− z−6

)2
(1− z−1)2

(1)

The amplitude response is:

|H(wT )| = sin2(3ωT )

sin2(ωT/2)
(2)

where T is the sampling period. The difference equation of
the filter is:

y(nT ) =2y(nT − T )− y(nT − 2T ) + x(nT )

− 2x(nT − 6T ) + x(nT − 12T )
(3)

In addition, the transfer function for a high-pass filter is
defined by the following equation:

H(z) =

(
−1 + 32z−16 + z−32

)
(1 + z−1)

(4)

where the difference equation is defined as follows:

y(nT ) =32x(nT − 16T )− [y(nT − T )
+ x(nT )− x(nT − 32T )]

(5)

Segmentation: A typical ECG tracing consists of a series of
P , QRS, and T waveforms occurring in a repetitive order.

Each cycle of ECG can provide the same information over
time, and it is not efficient to repetitively read correlating
signals. Therefore, segmentation has come to the forefront of
ECG biometric systems. The goal of segmentation is to find
repeated patterns in the P , QRS, and T waveforms, thereby
significantly reducing the template size in order to simplify
template matching. The first step of ECG segmentation is to
identify the R-peak. To achieve this goal, we employed the
Pan-Tompkins [15] technique to detect ECG R-peak. In short,
four steps including derivation, squaring, averaging phases
before thresholds are set to identify R-peak for the ECG
segmentation. We used a derivative filter to find the high
slopes and identify the direction of the slopes of the ECG
signal. The derivative filter also distinguishes the R-peak from
other ECG waveforms. Squaring makes all the ECG signal
values positive and amplifies the output of the previous stage.
Averaging phase maximizes the ECG signal compared with
the squared output. After the averaging process, the threshold
is employed to detect the R-peaks in the ECG.

Upon successfully completing R-peak detection, the ECG
signals are isolated into ECG beats (segments). There are
two techniques for ECG segmentation called Fixed Length
Segmentation and RR segmentation. Fixed length segmentation
involves cropping the partial ECG signal at fixed distances
before and after detected R-peaks (Ri−1 − n, Ri−1 + n′)
instead of the whole signal, where n and n′ are the time
periods before and after the R-peak. Note that n and n′ are
different from each other and vary depending on the sample
rate of the data sets. Finding an optimal value of n and n′

plays a huge role in the EBA performance. Alternatively, RR
segmentation involves cropping the whole waveform of the
ECG signal (Ri, Ri+1), where the Ri is the ECG R-peak at
cycle t, and Ri+1 is the ECG R-peak at cycle t + τ . In this
work, we used Fixed Length Segmentation since we found
it to give better results, allowing us to not only reduce the
time for enrollment/authentication phase, but also reduce the
memory space for storing the template. Fig. 3 illustrates our
technique for segmenting ECG signals using sliding windows
into different heartbeats.
Feature extraction: The feature extraction stage translates the
segmented ECG into a representation that further reduces the
effects of intra-subject variability while emphasizing discrim-
inative and intra-class variations to obtain better performance.
ECG biometric systems fall into two categories in terms of
feature extraction: fiducial point or non-fiducial point. Fiducial
point techniques focus on measurements of ECG fiducial
landmarks in the time domain, such as temporal or amplitude
difference between fiducial landmarks (P , QRS, and T ). In
non-fiducial techniques, on the other hand, feature extraction is
based on using frequency analysis such as wavelet transform to
holistically analyze an ECG signal and overall morphology of
the waveform rather than specific fiducial points. Even though
non-fiducial features such as frequency domain can lead to
high accuracy, selecting the optimal level of decomposition
and types of wavelet transform is challenging. Furthermore,
if ECG signals are very noisy, non-fiducial techniques can
degrade the EBA performance. Moreover, non-fiducial feature
extraction is not lightweight and consumes more power, which
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is not ideal for IoMT [16]. Thus, in this paper, we use the
fiducial method. Specifically, we extracted a subset of ten
features that represent the majority of fiducial features from
every beat of each individual’s ECG signal. Fiducial point
feature extraction relies on accurate detection of ECG fiducial
characteristic points such as P , Q, R, S, and T waves, as
shown in Fig. 4, in order to obtain their relative amplitude,
temporal intervals, and morphological features [16]. Each
temporal and amplitude of each waveform are distinctive from
each individual user. In this work, we designed 10 fiducial
points and 14 temporal features to generate a discriminative
EBA feature representation to improve the EBA accuracy.
To extract these features, first the R-peak, and then the P ,
Q, S, T peaks and valleys are detected using a local maxi-
mum/minimum searching algorithm within a defined physical
region. Note that the number of fiducial points and temporal
features can be extended up to ≈ 40. However, we found that
the aforementioned 24 feature sets were more robust against
noises, discriminative, and achieved high accuracy.
Matching: In the matching stage, identification and authen-
tication functions are performed. Identification commonly in-
cludes a classification process such as support vector machines
(SVM). For authentication, the acceptance or rejection of the
identity claim is generally based on a reference threshold
of T between the currently acquired trait and the previously
acquired templates. In our work, we focus on authentication
and employed Euclidean distance as a matching technique
between the features’ vectors to decide whether to accept
or reject the identity claim. Given a claimed identity I and
a query feature set Xq , we need to determine if (I , Xq)
belongs to a genuine or imposter user. The Euclidean distance
D between two feature vectors Tj and qj is defined as

D({XT
I }, {Xq}) =

√√√√ K∑
j=1

(XT
I [j]−Xq[j])2 (6)

where XT
I is a stored template corresponding to identity I

and K is the number of feature sets. So, we compare XT
I and

Xq to measure the similarity for verification. If the distance
D or score is above a predefined user-specific threshold (η),
the claimed identity is accepted as a genuine user, otherwise,
it is rejected and considered an imposter.

B. EBA Algorithm Evaluation

Evaluation metrics: To evaluate the performance of our EBA
algorithm, we conducted the experiments with three error
rates: false positive/accept rate (FPR/FAR), true positive/accept
rate (TPR), and equal error rate (EER). FRR is the percentage
of genuine users who were denied access to the ECG authenti-
cation system, whereas FAR is the percentage of imposters who
successfully gained access to ECG biometric authentication.
Both FRR and TPR can be traded-off with each other in order
to find the optimal and desired EER. EER is the location on
the receiver operator characteristic (ROC) curve where the
FAR and true positive rate 1-FRR are equal. Adjusting the
threshold value (η) controls the TPR and FPR of the ROC
curve. In fact, we generated a set of thresholds {ηj}Tj=1 such

Fig. 4: (a) Single ECG beat with fiducial characteristic points,
(b) temporal and fiducial point features that have been ex-
tracted from single ECG beat and used in this paper.

that smin ≤ ηj ≤ smax,∀j = 1, 2, · · · , T , where smin and
smax are the maximum and minimum scores, respectively,
in the given set of match score. Thus, each threshold (ηj)
computes different values for FAR and FRR [17]. As (ηj) is
decreased, the constraints on accuracy become more relaxed,
allowing for higher FAR. For a relatively high threshold (ηj)
value, the FAR is decreased. Depending on the application, the
user-specific threshold (ηj) value can be adjusted.

We also calculated the accuracy for each subject as the
number of successful attempts (segments or ECG beats) by
the genuine user divided by the total number of attempts or
the percentage of correctly recognized query samples. The
accuracy is defined as follows:

Accuracy =
Nc

Nq
(7)

where Nq is the total number of query samples and Nc is the
number of query samples that are correctly identified.
ECG database: To validate the effectiveness of the EBA
system, we conducted extensive experiments on three widely
used benchmark datasets: ECG-ID [18], Combined measure-
ment of ECG, Breathing and Seismocardiograms database
(CEBSDB) [19], which contains normal ECG records, and
PTB Diagnostic ECG Database [20], which contains both
normal and abnormal ECG signals. The databases used are
summarized in Table I. The PTB database contains 549 records
with diverse profile information such as gender, age, healthy,
unhealthy, and different lengths obtained from 290 subjects
sampled at 1 kHz, which mimics real-world scenarios. Among
the 290 subjects, 148 subjects showed serious abnormality,
whereas there were 52 healthy subjects. All channels were
involved, where only 14 are for ECG. However, in this work,
we only used lead 1 as our experimental setup, and none of
the people were excluded. ECG-ID contains twenty-second
ECG recordings collected from 90 subjects from multiple
sessions over a six-month period. The signals are acquired
from single limb lead I using electrodes at the wrists. In
this paper, we used all 90 subjects and used all sessions
recordings ECG to conduct the experiments. In the CEBSDB
database, 20 presumed healthy volunteers are measured using
a Biopac MP36 data acquisition system from Santa Barbara,
CA, USA. Total recordings are at a sampling frequency of
5 kHz for approximately 50 minutes. Note that while the
different health conditions have no tangible impact on ECG-
based authentication, we have included them to illustrate
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the robustness of our EBA system to different kinds of input
signals.
Template generation: As discussed in Section II-A, in the
enrollment phase, the user’s ECG signal is registered to
generate the template. Based on the data sets, we were able
to collect 40 different test samples (i.e., beats/segment) from
any individual’s ECG. In order to generate a template, we
randomly selected 20 ECG beats (segments) from a total of 40
ECG beats and calculated the average to make a template for
each individual user. We registered each user using one ECG
segment, and each segment contains 24 feature sets that have
been extracted in the feature extraction module. In other words,
we generated template sets with sizes of 90 × X , 290 × X ,
and 20 × X for the ECG-ID, PTB, and CEBSDB datasets,
respectively. Here, X indicates the number of feature sets (24).
After each user is registered in the template, we tested and
evaluated our EBA system using 40 segments for each user.
Performance: We used all three datasets—ECG-ID database,
PTB, and CEBSDB—to evaluate the EBA algorithm’s match-
ing task and recognition performance. In order to do that, we
considered 40 ECG segments (beats) for each individual. Thus,
we obtained test sets with sizes of 90 × 40 for the ECG-
ID dataset, 290 × 40 for the PTB dataset, and 20 × 40 for
the CEBSDB dataset. For each test sample, we calculated
the Euclidean distance or similarity between the test sample
and the template of each individual. To measure a genuine
match score, a pair of samples from the same user have to be
compared using the matching module; to measure an impostor
match score, a pair of samples from two different users have
to be compared. In the authentication phase, we took each
subject as a genuine user and considered the rest as impostors.
Therefore, we had a total of Ns(s−1)/2 genuine comparisons,
and N(N − 1)s2/2 impostor comparisons, where N is a total
user size and s is the number of segments (40). N is 90, 290,
and 20 for the ECG-ID database, the PTB Diagnostic database,
and the CEBSDB, respectively.

The test performances of the accuracy, FAR, FRR, and
EER of the three datasets are shown in Table II and Fig. 5.
As shown in Table II, the accuracy and FRR for all three
datasets were 100% and 0%, respectively. In contrast, FAR
for ECG-ID, PTB, and CEBSDB were 1.86%, 3.36%, and
3.5%, respectively, while the EER was 2%, 3%, and 3.6%,
respectively.

Compared to other methods such as [21] and [22], our
results are superior to the state-of-the-art methods with EER of
2%, while prior work achieved 4.46% and 10%, respectively.
We can also observe that only a 93% accuracy is obtained
from prior work [23] when the fiducial feature extraction has
been implemented, while our proposed method achieves an
accuracy of 100%.

III. TIMING-AWARE DOMAIN-SPECIFIC ARCHITECTURE
FOR EBA

Even though there are a few prior works [3], [4], [5],
[24] that proposed accelerators for EBA, ours is the first that
explores the mitigation of side-channel attacks for the whole
algorithm. Using a domain-specific architecture, as opposed to

TABLE I: The summary of the four data sets adopted in our
experiments.

Dataset Sample rate # of subjects Health status
ECG-ID 500 90 Healthy

PTB 1000 290 Healthy &
Myocardial infarction

CEBSDB 5000 20 Healthy

TABLE II: A performance comparison of ECG biometric
authentication using different datasets.

Dataset # subjects Accuracy FPR FRR EER
ECG-ID 90 100 1.86 0 2
PTB 290 100 3.36 0 3
CEBSDB 20 100 3.5 0 3.6

an ASIC or FPGA-based accelerator, offers the added benefit
of flexibility to execute other applications on the base configu-
ration. Furthermore, a domain-specific architecture lends itself
to easier integration into general-purpose (or multipurpose)
architectures used in consumer devices, such as smartphones
and smartwatches [2].

Designing a domain-specific architecture for EBA involved
a detailed and fine-grained analysis of the algorithm’s execu-
tion characteristics and requirements. We followed three key
guidelines in designing our architecture: (1) using dedicated
memories to minimize the distance of data movement; (2)
eliminating unnecessary advanced arithmetic units and mi-
croarchitectural optimizations; and (3) using the easiest form
of parallelism that matches the domain. These guidelines,
among others, are followed in the design of other domain-
specific architectures [25]. In this section, we describe the
different design decisions made in the architecture and the
motivations for those decisions.

A. Leveraging Adaptability

Various steps in the ECG biometric algorithm have dras-
tically different execution characteristics that require differ-
ent resources for minimum or near-minimum latency. For
example, whereas segmentation exhibited a high amount of
instruction-level parallelism (ILP), we observed that the ILP in
filtering was much less, and as such, did not benefit from out-
of-order execution. Thus, our overall approach was to exploit
our observations about the algorithm’s execution character-
istics to explore an architecture that is well-matched to the
algorithm’s needs. We further sought to use adaptability to
ensure that the resources are just enough for each step, in order
to minimize resource over-provisioning and achieve constant
timing. For simplicity, we limited the employed adaptability to
frequency scaling and shutting down the out-of-order backend
when not in use (details in Section III-E).

B. Mitigating Timing-based Side-channel Attacks

EBA systems have been shown to have security and privacy
issues in adversarial settings [26]. Major security threats in
biometrics can be executed in three ways: non-invasive, semi-
invasive, and invasive. Invasive attacks [27] are the most ex-
pensive and intrusive, involving physical tampering (e.g., cir-
cuit editing and micro-probing). Compared to invasive attacks,



6

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Receiver operating characteristic

ECG_PTB
ECG_ID
CEBSDB

Fig. 5: ROC curves of ECG-based biometric authentication for
ECG-ID, PTB, and CEBSDB datasets.

semi-invasive attacks [28] require moderate cost and some
physical tampering (e.g., partial decapsulation and backside
thinning). On the other hand, non-invasive attacks [29], such
as side-channel attacks, require the lowest cost and no physi-
cal tampering. Side-channels are physical signatures/leakages
from the execution time, power consumption, and electro-
magnetic emanations (EM) released while the device is ma-
nipulating data. Timing based side-channel leakage, within
the context of EBA, occurs when an attacker obtains the
execution time of the target authentication step (e.g., filtering,
segmentation, feature extraction) for the provided input. The
side-channel information can then be analyzed to infer private
information. These side-channel attacks rely on the attacker’s
ability to detect the variability between different operations or
inputs to the system [30].

In this paper, we focus on the timing leakage of each step
of the EBA system based on their execution latency. Since
different steps of the EBA take different amounts of time,
attackers may infer the current steps of the authentication
process, or even the specific instructions being executed,
simply by monitoring the latency of executions. Therefore,
our approach is to ameliorate the timing side-channels by
ensuring that the timing information from latency profiles
cannot be used to infer the operations being performed; thus,
reducing the vulnerabilities in EBA computing. Our future
work involves incorporating mitigation strategies for power
attacks into the work proposed herein.

C. Threat Model

In this subsection, we define the threat model, as well as
timing side-channel leaks under our threat model. In general,
timing attacks are based on measuring how much time various
computations in the EBA algorithm take to perform (e.g.,
comparing an attacker’s given ECG signal with the victim’s
unknown signal). Given the classification of biometric tech-
nologies as a match-on card or match-on server (Section II),
we define two types of attacks: server-based attack and device-
based attack.

We assume that in a server-based attack, an adversary
can observe the variation of the total execution time of the
victims EBA algorithm with respect to the ECG signal. This

capability is possible by accessing the match-on server that
contains the database of all enrolled users’ ECG signals. In
this scenario, for example, the victims EBA runs on a server
that can be remotely probed and timed by the attacker using
malicious/fake ECG signals. Due to cross-matching problems
and privacy invasion, an adversary can reconstruct various
users ECG data through timing attacks. Mitigating such attacks
at the server level will likely be very expensive. On the other
hand, in device-based attacks, an adversary can directly access
the victims device to observe variations in how long it takes
to run the EBA algorithm. In this scenario, an attacker will
only access the users ECG signal (only one user) that has been
enrolled in the card (device).

In more detail, an attacker can access leaked information
from the EBA system by measuring the time it takes to respond
to certain queries (trying different ECG signals as inputs).
Note that public ECG data is available to everyone and can
be exploited by attackers to access confidential information
leaked from timing attacks. Basically, an attacker attempts to
compromise the victim’s ECG signal by analyzing the time
taken to execute the EBA algorithm. The different operations
in our EBA algorithm take various amounts of time to execute,
and the time can change based on the different inputs (ECG
signals), given that each user’s ECG signal produces a unique
waveform. By precisely measuring the time for each operation,
an adversary can work backward to the input and reconstruct
the victims ECG data.

The importance of securing a biometric system against
timing side-channel attacks is that the biometric data are
permanent and not possible to revoke if compromised. To
mitigate timing attacks, it is important to design EBA systems
with constant-time functions and ensure that input-dependent
timing variations are eliminated in the EBA system. The
following subsection details how we implemented constant
timing in the EBA algorithms as a countermeasure to timing
attacks.

D. Input-Independent Intra-Step Constant Timing

Our overarching goal was to ensure constant timing across
the different algorithm steps. However, we also observed
that intra-step timing variations could occur due to different
inputs to the algorithm (i.e., user data inputs). This intra-step
timing variation was especially evident in the case of branches
within the algorithm’s instructions. Thus our first goal was
to modify the code such that our EBA algorithm maintained
constant timing regardless of inputs, similar to the constant
time exponentiation [31], [32] mitigation technique for timing-
based side-channel attacks.

To achieve this, we explored all the branches in our al-
gorithm/code and inserted dummy computations (tantamount
to nops) to balance the number of instructions in both the
taken and not taken branches. That is, all branches execute
the same number of instructions regardless of the branch
direction. We found that the timing variations for different
inputs were especially significant during the segmentation step
for R-peak detection. This step consists of complex branches
with computationally expensive loop operations and multiple
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Fig. 6: Overview of domain-specific architecture (DSA) and computation flow in the custom segmentation block (segblk).

loop exit conditions. Simply balancing the full loops resulted
in substantial execution time overhead due to the dummy
computations. Thus, to mitigate this overhead, we observed
that constant timing could be achieved by only inserting
dummy computations equivalent to the maximum number of
times those branches are called for any possible combination
of inputs. The results of this intra-step constant timing process
are presented in Section V.

E. EBA Domain-Specific Architecture (DSA)

Fig. 6 depicts a high-level overview of the proposed DSA.
The architecture comprises of a base out-of-order core similar
to modern-day ARM-based high-performance processors for
consumer devices, such as smartphones. The functional units
(execution units) include two ALUs, one load, and one store
unit, while we eliminated complex functional units, such as
the floating-point and single instruction multiple data (SIMD)
units, as the EBA algorithm did not need them. Increasing the
number of functional units did not provide any latency benefits
and was deemed unnecessary.

For energy savings, we opted to use spin-transfer torque
RAM (STTRAM) caches, given their low leakage power and
normally-off computing capabilities [33]. We used a 4-way
set associative 16KB cache with 64B blocks. A 32KB cache,
which is common in smartphones, was over-provisioned for
the algorithm. To further limit the energy overheads, we used
reduced retention STTRAM caches that only retain data for
a limited period of time, after which the data is invalidated
[34]. Circuit-level details of how reduced retention can be
implemented are outside the scope of this paper but have been
described in prior work [34].

However, to prevent latency overheads or data corruption,
prior work [35] has shown that the retention time must suffice
for the cache blocks of the executing applications. Thus, we
analyzed the cache blocks of the algorithm’s different steps
to reveal that the data cache blocks, on average, required
approximately 75µs, while the instruction cache blocks re-
quired 10ms on average. That is, most data and instruction
cache blocks were either evicted or invalidated through normal
cache accesses after 75µs and 10ms, respectively. In general,
instructions were more frequently reused, hence the longer
retention time, while there was much higher dynamic data
activity. Therefore, we used 75µs and 10ms retention times for
the data and instruction caches, respectively. To prevent data
corruption of blocks that need to remain in the cache beyond
the retention time, we also incorporated a low-overhead 2-
bit-per-block monitor counter, similar to prior work [35].
This counter, which is incorporated with the cache controller,

0% 20% 40% 60% 80%100%

Buffer shift

Integration

Peak detection

Signal output

Other

Percentage time of segmentation

(a) Segmentation

0% 10% 20% 30% 40%

DC Filter

LP filter

HP filter

Other

Percentage time of filtering

(b) Filtering

Fig. 7: Percentage time of various components of the filtering
and segmentation steps. Time was relatively evenly spread in
filtering, but the buffer shift loop in segmentation comprised
the major source of overhead due to data movement to/from
memory.

simply writes back and invalidates dirty cache blocks when
the cache’s retention time is about to elapse. Note that the use
of STTRAM is orthogonal to the work proposed herein, and
our work still achieves optimizations even with SRAM cache.

We observed that the segmentation step took the most
execution time—98.6%—of the whole algorithm. Further fine-
grained analysis revealed that the main latency bottleneck
arose from the data movements between processor and mem-
ory in the segmentation step. Specifically, as illustrated in
Fig. 7a, a single loop (Buffer shift in the figure) accounted
for 91.02% of the overall execution time of segmentation.
Comparatively, other steps’ profiles were relatively stable
throughout execution, as shown in Fig. 7b for filtering (for
brevity, we omit figures for the other steps).

Therefore, to mitigate the bottleneck of the segmentation
step, we explored two flavors of our domain-specific architec-
ture. First, we designed a hardware implementation of a cus-
tom segmentation block (segblk)—effectively, an accelerator—
to perform the required computations (Fig. 6). The segblk is
tightly coupled to the core and shares key resources, such as
the register file, memory management unit, and caches, with
the core. While it imposes a less flexible integration than
a loosely-coupled implementation, a tightly coupled segblk
affords the benefit of zero runtime overhead for its invocation,
which is vital for the EBA algorithm. The segblk has pointer-
based inputs and outputs, and start and done signals, and
communicates with the rest of the processor via the on-
chip bus protocol. During the program execution, when the
segmentation function is called, the start signal is given to
the segblk. While the segmentation function is executed in the
segblk, the processor can go to a low power state and wait for
the execution to complete. Completion of the segmentation
step triggers an interrupt signal to wake up the processor and
continue the program execution.



8

S_Wait

S_SegS_FeatS_Mat

S_Read S_Filt

sel = 1

freq_l = 0

sel = 0

freq_l = 3

sel = 0

freq_l = 0

sel = 1

freq_l = 2
sel = 1

freq_l = 1

done

feat seq

filt

readstart

Fig. 8: Finite state machine of the architecture controller.

Fig. 6 illustrates the main functions implemented in the
segblk and the dataflow among the functions. The segblk
controller and datapath were implemented in Synthesizable
Verilog to perform five major functions as follows: 1) ini-
tialization of RR averages; 2) derivative filter calculation
using the Pan-Tompkins formula; 3) squaring the derivative
to eliminate negative values and emphasize high frequencies;
4) moving-window integration; and 5) peak detection.

Second, as an alternative to the custom segmentation block,
and given the memory bottleneck of the segmentation step, we
introduced a 4KB dedicated buffer for the segmentation step.
The buffer size was selected based on the amount of data
movement observed during our analysis. This buffer, directly
accessible via load/store instructions, reduces the distance and
frequency of data movement. For low overhead, we used a
STTRAM buffer with a 100µs retention time (SRAM can also
be used with similar results, but higher energy overheads). The
tradeoffs and overheads of these architectures are discussed in
Section V.

Finally, to enforce constant timing, our DSA adapts the ar-
chitecture to different algorithm steps. Adaptability is achieved
through dynamic frequency scaling [10], which is commonly
implemented in modern-day processors, and by varying the
execution order (i.e., in-order vs. out-of-order). To vary the
execution order, instructions can be multiplexed through the
execution pipeline in an in-order fashion or through the out-of-
order backend, depending on the algorithm step. The architec-
ture is implemented as illustrated in Fig. 6, and is conceptually
similar to the composite core architecture [11]. All instructions
traverse through the fetch and decode stages of the pipeline as
usual. However, depending on the multiplexer’s select signal,
as dictated by the architecture controller, the instructions can
traverse through the out-of-order backend (when sel = 0) or
through the execute stage of the pipeline in program order
(when sel = 1).

Fig. 8 depicts the controller’s state machine. For clarity,
only the most important signals shown. Output signals are
shown in italics and don’t change unless specified within a
state. We implemented the controller as a simple six-state finite
state machine (FSM) with different states for each of the four
steps of the algorithm (S Filt, S Seg, S Feat, and S Mat), a
state for reading the signals (S Read), and the initial ‘wait’
state (S Wait). The inputs to the FSM, which trigger its state
transitions, are single-bit architecture flags that are asserted at
the completion of each EBA step. That is, for example, at the
end of the filtering step, the filt signal is asserted, at the end of

TABLE III: Constant-timing configuration for each step.
Freq l and Sel represent the frequency level ID and select
signal output in the architecture controller.

EBA Step Frequency Freq l Execution Sel
Filtering 600 MHz 3 In-order 0
Segmentation 2.1 GHz (base) 0 Out-of-order 1
Feature extraction 500 MHz 2 In-order 0
Matching 400 MHz 1 In-order 0

the segmentation step, the seg filter is asserted, and so on. The
architecture flags are added at design time to the EBA code.
Each FSM state outputs the necessary signals to configure the
architecture for each algorithm step, as depicted in Table III.

To determine the appropriate configuration to achieve con-
stant timing for each step, we used a simple design-time
heuristic. The heuristic uses a greedy strategy to perform
an interleaved exploration of the execution order and clock
frequency in order to determine which configurations achieve
timing within 500µs of the segmentation step. We used 500µs
as our threshold since timing variations of such small magni-
tude are generally undetectable by side-channel attackers [31],
[36]. Our exploration heuristic occurred as follows: starting
from the base out-of-order configuration, we explored each
frequency for each step of the EBA algorithm in descending
order, and then similarly for the in-order configuration. Explo-
ration continued until the execution time was within 500µs of
the segmentation step. The base clock frequency was 2.1 GHz,
and the frequencies were explored in decrements of 100 MHz.
The timing was compared to the segmentation step since it was
the most resource-demanding step and took the longest time.
As such, other steps’ execution had to be elongated to match
the segmentation step’s execution. Table III depicts the specific
configurations selected by our heuristic for the different steps.

While this proposed architecture suffices for our EBA algo-
rithm, we acknowledge that one limitation of this architecture
is that additional design space exploration may be necessary
to maintain constant timing if the algorithm is modified.

IV. EXPERIMENTAL SETUP

We implemented the EBA algorithm in C with flags to
demarcate the various steps described in Section II. The orig-
inal code1 was also modified to achieve the intra-step timing,
as described in Section III-D, and to provide inputs to the
controller (Section III-E). We cross-compiled the code for the
ARM instruction set architecture (ISA) for our experiments.

For the baseline processor architecture, we used config-
urations similar to the ARM Cortex A15. The processor
features a 2100 MHz base clock frequency, separate 16KB
L1 instruction and data caches, and an 8GB main memory. To
provide a fair comparison, for the baseline processor, we also
assumed reduced retention STTRAM caches—75µs and 10ms
for the instruction and data caches, respectively. However, we
also compare our work with a generic processor featuring
SRAM to provide a robust evaluation of our work. To model
the domain-specific architectures (DSA) proposed herein and
gather execution statistics of the ECG algorithm, we used an

1The code is available at: www.ece.arizona.edu/tosiron/downloads.php

www.ece.arizona.edu/tosiron/downloads.php
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in-house modified version of the GEM5 simulator [37], which
allows us to model STTRAM caches with reduced retention
times. To model the power and energy, we used a combination
of NVSim [38] and McPAT [39] integrated with the GEM5
statistics. To model the STTRAM caches, we used the MTJ
cell modeling technique proposed in [40] to obtain design
parameters, such as the write pulse, write current, and the
resistance value RAP , and applied these parameters to NVSim.
We implemented the custom segmentation block (segblk)
using synthesizable Verilog and Xilinx Vivado synthesis.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the latency and energy savings
of the proposed architecture compared to the base architec-
ture. We also evaluate the ability of the adaptable DSA to
achieve constant and reduced timing for the EBA algorithm,
as compared to the base. We evaluate three different versions
of the DSA: with the custom block (DSA segblk), with
the dedicated segmentation buffer (DSA buff ), and with
buffer and adaptability for constant timing (DSA adapt).
The specific configurations used for the different steps of our
ECG algorithm in the adaptable DSA are shown in Table
III. We also evaluate the overhead accrued by the proposed
architecture and compare our architecture to prior work.

A. Timing Analysis

Intra-step input-independent constant timing: First, we
explore the ability of our modified EBA code to achieve
constant timing for different user inputs as described in III-D.
Fig. 9 presents the runtime simulations of the EBA algorithm
with various inputs for the original and modified code. These
experiments were performed using the baseline processor
configuration.

As seen in the figure, there were timing variations among
the different user inputs, whereas the modified code kept the
timing relatively constant. In the original code, the maximum
timing variation due to input changes was 1.4ms, while the
maximum variation for the modified code was 400µs (less than
the 500µs threshold). Overall, the modified code increased the
latency compared to the original code by 11.17% on average.
This increase in latency resulted mainly from the increase in
the number of instructions in the modified code (by about
4.19%), due to the balancing of branches (Section III-D).

In what follows, we analyze the latency and energy of
our approach on different versions of our domain-specific
architecture.
Latency and inter-step constant timing: Despite the exe-
cution time increase from the software changes, our domain-
specific architecture still achieved substantial latency improve-
ments compared to the base. We first present the comparisons
of the DSA to the base with the modified code running on all
the systems.

Fig. 10(a) depicts the latency (in s) of the different versions
of our DSA and the base architecture for the different algo-
rithm steps. On the base configuration, the execution times of
the different steps of the ECG algorithm were widely disparate.
For instance, the matching step took 1.77x more time than the
feature extraction, the filtering step took 1.37x more time than
the matching step, and the segmentation step took 87.88x more
time than the filtering step. (Due to the different time scales,
these differences are not clearly visible in Fig. 10(a)).

Introducing the custom block for the segmentation step
(DSA segblk) reduced the latency of the segmentation step
by 44% and reduced the total latency (for the whole algo-
rithm) by 42%. Interestingly, since segmentation was memory-
bound, DSA buff (DSA with dedicated segmentation buffer)
achieved more performance benefits than DSA segblk.
DSA buff achieved the highest latency improvement of
4.24x compared to the base, and 2.97x improvement compared
to DSA segblk. Note that while the code exhibited constant
intra-step timing, DSA segblk and DSA buff did not keep
the timing constant across the different steps; that wasn’t an
optimization goal for these architectures as in DSA adapt.

As intended, DSA adapt achieved constant timing (dotted
line in Fig. 10) across the different steps. Furthermore, given
software changes, both the intra-step and inter-step timing
variations were mitigated. However, even though DSA adapt
improved the latency compared to the base architecture, the
constant timing was achieved at the expense of latency opti-
mization compared to DSA segblk and DSA buff .
DSA adapt reduced the latency compared to the base by

19%, but increased the latency by 19% and 3.55x compared
to DSA segblk and DSA buff , respectively. This tradeoff
occurred in DSA adapt because in order to achieve constant
timing, other steps’ timing had to be increased to match
the minimum possible timing achieved for segmentation.
Similarly to prior research [30], [31], by achieving constant
timing across the different distinct steps of the algorithm,
DSA adapt mitigates the chances of an attacker being able to
obtain patterns in the timing profile to perform a timing-based
side-channel attack.

Compared to a generic ARM architecture with SRAM
(rather than STTRAM as in our DSA), DSA segblk,
DSA buff , and DSA adapt improved the latency by 1.42x,
4.23x, and by 19%, respectively. These latency improvements
were similar to those achieved by the base architecture fea-
turing STTRAM (the STTRAM architecture increased the
latency by 0.3%). Minimizing the latency overhead compared
to SRAM was possible as a result of the a priori analysis
of the EBA algorithm’s cache block requirements in order to
determine the retention time that satisfies the needs of the
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algorithm’s cache blocks.
Modified code on the DSA vs. the original code on the
base: To provide a complete picture of the results, and to
further illustrate the robustness of our work, we also compared
DSA segblk, DSA buff , and DSA adapt while running
the modified code (with the increased instruction count) to
the base while running the original code. As shown in Fig. 11,
compared to the base running the original code, DSA segblk,
DSA buff , and DSA adapt reduced the latency by 29.26%,
3.85x, and 8.22%, respectively.
Comparison to prior work: To evaluate our work in the
context of prior work, we compared DSA adapt to the
implementation of Ozone [30] for our EBA algorithm. Ozone
is a hardware technique targeted at mitigating timing-based
side-channel attacks by ensuring that applications execute with
a fixed latency regardless of inputs. Ozone achieved similar
results to our work in ensuring constant timing, albeit with
different tradeoffs for both techniques. As depicted in Fig. 11,
Ozone accrued execution time overhead and increased the
latency by 4.55x, whereas DSA adapt reduced the latency
by 8.22% compared to the base architecture (running the
original code). However, an advantage of Ozone over our
work is that it would achieve constant timing for a variety
of applications, whereas DSA adapt would require a priori
knowledge of the application and design-time modifications to
enable constant timing. Our work had the benefit of a priori
application knowledge and profiling to modify the code such
that the latency overhead was minimized. We believe that a
synergy of DSA adapt and a technique like Ozone would be
beneficial to mitigate the drawbacks of both techniques, and
we plan to explore this synergy in future work.

B. Energy Consumption

Fig. 10(b) depicts the energy consumed—comprising of
both static and dynamic energy—by the different versions
of our DSA compared to the base (running the modified
code). Compared to the base, DSA segblk,DSA buff, and
DSA adapt reduced the total energy by 1.85x, 5.59x, and
4.62x, respectively. Compared to the base running the original
code, DSA segblk,DSA buff, and DSA adapt reduced
the energy by 67.15%, 5.06x, and 4.18x. The majority of the
energy saving was achieved by introducing the segmentation
buffer in DSA buff, and DSA adapt. Despite the increase
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Fig. 11: Latency of DSA designs (DSA segblk, DSA buff ,
and DSA adapt) and prior work (Ozone [30]) normalized to
the base (baseline of 1). The base is running the original code
while the other architectures are running modified codes.

in latency on DSA adapt, substantial energy savings was
achieved due to frequency scaling and shutting down the out-
of-order backend for all the steps other than segmentation.

While the buffer was a source of some power overhead, its
significant impact on the latency resulted in energy savings.
Similarly, the segblk also reduced the energy compared to
the base despite its power consumption. Furthermore, even
though DSA adapt increased the energy consumption of the
other steps (in order to achieve constant timing), by mitigating
the bottleneck of the segmentation step, the architecture still
achieved significant overall energy savings. Compared to the
generic ARM processor with SRAM caches, incorporating
STTRAM with a specialized retention time and eliminating the
FP and SIMD units achieved significant energy benefits. The
base DSA reduced the energy by 1.77x, while DSA segblk,
DSA buff , and DSA adapt reduced the energy by 3.27x,
9.92x, and 8.20x, respectively.

C. Evaluation with a New EBA Algorithm

To further evaluate the robustness of the DSA, we also
quantified the latency and energy benefits while running a new
EBA algorithm. We used an EBA algorithm similar to [23] that
featured a discrete wavelet transform for feature extraction.
Fig. 12 depicts the latency and energy of DSA buff , and
DSA adapt normalized to the base architecture. For brevity,
only a summary of the overall latency and energy results
are shown. Compared to the base, DSA buff reduced the
latency and energy by 75.43% and 81.58%, respectively, while
DSA adapt reduced the latency and energy by 17.14% and
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running a new EBA algorithm.

77.77%, respectively. Notably, these results were achieved
without any design modifications to the DSA. Furthermore,
DSA adapt achieved a constant timing for the new algorithm
with some code modification and design space exploration (see
Section III), but the DSA remained unchanged.

D. Overhead
The main overheads of our work result from the dedicated

segmentation buffer, controller, and the custom segmentation
block, segblk (Section III-E, Fig. 6). The buffer resulted
in 0.002mm2 and 1.97mW area and power overheads, re-
spectively, and had read and write latencies of 0.250ns and
0.988ns, respectively. We also implemented the controller
(Section III-E) using synthesizable Verilog, and estimated that
the overheads were negligible: the controller’s critical path
was only 4.24ns; the area and power were approximately
0.001mm2 and 3mW , respectively. Finally, we implemented
the segmentation custom block (segblk) on a Zynq-7000
FPGA to evaluate its overheads. The power overhead was
0.3W , and 14829 LUTs were used for the design.

VI. RELATED WORK

In [41], attacks were performed on an FPGA-based convo-
lutional neural network accelerator to recover the input image
from the collected power traces without knowing the detailed
parameters in the neural network. Their investigations resulted
in the reconstruction of digit images of the MNIST dataset.
Another similar work was presented by [42], where they
reverse-engineered a neural network (multilayer perceptron)
by using non-invasive power side-channel leakage information.
Their method is able to recover secret inputs from a known
network with only a single-shot side-channel analysis. In
[43], the authors showed how a Neural Network model is
susceptible to timing side-channel attacks. They proposed a
black box Neural Network extraction attack by exploiting the
timing side-channels to infer the depth of the network.

To the best of our knowledge, our work is the first attempt
to explore countermeasures to side-channel attacks in EBA
systems. The most related work to ours in this respect is
[7], where the authors investigated the vulnerability of stored
features in fingerprint biometric authentication to side-channel
attacks. They presented SPA-based side-channel attacks on
fingerprint matching algorithms. Other prior works [30], [42]
have studied the susceptibility of systems to timing side-
channel attacks and shown the benefits of maintaining constant
timing as a countermeasure against such attacks.

There have also been prior works that employ hardware
accelerators for EBA. Page et al. [4] proposed a 307-node
hidden layer deep neural network design implemented on an
FPGA for EBA targeting embedded systems. Yin et al. [3]
proposed a 65-nm processor that performs real-time biometric
authentication as well as personal cardiac monitoring. Kang
et al. [24] proposed an ECG authentication system design
for mobile and wearable devices using the ARM Cortex-M
processor for their design. In comparison to these prior works,
our work offers the important advantage that it mitigates
timing-based side-channel attacks on EBA systems, while also
allowing the flexibility of executing other applications when
the authentication algorithm is not running.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a domain-specific architecture
(DSA) for an ECG biometric authentication (EBA) system. We
explored multiple versions of the architecture, one of which
uses adaptability to trade off latency and energy minimization
for constant timing across all steps of the authentication
algorithm. Thus, this architecture mitigates the EBA sys-
tem’s vulnerability to timing-based side-channel attacks. The
proposed architectures substantially reduce the latency and
energy of the EBA algorithm compared to a base ARM-based
processor architecture. Our work represents an important step
towards domain-specific architectures for secure EBA systems.
However, studies of side-channel attack in EBA systems is still
nascent. For future work, we plan to expand the architecture
proposed herein to also ensure a constant power profile in
order to mitigate power side-channel attacks. Additionally, we
intend to explore further opportunities for reducing the latency
and energy tradeoffs of the adaptable architecture.
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