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Abstract

Graph algorithms are critical components of the big-data analysis workflow. The graph kernel performance
is highly dependent on the input data graphs. The inherently sparse nature of the input graphs often re-
sults in irregular memory access patterns, which may not suit the data-locality based cache optimizations
featured in current high-performance processors. Much prior research has identified several optimization
opportunities by characterizing graph kernels on existing hardware. However, current graph workload char-
acterization studies focus on performance-related observations and optimizations, overlooking the energy
implications. In this paper, we address this technology gap by presenting an exhaustive and systematic
energy characterization study of graph kernels. We characterize the six GAP benchmark suite kernels with
a variety of input graphs on a dual-socket x86-based system. We then analyze how the algorithms, graph
characteristics (like graph scale and degree), and system effects (like parallelism, simultaneous multithread-
ing, and multiprocessing) impact the energy. Based on our analysis, we derive observations and insights to
develop a basic energy model. The discussions in the paper can enable researchers to advance new models
and energy-efficient architectures for graph workloads.
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1. Introduction

Graphs are memory-efficient data structures for
storing heterogeneous or unstructured data that nat-
urally express relationships among the data elements.
Thus, graph algorithms are a vital component of
data analytics workflows that span many applica-
tion domains, including complex network analysis,
language understanding, pattern recognition, seman-
tic databases, bioinformatics, and more. Graph al-
gorithms typically employ pointer- or index-based
data structures, such as the Compressed Sparse Row
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(CSR) format, making them prototypical irregular
kernels. The traversal of a graph, in fact, usu-
ally induces unpredictable data accesses to differ-
ent segments of the data structures. While there
may be some data locality depending on the actual
data structure, most of the memory accesses are fine-
grained. For example, suppose that an algorithm
must load the entire long neighbor lists for some ver-
tices. In such a case, the neighboring vertices may be
located at unpredictable non-contiguous memory ad-
dresses due to the format of the data structures. The
high variability in the size of various memory requests
makes latency reduction techniques (and hierarchical
memory subsystems) less effective.

For these reasons, there are several ongoing re-
search efforts exploring custom architectures to en-
hance graph processing. Some solutions include cus-
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tom processing elements that decouple computation
from communication (e.g., Graphicionado [1], Lin-
coln Lab graph processor [2]), while other designs
explore near memory processing (e.g., Tesseract [3],
GraphPIM [4], GraphP [5]). Some systems, like the
Cray XMT [6, 7], exploit multithreading to tolerate,
rather than reduce, latencies even at a large scale.
The EMU system [8] exploits the concept of migrat-
ing threads near to the data. The DARPA Hierarchi-
cal Identify Verify and Exploit (HIVE) program [9]
is looking to build a graph analytics processor that
can process (streaming) graphs faster and at much
lower power than current processing technology. A
particular focus of HIVE is to optimize both perfor-
mance and power (i.e., the efficiency), trying to reach
1000 times the TEPS/W (traversed edges per second
per Watt) of current designs (such as GPUs and con-
ventional CPUs). Ideally, a processor 1000× faster
in the same power envelope of a current design, or
a processor as fast as a current one, but consuming
1/1000th of the power, would both reach the project
objective.

However, to identify the architectural improve-
ments needed to execute these irregular kernels more
efficiently, an accurate characterization of their be-
havior is required. Several works [10, 11, 12, 13, 14,
15, 16, 17] have thus provided detailed characteriza-
tions of these workloads on various existing proces-
sors, either through profiling or through simulation.
The simulation approach may provide more insights
about the inner working of the architecture and the
opportunity to evaluate behaviors on different con-
figurations; however, it typically only allows the ex-
ecution and evaluation of small kernels with reduced
datasets in a reasonable time. Since graph processing
issues become more significant as the datasets grow in
size, and graphs used in real-world applications fea-
ture data sizes that keep increasing following the big-
data trend, simulation-based analyses may provide
incomplete insights. On the other hand, graph ker-
nels may be profiled on existing hardware to gather
interesting information and drive design considera-
tions.

In this paper, we follow the second approach. Fol-
lowing in the footsteps of previous research works,
we perform the workload characterization of a pub-

licly available benchmark suite, the Graph Algorithm
Platform (GAP) benchmark suite [18], on a commod-
ity dual-socket x86 system. However, unlike other
works, this paper presents an exhaustive and system-
atic energy characterization study. We discuss the
energy variations observed due to parallelism, simul-
taneous multithreading, and multiprocessing by an-
alyzing the Running Average Power Limit (RAPL)
performance counters. We also consider the graphs
with different graph characteristics (scales and de-
grees) and investigate these characteristics’ sensitiv-
ity to the energy. Thus, we derive additional energy
insights related to the data graphs’ actual structure
using our analysis. Our work advances state-of-the-
art graph profiling research by providing valuable in-
sights and developing energy models that consider
the graph characteristics and structure. Further-
more, our work provides a baseline for future energy-
efficient system design for graph processing.

The paper proceeds as follows: Section 2 briefly re-
caps the related works. Section 3 presents the exper-
imental setup, briefly describing the algorithms, the
datasets, the profiled system, and the profiling envi-
ronment. To tractably represent our analysis results,
Section 4 first summarizes the key insights derived
from our analysis and then presents the experimen-
tal evaluation discussion in greater detail. Section
5 illustrates the use of our data to generate energy
models. Finally, Section 6 concludes the paper.

2. Related works

In recent years, there has been an active interest
in graph workload characterization studies conducted
on different commercial computing systems. These
studies typically characterize a subset of popular
graph kernels—betweenness centrality (bc), breadth-
first search (bfs), biconnected components (bicc), con-
nected components (cc), approximate diameter (dia),
graph coloring (color), k-core (kc), list ranking (list),
page rank (pr), single-source shortest path (sssp),
and triangle count (tc)—on a variety of computing
systems like flat shared-memory multiprocessors (e.g.,
Cray MTA-2), symmetric multiprocessors (e.g., Sun
E4500 UltraSPARC II, Sun UltraSPARC T2, IBM
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Table 1: Summary of recent studies’ experimental setups

Paper Kernels, Frameworks, and Graphs Computing platforms

[10]
2 kernels: cc, list Sun E4500 UltraSPARC II
4 graphs: random (4) Cray MTA-2

[11]
2 kernels: bicc, cc Sun UltraSPARC T2
5 graphs: RMAT (5) IBM Power 7

[12]
5 kernels: bc, bfs, cc, pr, sssp

Intel Xeon E5-2667 v23 frameworks: Galois, Ligra, GAP
5 graphs: kron, road, twitter, uniform, web

[13, 14]
5 kernels: bc, bfs, cc, dia, pr

Intel Xeon E5-2660 v21 framework: Galois
3 graphs: PLD, road, twitter

[15]
3 kernels: bfs, pr, sssp

–
3 graphs: kron, GTA-T2, patents

[16]
6 kernels: bfs, color, kc, pr, sssp, tc Intel Xeon E5-4655 v4
1 framework: IBM System-G NVidia Tesla P40
10 graphs: delaunay, kron, large, road, social Intel Xeon Phi 7210

[17]
6 kernels: bc, bfs, cc, pr, sssp, tc Intel Xeon Platinum 8170
1 framework: GAP Intel Xeon Phi 7250
3 graph: RMAT (3) Cray XMT (simulated)

This 6 kernels: bc, bfs, cc, pr, sssp, tc
Intel Xeon E5-2687W

work 12 graphs: kron (9), road, twitter, web

Power 7, Intel Xeon), many-core processors (e.g., In-
tel Xeon Phi), and GPUs (e.g., NVidia Tesla P40).
Table 1 summarizes the graph kernels, the input
graphs, and the computing systems used in recent
studies. The key observations from these studies are
summarized as follows:

1. Graph algorithms are memory-bound – Beamer
et al. [12] and Eyerman et al. [17] conclude that
the graph kernels are memory-bound since they
exhibit high cache miss rates.

2. Memory accesses show some data locality –
Beamer et al. [12], Eisenman et al. [13, 14],
and Eyerman et al. [17] report that few memory
accesses in graph kernels show some data local-
ity (e.g., loading neighbor lists). Hence, they can
still benefit from caching and prefetching tech-
niques, if adequately applied.

3. Prefetching data improves performance – Cong
et al. [11] show that software prefetching im-
proves graph processing performance. However,
software prefetching requires human interven-

tion, compiler modifications, or a change in the
programming models. Eisenman et al. [13] re-
port that the execution time speedup shows a
high correlation with the cache hit rate improve-
ments due to data prefetching.

4. Memory bandwidth is not the performance bot-
tleneck; but bandwidth utilization is – Cong et
al. [11] report that the memory access latency,
rather than the processor memory bandwidth,
is the performance bottleneck. They also re-
port that the processors did not support enough
threads to mask the memory latency entirely.
Beamer et al. [12] observe that the graph al-
gorithms do not fully utilize the Intel Xeon pro-
cessor’s memory bandwidth. The small instruc-
tion window fails to produce enough outstand-
ing memory requests to saturate the bandwidth,
and the reorder buffer size limits the achievable
memory throughput. Eisenman et al. [14] also
report that the processors do not fully utilize the
available memory bandwidth. Jiang et al. [16]
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observe that all kernels do not benefit from the
high-bandwidth MCDRAM memory, suggesting
that bandwidth is not the performance bottle-
neck. Eyerman et al. [17] conclude that al-
though providing high-bandwidth on-chip mem-
ory can boost graph processing performance, the
memory access latency needs to be kept low. A
sufficient number of threads need to be active
to generate enough concurrent memory accesses
required to saturate the available memory band-
width.

5. Multithreading has limited benefits on current
architectures – Beamer et al. [12] conclude
that increasing the thread count only moder-
ately improves modern processors’ performance
with deep cache hierarchies and limited mem-
ory parallelism. Jiang et al. [16] report that
the graph applications have a variable optimal
thread count. Different input graphs also require
a different number of threads to achieve mini-
mum execution times. Eyerman et al. [17] find
that some graph algorithms do not scale linearly
due to load imbalance and a limited number of
parallel tasks at high thread counts, depending
on the actual parallelism exposed by the algo-
rithm and the specific input graph. They also
report that most applications scale well up to
the core count, and do not benefit much from
simultaneous multithreading.

Most of these studies focus on analyzing and op-
timizing the graph kernels’ performance on their ex-
perimental systems; they have two significant draw-
backs. First, they do not provide any analysis of the
energy or power cost of graph processing. Only Pol-
lard and Norris [15] briefly report the average power
consumption during the graph kernel execution. Our
study fills this research gap by performing an exhaus-
tive energy characterization study of the kernels.

Second, the previous studies use a limited choice
of the kernels and input data graphs. The graph ker-
nels’ performance is highly data-dependent; hence, it
is necessary to cover a variety of input graphs in the
characterization studies. Only Beamer et al. [12] and
Jiang et al. [16] have characterized five or more graph
kernels with five or more input graphs in their studies.

Moreover, only Jiang et al. [16] have considered the
same input graphs with different degrees. Our study
focuses on observing the impact of different graph
characteristics on energy. To this end, we character-
ize six kernels from the GAP benchmark suite [18],
with nine kron-* synthetic graphs and three real-
world graphs—road, twitter, and web—in our exper-
iments. We discuss our experimental setup in detail
in the following section.

3. Experimental Setup

This section describes the kernels, input data
graphs, the computing system, the profiling environ-
ment, and the system configurations used in our ex-
periments. Section 3.1 provides a brief description of
the kernels and data graphs used, while Section 3.2
provides an overview of the computing system and
data collection methodology used in our study. Sec-
tion 3.3 describes the four system configurations we
explored to identify the system effects on the energy.

3.1. Kernels & Data graphs

We characterize six kernels—bc, bfs, cc, pr, sssp,
and tc—from the GAP benchmark suite in our ex-
periments. Beamer et al. [18] detail the algorithms
and reference code considerations. A brief descrip-
tion of the kernels is as follows:

1. Betweenness centrality (bc) – The betweenness
centrality of a vertex measures its importance
in the graph by calculating the fraction of the
shortest paths that pass through the vertex.
Instead of computing all the possible short-
est paths, the bc algorithm approximates the
betweenness centrality score by computing the
shortest paths only from a subset of the vertices
using the Brandes [19] algorithm.

2. Breadth-first search (bfs) – The bfs algorithm
traverses all reachable vertices from the source
vertex, incrementally increasing the depths with
every repetition. It traverses to the reachable
vertices at the current depth and then moves
onto the next depth in the next iteration.
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3. Connected components (cc) – The cc algorithm
labels all the vertices by their connection. The
vertices share the same component label only if
an undirected path exists between them. The
isolated vertices (vertices with zero degree) are
not connected to any other vertices and hence
get their own label.

4. Page rank (pr) – The pr algorithm computes
the popularity of the vertices in the graph. The
vertex’s popularity is not only dependent on the
number of vertices that point to it, but also fac-
tors in the popularity of those vertices. The pr
algorithm iterates over the entire graph multiple
times until the page rank scores of all vertices
converge within a specified tolerance threshold.

5. Single-source shortest path (sssp) – The sssp al-
gorithm computes the shortest paths (minimum
distances) to all the reachable vertices from the
source vertex. The distance between two vertices
is the minimum sum of the edge weights along
the connected path.

6. Triangle count (tc) – The tc algorithm measures
the graph’s interconnectedness by counting the
total number of triangles (cliques of size 3) found
in the graph. The triangles are invariant to per-
mutations. The tc algorithm consists of two
compute-intensive steps: relabelling the graph
by degree and counting triangles by summing the
overlaps between each vertex’s neighbor list and
its neighbor’s neighbor lists.

The graph kernels can be classified into two groups:
the single-source kernels (bc, bfs, and sssp) that re-
quire a source vertex to start the execution, and the
whole-graph kernels (cc, pr, and tc) that process the
entire graph in parallel and in the same way for ev-
ery execution. We chose the default source vertices
for the single-source kernels to generate determinis-
tic results between the runs (details in Section 3.2).
The bfs, cc, and sssp kernels are primarily traversal-
centric kernels involving minimal computations; how-
ever, bc, pr, and tc kernels are highly compute-centric
in addition to needing graph traversals.

Table 2 summarizes the characteristics of the input
data graphs we used in our experiments. The kron-
graphs are synthetically generated using the Kro-

Table 2: Summary of input data graphs’ characteristics

Data graph Nodes Edges Degree

kron-g20-k4 1,048,575 4,087,377 3
kron-g20-k8 1,048,575 8,042,557 7
kron-g20-k16 1,048,575 15,699,687 14

kron-g22-k4 4,194,303 16,493,941 3
kron-g22-k8 4,194,303 32,621,964 7
kron-g22-k16 4,194,303 64,155,718 15

kron-g24-k4 16,777,215 66,358,331 3
kron-g24-k8 16,777,216 131,715,222 7
kron-g24-k16 16,777,216 260,376,709 15

road 23,947,348 57,708,624 2
twitter 61,578,415 1,468,364,884 23

web 50,636,151 1,930,292,948 38

necker graph generator [20], while road [21], twitter
[22], and web [23] are real-world graphs. The kron-
data graphs are undirected, whereas road, twitter,
and web are directed graphs. All of the graphs except
road are unweighted. Only the sssp kernel executes
on weighted graphs, so we used the reference code [20]
to generate weights for the unweighted kron- graphs.
The reference code generates uniformly distributed
weights from integers 1 through 255. We classify the
synthetic graphs into three categories based on their
scales (i.e., nodes), as shown in Table 2: the ‘small-
scale’ (kron-g20-* ), the ‘medium-scale’ (kron-g22-* ),
and the ‘large-scale’ (kron-g24-* ) graphs. We also
categorize the synthetic graphs based on their de-
grees as the ‘small-degree’ (kron-*-k4 ), the ‘medium-
degree’ (kron-*-k8 ), and the ‘large-degree’ (kron-*-
k16 ) graphs, for the experimental results discussed
in Section 4.

3.2. Experimental System

We executed all the kernels on a dual-socket server
featuring Intel Xeon E5-2687W processors with the
Sandy Bridge architecture. Each socket consists of
eight 3.10 GHz hyper-threaded cores, with each core
featuring a private 32 KB L1 data (L1d), a private
32 KB L1 instruction (L1i), and a unified 256 KB L2
cache. All the cores within each socket dynamically
share a 20 MB last level cache (LLC). The server also
features a 64 GB DDR3-1600 RAM.
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The server runs Ubuntu 18.04 LTS operating
system with Linux 4.15 kernel. All the kernels
were compiled using gcc 7.3, with the default
-O3 -Wall -std=c++11 -fopenmp flags. We used
the OMP NUM THREADS OpenMP environment variable
to set and sweep through different thread counts,
and the OpenMP thread affinity control variable,
OMP PLACES, to pin threads to the desired physical
and virtual cores in specific processors. We disabled
the CPU frequency scaling to eliminate the impact of
frequency variation on the execution characteristics
and enable a fair comparison across the executions.
We used the perf stat utility to collect the per-
process hardware performance counters and RAPL
data. The RAPL interface provides platform software
with the ability to monitor, control, and get notifi-
cations about the system-on-chip (SoC) power con-
sumption. We used the energy-pkg RAPL counter
data in our observations, which report the energy
consumed (in Joules) by the sockets (including all the
cores and uncore components like LLC and memory
controller) during the process’ execution. We also
collected the energy consumed by the cores using the
energy-cores RAPL counter. To account for vari-
ability between the runs, we executed all the kernels
with all input graphs ten times and report the average
values. The average of standard deviations over these
ten runs was 4.29% for all the performance counters.

3.3. System Configurations

We report and analyze the observations for four
different system configurations: single-socket multi-
threaded (SS-MT ), single-socket simultaneous multi-
threaded (SS-SMT ), dual-socket multithreaded (DS-
MT ), and dual-socket simultaneous multithreaded
(DS-SMT ) executions.

Multithreading is often used to improve the per-
formance of sequential code. Increasing the number
of threads, ideally, reduces the execution time. We
capture these effects of scalability and parallelism ex-
hibited by the kernels for various input graphs in
our SS-MT configuration. We pinned each thread
to a specific core (as discussed in Section 3.2); hence,
the number of cores in a processor limits the thread
count. The Intel Xeon E5-2687W processor con-

sists of 8 physical cores allowing for a maximum of 8
threads in SS-MT configuration.

There are two options available to further increase
the number of threads: using simultaneous multi-
threading on the same processor or using an addi-
tional processor. We capture these two scenarios
and their trade-offs in the SS-SMT and DS-MT con-
figurations, respectively. Simultaneous multithread-
ing improves performance by increasing CPU utiliza-
tion without any extra hardware, while spreading
the execution across two processors increases mem-
ory parallelism (due to the two sockets) at the cost
of additional hardware and communication. The In-
tel Hyper-Threading technology allows for one ad-
ditional thread per core during simultaneous mul-
tithreading. In the DS-MT configuration, we used
multithreading on two processors. Thus, for the two
configurations (SS-SMT and DS-MT ), a maximum
of 16 threads are supported.

The DS-SMT configuration employs simultaneous
multithreading on two processors, and potentially
shows the benefits due to both features. The DS-
SMT configuration has the maximum number of pos-
sible threads (32) among all the configurations.

4. Experimental Results

We discuss our experimental observations in this
section. To make the information presented herein
more tractable for the reader, Section 4.1 starts by
summarizing the key insights derived from our analy-
sis. Thereafter, Sections 4.2, 4.3, and 4.4 examine the
impacts of various graph kernels, input graphs, and
system configurations, respectively, in greater detail.

4.1. Key insights

The key observations of our study are summarized
as follows:

1. The performance improvements and energy sav-
ings due to increasing thread counts are highly
correlated. However, the rate of execution time
and energy savings improvements is not linear
(and shows diminishing returns) with an increas-
ing number of threads. The graph kernels do not
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Table 3: Execution Time and Energy values for single-threaded execution of all kernels with all input graphs

Graph
Edges Execution Time (s) Energy (J)

(millions) bc bfs cc pr sssp tc bc bfs cc pr sssp tc

kron-g20-k4 4.09 0.34 0.10 0.12 0.48 0.52 3.26 22.73 5.89 8.08 39.39 31.03 274.13
kron-g20-k8 8.04 0.48 0.08 0.12 0.62 0.74 10.35 38.01 6.70 7.54 53.52 42.82 772.30
kron-g20-k16 15.70 0.82 0.13 0.17 1.09 1.38 14.73 58.34 10.26 11.11 75.35 80.84 1062.78

kron-g22-k4 16.49 1.44 0.26 0.38 2.56 1.97 19.64 116.96 18.80 28.58 208.89 138.13 1372.02
kron-g22-k8 32.62 2.64 0.34 0.49 4.08 3.44 66.03 207.33 29.03 35.82 338.70 245.28 4441.05
kron-g22-k16 64.16 4.59 0.48 0.70 6.33 6.24 90.03 304.54 41.60 59.76 511.96 413.61 6003.41

kron-g24-k4 66.36 7.00 1.00 1.58 14.01 8.22 119.55 519.80 64.84 109.90 1067.91 546.25 8003.55
kron-g24-k8 131.72 13.10 1.35 2.08 22.55 14.88 422.22 947.27 88.86 172.38 1700.02 932.30 28034.60
kron-g24-k16 260.38 19.82 1.86 2.74 36.48 27.64 543.22 1506.80 128.66 192.22 2668.67 1600.50 36013.42

road 57.71 4.79 2.08 1.62 7.19 144.93 – 425.03 168.84 136.48 562.31 12292.35 –
twitter 1468.36 85.01 12.18 14.95 344.22 133.19 – 5674.89 888.41 1038.81 24112.63 7610.49 –

web 1930.29 47.04 17.33 14.95 68.17 169.04 – 2967.42 1224.74 1051.98 5063.77 9397.29 –

scale linearly due to load imbalance, limited par-
allelism exposed by the kernels and input graphs,
or underlying hardware bottlenecks, as observed
in [17].

2. The whole-graph (pr and tc) kernels and bc
show better energy savings with increased thread
counts than the single-source traversal-centric
kernels for all the configurations. The whole-
graph kernels are designed to exhibit a large
amount of fine-grained parallelism (since they
operate on entire input graphs in parallel, with-
out a specific starting node), and their high con-
currency positively impacts energy-saving. The
bc kernel operates only on a smaller sub-graph,
showing energy savings characteristics similar to
the whole-graph kernels. The traversal-centric
kernels also do not have significant computa-
tions to mask the latency, hence, they do not
scale well. These observations highlight how al-
gorithmic research can impact energy efficiency,
as some graph algorithms are naturally sequen-
tial and need approximation or relaxation to op-
erate in parallel.

3. The performance and energy of the graph ker-
nels depend significantly on the graph charac-
teristics, and are more sensitive to the number
of edges in the input graphs than the graph scale.
Smaller graphs show better energy savings than
larger graphs, as the smaller graphs result in
fewer costly off-chip memory accesses, improving

both the performance and energy savings across
the system configurations. Moreover, the smaller
degree graphs scale better than the larger degree
graphs since they are less connected.

4. Simultaneous multithreading is energy-efficient
only for fewer core counts. When the max-
imum (8) cores are used, simultaneous multi-
threading, in fact, consumes more energy than
multithreaded execution, in both the single- and
dual-socket configurations for most cases. As
highlighted by previous studies [17], simulta-
neous multithreading does not significantly in-
crease performance improvement, and does not
offset the power consumption increase due to in-
creased CPU utilization.

5. Dual-socket simultaneous multithreading im-
proves the performance compared to single-
socket multithreading due to higher thread
counts, separate memories per processor, and
data partitioning. However, the energy savings
are negligible due to the power cost of additional
hardware and memory transactions between the
two processors.

The impacts of various input kernels, graphs, and
system configurations are discussed in detail in the
following subsections.

4.2. Impact of Graph Kernels

Table 3 reports the execution time and energy val-
ues for the kernels’ single-threaded execution with
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different input graphs. The tc kernel implementation
in the GAP benchmark suite only works with undi-
rected graphs, so the analysis for tc does not include
results for the directed input graphs (road, twitter,
and web).

The graph algorithms highly influence performance
and energy values. The primarily traversal-centric
kernels: bfs and cc, show the lowest execution times
and energy values. The bfs and cc kernels execute
only an average of 7.49B and 5.37B instructions, re-
spectively, with an average 3.07B and 2.66B L1d
cache accesses, considering single-threaded execution
on all input graphs. The tc kernel exhibits the high-
est execution times and energy values. Even with-
out executing the largest real-world graphs, the tc
kernel showed the highest average instructions count
(767.49B) and L1d cache accesses (88.80B), since it
loads multiple neighbors and neighbor’s neighbor lists
for triangle counting. The pr kernel traverses the in-
put graph multiple times for converging on the page
rank score for each vertex, and hence shows a high
average instruction count (49.42B) and L1d cache ac-
cesses (19.95B). Despite being a single-source kernel,
the bc kernel operates on a smaller sub-graph and
calculates multiple shortest paths to approximate the
betweenness centrality score. Hence, it shows char-
acteristics similar to the whole-graph kernels.

The traversal-centric kernels are highly memory-
bound, showing high average L1d cache accesses per
thousand instructions: sssp (518.16), bfs (497.31),
and cc (466.79), compared to the compute-centric
kernels tc (117.53), bc (359.40), and pr (397.59). The
average energy consumed by cores (energy-cores)
compared to the total energy (energy-pkg) for the
compute-centric kernels: tc (77.99%), pr (77.06%),
and bc (71.13%) is also higher compared to the
traversal-centric sssp (58.52%), bfs (67.87%), and cc
(69.06%) kernels across all the configurations.

We use the single-threaded execution values (in Ta-
ble 3) to normalize all the system configurations’ ex-
ecution time and energy values for the analysis pre-
sented in Section 4.4.

4.3. Impact of Graph Characteristics

Table 3 also shows the effects of graph character-
istics on the performance and energy for different

kernels. The synthetic graphs are grouped together
based on the scale (i.e., number of nodes) similar to
Table 2. Within the same graph scale, the execution
time and energy values scale by an average of 1.67×
and 1.65×, respectively, for a 2× increase in the num-
ber of edges. Smaller graphs show better energy sav-
ings than larger graphs, as the smaller graphs result
in fewer costly off-chip memory accesses. For exam-
ple, the average DRAM accesses for the small-scale
kron-g20-* graphs are 7.89M compared to 575.63M
observed for the large-scale kron-g24-* graphs across
all the kernels. When the number of edges are ap-
proximately equal with the scale increasing by 4×
(e.g., kron-g20-k16 to kron-g22-k4, and kron-g22-k16
to kron-g24-k4 ), the execution time and energy val-
ues scale only by an average 1.83× and 1.84×, respec-
tively. This observation suggests that the graph ker-
nels are more sensitive to an increase in the number of
edges than the number of nodes in the input graphs,
and it makes sense since a higher number of edges per
node (i.e., degree) makes the graph more connected
and impacts the algorithms and graph traversals.

4.4. Impact of System Configurations

Tables 4, 5, and 6 summarize the results for the
four system configurations that we have considered in
our experiments. Tables 4 and 5 report the average
normalized execution time and energy values, respec-
tively, of the graph kernels for all input graphs. Table
6 reports the average normalized energy values for
different graph categories. Since the corresponding
single-threaded execution data normalize the values,
lower values suggest better performance and energy
savings. In Tables 4, 5, and 6, the columns denot-
ing equal thread counts across four configurations are
highlighted with the same gray shade to distinguish
them visually. We discuss the results and compare
the configurations in the following subsections.

4.4.1. Power cost for system hardware

Table 4 shows that as system resources increases
(i.e., we increase the number of cores, activate simul-
taneous multithreading, and/or increase the num-
ber of processors), the performance improves (excu-
tion time reduces). However, the power consumption
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Table 4: Average execution time values (normalized to single-threaded execution) for all input graphs in four system configu-
rations. The same gray shade signifies an equal number of threads.

SS-MT SS-SMT DS-MT DS-SMT

Cores per socket 1 4 8 1 4 8 1 4 8 1 4 8
Threads 1 4 8 2 8 16 2 8 16 4 16 32

bc 1.00 0.82 0.46 0.75 0.77 0.57 0.61 0.24 0.18 0.37 0.18 0.18
bfs 1.00 0.67 0.59 0.78 0.64 0.61 0.81 0.62 0.63 0.69 0.61 0.67
cc 1.00 0.58 0.48 0.73 0.54 0.48 0.81 0.52 0.50 0.64 0.49 0.49
pr 1.00 0.33 0.20 0.57 0.22 0.20 0.63 0.22 0.16 0.36 0.16 0.15

sssp* 1.00 0.79 0.72 0.84 0.76 0.72 0.85 0.70 0.67 0.78 0.66 0.67
sssp-road 1.00 1.07 1.27 1.02 1.26 2.36 1.28 1.66 2.59 1.38 2.57 9.71

tc 1.00 0.28 0.14 0.52 0.14 0.10 0.51 0.15 0.08 0.27 0.08 0.06

Average 1.00 0.59 0.44 0.70 0.53 0.46 0.71 0.42 0.38 0.53 0.37 0.38

Table 5: Average energy values (normalized to single-threaded execution) for all input graphs in four system configurations.
The same gray shade signifies an equal number of threads.

SS-MT SS-SMT DS-MT DS-SMT

Cores per socket 1 4 8 1 4 8 1 4 8 1 4 8
Threads 1 4 8 2 8 16 2 8 16 4 16 32

bc 1.00 0.79 0.45 0.58 0.73 0.53 0.80 0.38 0.31 0.52 0.31 0.36
bfs 1.00 0.67 0.64 0.72 0.71 0.67 0.85 0.68 0.72 0.70 0.69 0.95
cc 1.00 0.62 0.56 0.68 0.63 0.56 0.88 0.61 0.60 0.69 0.59 0.65
pr 1.00 0.42 0.32 0.56 0.33 0.33 0.84 0.38 0.32 0.55 0.33 0.34

sssp* 1.00 0.77 0.78 0.76 0.78 0.77 0.80 0.77 0.76 0.77 0.72 0.75
sssp-road 1.00 1.32 1.72 1.16 1.77 3.65 1.49 2.69 5.37 1.83 5.51 19.35

tc 1.00 0.37 0.26 0.54 0.26 0.21 0.73 0.30 0.22 0.44 0.22 0.18

Average 1.00 0.61 0.51 0.64 0.58 0.52 0.82 0.53 0.50 0.62 0.49 0.55

Table 6: Average energy values (normalized to single-threaded execution) for different input graph characteristics in four system
configurations. The same gray shade signifies an equal number of threads.

SS-MT SS-SMT DS-MT DS-SMT

Cores per socket 1 4 8 1 4 8 1 4 8 1 4 8
Threads 1 4 8 2 8 16 2 8 16 4 16 32

Small-degree Synthetic 1.00 0.57 0.46 0.61 0.57 0.46 0.77 0.47 0.44 0.56 0.41 0.53
Medium-degree Synthetic 1.00 0.58 0.50 0.63 0.54 0.52 0.81 0.52 0.50 0.60 0.48 0.56

Large-degree Synthetic 1.00 0.62 0.52 0.66 0.58 0.53 0.82 0.54 0.50 0.63 0.50 0.50

Real-world 1.00 0.71 0.57 0.69 0.67 0.59 0.89 0.59 0.56 0.69 0.56 0.62

Small-scale Synthetic 1.00 0.62 0.55 0.67 0.64 0.58 0.77 0.56 0.55 0.63 0.53 0.72
Medium-scale Synthetic 1.00 0.58 0.47 0.59 0.53 0.49 0.78 0.49 0.45 0.56 0.45 0.50

Large-scale Synthetic 1.00 0.57 0.46 0.64 0.51 0.44 0.85 0.48 0.44 0.60 0.48 0.38
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Figure 1: Average power consumption for all kernels and input
graphs in four system configurations.

should also increase due to the increased CPU uti-
lization or the extra hardware. Figure 1 depicts the
impact of these system changes on the power cost,
averaged for all input kernels executing all the in-
put graphs. The power consumption increased fairly
linearly as the number of cores increased due to mul-
tithreading, at an average rate of 4.76 W per core
for all configurations. Simultaneous multithreading
improves the performance by increasing CPU utiliza-
tion; however, it costs an additional 10.23 W on an
average for different core counts. Using an additional
processor (i.e., dual-socket execution) increases the
power by 19.60 W on average.

Despite the increase in power with the increase in
resources, we also found that the performance im-
proved enough to increase the energy savings. Ta-
ble 5 depicts the energy values normalized to single-
threaded execution in the different system configu-
rations. Given that energy is the product of power
and execution time, the linear increase in power con-
sumption with increasing core counts results in the
energy values scaling at a slower rate than the execu-
tion time (in Table 4). The energy savings are smaller
than performance improvements for all cases.

4.4.2. Multithreading on a single socket (SS-MT)

Increasing the number of cores improves the per-
formance and energy savings of the kernels. However,
the energy does not decrease linearly, and saturates

to a lower bound, as seen from Table 5. We observed
the highest energy savings improvement when the
thread count increases from 1 to 2, showing an av-
erage 22.09% improvement in energy savings. Across
all the GAP benchmark kernels, we observed average
energy savings of 49.14% for eight threads.

The whole-graph kernels—tc (73.72%) and pr
(68.04%)—show the highest average energy savings
for eight threads, while the sssp (21.94%) kernel
shows the least. The whole-graph kernels are de-
signed to exhibit more parallelism (since they op-
erate on the entire input graph in parallel, with-
out a specific starting node or vertex), which posi-
tively impacts the energy-saving. The whole-graph
(pr and tc) and bc kernels scale better with in-
creased thread counts than the single-source kernels
for all the configurations. The bc kernel operates on
a smaller sub-graph, showing better energy savings
than other single-source kernels. The whole-graph
kernels show significantly better average energy sav-
ings (60.84%) than for single-source kernels (38.11%)
for eight threads. Thus, the highly scalable kernels
also show the most energy savings.

The sssp kernel scales the worst among all the ker-
nels, inherently due to its algorithm. The sssp ker-
nel finds the shortest paths (i.e., the path with the
minimum sum of weights) for all the nodes in the
graph from the specific starting vertex. Parallelizing
the sssp kernel requires additional synchronization
to maintain and update the correct weights across
the threads spawned. Moreover, when the sssp ker-
nel operates on the road input graph, multithread-
ing degrades the performance and results in more en-
ergy consumption with an increase in the number of
threads, as seen in Tables 4 and 5. The road graph is
big (nodes = 23.95M, degree = 2) and has a high di-
ameter, causing the synchronous implementations to
have longer runtimes. The results for sssp–road are
significant enough to skew the average result values,
and using them for analysis could give inaccurate con-
clusions. Hence, when reporting the average results
for the sssp kernel, we did not consider the sssp–road
observations.

The energy savings for small-degree synthetic
graphs scale better than higher degree graphs, as
observed in Table 6. Across all the kernels, the
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small-degree input graphs show the best average
energy savings (54.08%), higher than energy sav-
ings for the medium-degree (49.58%), and large-scale
(48.16%) synthetic graphs at the maximum eight-
core usage. The graph kernels are more sensitive
to an increase in the number of edges per node. In
the graphs categorized based on degree, all the three
categories: small-degree, medium-degree, and large-
degree, have the same average number of nodes, but
the degrees increase from 4, 8, to 15, respectively.
Higher edge degrees means the graph is more con-
nected and has more number of edges. The real-
world graphs are big as well as have higher degrees
compared to the synthetic graphs. Hence, they show
the worst scaling with 43.49% average energy sav-
ings for eight cores. Interestingly, when the syn-
thetic graphs are compared based on the scale, the
large-scale synthetic graphs scale much better than
the smaller synthetic graphs as well as real-world
graphs. The smaller-scale synthetic graphs do not
provide enough parallelism to scale, while the much
larger real-world graphs have more off-chip memory
requests that degrade the performance and energy
savings. This observation suggests that increasing
the number of threads is beneficial for graphs up
to a certain scale, depending on the underlying sys-
tem architecture. Thus, unsurprisingly, the small-
degree large-scale synthetic graphs kron-g24-k4 and
kron-g22-g4 show the best average energy savings of
56.87% and 56.78%, respectively, while the real-world
graphs web and twitter show the worst energy savings
of 31.52% and 44.71%, respectively, for eight cores.

4.4.3. Simultaneous multithreading on a single socket
(SS-SMT)

Simultaneous multithreading is only effective for
smaller core counts. Compared to SS-MT execu-
tion, the energy savings gradually reduced with in-
creasing core counts for most of the graphs, as seen
in Table 5. Across all the kernels, SS-SMT shows
the best average energy savings for single-core ex-
ecution (35.61%). In contrast, the average energy
savings is 1.32% less than SS-MT when the proces-
sor is fully used (i.e., eight cores), despite having
2× threads. These observations suggest that as the
number of cores increases, the performance improve-

ment cannot offset the increased power cost due to
additional system usage, making simultaneous mul-
tithreading energy-inefficient for a higher number of
cores. Previous studies [12, 17] have already shown
that increasing the thread count and using simulta-
neous multithreading have limited benefits in mod-
ern processors due to load imbalance, limited par-
allelism exposed by the algorithms, and hardware
bottlenecks like deep cache hierarchies and limited
memory parallelism. The linearly increasing power
consumption due to increased CPU utilization with-
out sufficient performance improvements negatively
impacts the energy in the configurations employing
simultaneous multithreading (like SS-SMT and DS-
SMT ).

The tc and pr kernels show better than average
energy savings of 79.18% and 66.69%, respectively,
for eight cores. As seen from Table 5, the traversal-
centric (bfs and cc) and sssp kernels show a relatively
flat trend, suggesting that neither simultaneous mul-
tithreading nor an increase in core counts can improve
the energy savings. Only the tc kernel shows better
energy savings of 5.46% in the SS-SMT configuration
than SS-MT for eight cores.

The average energy savings across all the kernels
decrease from 54.08% for the small-degree synthetic
graphs to 40.84% for the highest degree real-world
graphs. The trends observed for SS-MT hold true
for the SS-SMT configuration as well. However, the
SS-SMT configuration has a slightly negative im-
pact on energy savings compared to SS-MT for eight
cores. The large-scale synthetic graphs kron-g24-k4
and kron-g24-k8 graphs show the best average energy
savings of 60.62% and 58.65%, respectively, while the
web graph shows the worst average energy savings
(28.50%).

4.4.4. Multithreading on two sockets (DS-MT)

Dual-socket execution improves the performance
of the graph kernels. The energy savings, however,
were negligible. For eight cores per socket, the DS-
MT shows performance improvements of 6.40% (with
respect to SS-MT ) and 7.99% (with respect to SS-
SMT ), as seen in Table 4, but only 1.19% and 2.51%
more energy savings than SS-MT and SS-SMT, re-
spectively, from Table 5. When the kernels execute
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over two sockets, the input graphs also get parti-
tioned across the NUMA domains—this data par-
titioning results in more off-core memory requests,
which improves the memory parallelism offered by
the system. As such, the additional power cost of
using more processors results in the observed energy
inefficiency. The average remote DRAM accesses in-
creased by 705.86× when two sockets were used com-
pared to single-socket usage across all the kernels
and input graphs. However, for the largest real-world
twitter and web graphs, the average remote DRAM
accesses increase was only 1.40×, since the relevant
accessed data occupies large memory compared to the
synthetic kron- graphs. The average improvement in
energy savings decreases with increasing core counts
for most kernels. Across all the kernels, the highest
gains in energy savings compared to the baseline SS-
MT configuration (by 13.33% – 17.98%) are observed
for up to three cores-per-socket usage, while the worst
gains are observed for per-socket core counts higher
than five (by 0.39% – 1.19%).

We can make a fair comparison of the SS-SMT and
DS-MT configurations since these two configurations
support the same maximum of 16 threads. The DS-
MT configuration involves using an additional pro-
cessor, while the SS-SMT simply increases CPU uti-
lization without additional resources. The compar-
ison between these two configurations describes the
trade-off of increasing power costs due to CPU us-
age and using additional resources. The high power
cost of adding a processor, while showing similar
performance improvements for fewer cores-per-socket
makes DS-MT energy inefficient compared to the SS-
SMT configuration. However, when the number of
cores used per-socket increases, the DS-MT shows
comparable energy savings to SS-SMT due to better
performance improvements and increased power cost
for simultaneous multithreading. The SS-SMT con-
figuration exhibits better average energy savings than
the DS-MT configuration for one core per-socket
(by 17.63%). For eight cores per-socket usage, the
DS-MT shows slightly better average energy savings
(2.51%).

As observed from Table 5, the tc kernel scales the
best and exhibits the best average energy savings
of 78.14% among all the kernels for eight cores per

socket. In comparison, sssp and bfs show the worst
average energy savings of 23.67% and 28.48%, respec-
tively. The bc kernel benefits the most from DS-MT
compared to SS-SMT, showing an increased perfor-
mance improvement by 38.30% and energy savings by
22.00%. The improvement observed for the whole-
graph kernels (tc, pr) and bc are the result of the
higher memory parallelism offered by the use of two
sockets. The traversal-centric kernels (bfs and cc)
in fact, show reduced energy savings by 4.30% and
4.69%, respectively, in DS-MT configuration with re-
spect to SS-SMT for eight cores-per-socket usage.

The small-degree synthetic graphs show the high-
est average energy savings of 56.40%, compared to
the average energy savings of 49.72% and 50.06%, for
the medium-degree and large-degree synthetic graphs
for eight cores-per-socket. Across all the kernels,
the kron-g24-k4 and kron-g22-k4 graphs show the
best average energy savings (61.38% and 59.08%, re-
spectively), while the real-world graphs—web, road,
and twitter—show lower average energy savings of
39.76%, 43.71%, and 47.50%, respectively. The DS-
MT configuration mostly benefits the largest web
graph, showing 8.24% and 11.26% additional energy
savings than in SS-MT and SS-SMT configurations,
respectively. Unsurprisingly, due to the high diame-
ter and synchronization limitations, when additional
processors are used in the DS-MT configuration, the
road graph exhibits reduced average energy savings
compared to SS-MT (by 7.45%) and SS-SMT (by
13.22%) configurations.

4.4.5. Simultaneous multithreading on two sockets
(DS-SMT)

The DS-SMT configuration is possibly the best
performing configuration; however, it has the worst
energy-efficiency. The average energy savings across
all kernels (for all the input graphs) for eight
cores-per-socket usage for DS-SMT configuration is
44.86%, which is worse than the average energy sav-
ings observed for SS-MT, SS-SMT, and DS-MT by
4.28%, 2.96%, and 5.47%, respectively. DS-SMT per-
formed worse than all the other configurations despite
showing the best performance improvement. These
results confirm that the performance improvements
observed due to increased thread counts and mem-
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ory parallelism do not offset the increased power con-
sumption due to the additional processor and the in-
creased CPU utilization.

The tc, pr, and bc kernels show the most average
energy savings (81.63%, 66.19%, and 63.64%, respec-
tively) for eight cores-per-socket, while the bfs ker-
nel shows the least average energy savings of 4.81%.
Compared to DS-MT, the use of simultaneous mul-
tithreading, reduces the average energy savings for
the bc, bfs, cc, and pr kernels for the maximum core
count, as seen in Table 5.

The large-scale synthetic graphs show the best av-
erage energy savings (62.35%) across all the kernels,
which is 34.45% higher than the average energy val-
ues shown by the small-scale graphs for the max-
imum eight cores-per-socket. The large-scale syn-
thetic graphs: kron-g24-k4 (66.82%), kron-g24-k8
(64.41%), and kron-g24-k16 (55.81%) show the high-
est average energy savings, while the road and web
input graph shows the lowest average energy savings
of 18.07% and 42.54%, respectively.

5. Modeling Energy Characteristics

The data-dependent behavior and irregular mem-
ory accesses make it challenging to model the perfor-
mance of graph kernels. Previous studies [24, 25, 26]
have tried to model the system performance of a few
graph kernels typically by performing static and dy-
namic code analysis, modeling for the amount of the
expected memory communication volume, and the
performance modeling of memory hierarchy compo-
nents (like caches) based on miss rates or memory
bandwidth utilization. Our extensive experiments
have provided us with a lot of data points for six
graph kernels’ energy values, executing over 12 input
graphs in four configurations for eight per-socket core
counts. To illustrate how researchers might use the
data provided herein1, we experimented with fitting
two different models for the data, detailed in Section
5.1. We evaluate the two models and present their

1The data can be downloaded from https://github.

com/ankurlimaye/energy-characterization-of-graph-

workloads-data

comparison and analysis in Section 5.2. Our mod-
els try to fit the graph kernel’s energy values for the
following features: input graph characteristics (num-
ber of nodes, number of edges, average degree), and
system characteristics (number of cores, number of
processors, number of threads per core).

5.1. Model Selection

We experimented with two fundamentally diverse
regression models: a simple Multiple Linear Regres-
sion [27] and an ensemble-based Random Forest Re-
gressor [28]. Note that several other models can be
explored, but these two models were selected to il-
lustrate how the characterization and data presented
herein can be used to model the energy character-
istics of graph workloads and understand what type
of model would be more useful for fitting the data.
We used Python’s scikit-learn library [29] to ex-
plore the two models. The presented models are data-
driven, and hence are dependent on the evaluated
system. However, our methodology is reproducible
and can be used to derive energy models for a differ-
ent system. A brief description of the two models is
as follows:

• Multiple Linear Regression (MLR): The MLR
model is one of the simplest models, and tries
to fit a linear approximation model to predict
the target values y based on independent input
features (x1, x2, . . . , xn), according to:

y = a0 + a1x1 + a2x2 + . . . + anxn

In our model, the target y is the energy
values, and the input variables are the var-
ious graph and system characteristics. The
MLR model finds the coefficients (a0, a1,
a2, . . . , an) of each input feature such that
it minimizes the mean squared error be-
tween the predicted and actual target values.
We used the scikit-learn library’s builtin
sklearn.linear model.LinearRegression

class to build our MLR model.

• Random Forest Regressor (RFR): The RFR
model is an ensemble model that uses multiple
decision trees and bagging technique to predict
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the target values. Random forest builds multiple
decision trees from randomly sampled input
training data and merges their predictions
together by averaging the trees’ predictions.
The RFR model reduces overfitting the data
due to the bagging technique of combining
the predictions of different trees generated
for random data. The advantage of using an
RFR model is that it is nonparametric, and
thus does not depend on any specific data
distribution and can contain collinear variables.
We used the scikit-learn library’s builtin
sklearn.ensemble.RandomForestRegressor

class to build our RFR model.

5.2. Model Validation

We performed 5-fold cross-validation for both mod-
els to reduce bias in input data. In the 5-fold valida-
tion, we first randomly split the input data into five
sets. Both the models are then trained five times,
each time with a different set used as the testing data
and the remaining four sets as the training data. The
5-fold cross-validation ensures that each input data
entry is a part of test data at least once. After train-
ing the models for five times, we have reported the
average scores to determine the fit.

To evaluate the two models, we used two metrics:
R-Squared (R2) and accuracy. We briefly describe
both metrics as follows:

• R-squared (R2): R-squared (R2) is the default
goodness-of-fit measure for regression models in
the scikit-learn library. This statistic indi-
cates the variance ratio explained by the model
compared to the total variance in input data.
It measures the strength of the relationship be-
tween the model and the test outputs. The best
possible R2 value is 1, and lower values suggest
that the model does not fit the input data well.

• Accuracy : We define accuracy as how close the
predicted values are to the original test values.
It is calculated as the ratio of error (the differ-
ence between the input test values and predicted
values) to the input test values. An accuracy of
100% denotes that the predicted value matches
the original value.

Table 7: Performance of the energy models

Kernel
MLR RFR

Accuracy R2 Accuracy R2

bc -304.87% 0.748 77.37% 0.894
bfs 30.12% 0.982 93.01% 0.994
cc 16.20% 0.984 93.67% 0.997
pr -1099.05% 0.643 88.53% 0.926

sssp -15.49% 0.977 88.41% 0.988
tc -254.50% 0.749 89.30% 0.961

Table 7 presents the accuracy and R2 values of the
two models explored for the different kernels. As ob-
served in Table 7, the MLR model performs poorly
compared to the RFR model for both metrics. The
MLR model performed very poorly with R2 values
as low as 0.643. The R2 values for bfs, cc, and sssp
are high (0.977 – 0.984), suggesting that the model is
a good fit and the input features highly explain the
trends in predicted values. However, the accuracy of
these kernels are relatively low (-15.49% – 30.12%).
This observation suggests that even if the MLR model
can predict the correct trend, it fails to predict the
actual values. The bc, pr, sssp, and tc kernels showed
negative accuracy suggesting that the predicted val-
ues’ errors were greater than the actual test values.
On the other hand, the RFR models achieve high
R2 values (0.894 – 0.997) with high accuracy ranging
from 77.37% – 93.67% for the different kernels. Thus,
the RFR model predicts the correct trend, and the
predicted values are much closer to the actual values.

We investigated the RFR model further to under-
stand why it performed better by identifying the most
critical features that affected the predictions. We re-
moved one input feature at a time, retrained the RFR
models, and measured the drop in R2 values com-
pared to original RFR models. The input feature
that results in the highest drop in the R2 values is
the critical feature. Interestingly, the critical input
feature across all the cases was the number of per-
socket cores used. This fact suggests that the model
needs to correctly account for the non-linear scaling
in energy values with increasing threads to improve
the model’s performance. The MLR model fails to
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account for the non-linearity. Hence, the highly scal-
able bc, pr, and tc kernels show worse performance
metrics for the MLR model in Table 7 than the poorly
scalable bfs, cc, and sssp kernels.

Our modeling experiment’s key takeaway is that
the choice of model selection highly depends on the
graph kernels’ execution behaviors. Even though the
RFR models showed high R2 values, the prediction
accuracy can still be improved. The models and
predictions can be further improved by considering
more input features, hyperparameters tuning, train-
ing with different input graphs, or even choosing dif-
ferent models (e.g., polynomial regression to factor
non-linearity).

6. Conclusion

In this study, we performed the energy character-
ization of graph kernels from the GAP benchmark
suite. We performed the experiments in four system
configurations: single-socket multithreaded, single-
socket simultaneous multithreaded, dual-socket multi-
threaded, and dual-socket simultaneous multithreaded
executions. We analyzed the effects of graph shapes
on the energy characteristics for different kernels.

The whole-graph GAP benchmark suite kernels
showed better average energy savings than single-
source kernels in all the system configurations. The
whole-graph kernels are designed to exhibit fine-
grained parallelism and high scalability. This impacts
the energy-savings positively.

The smallest size (scale and degree) input graphs
show the most energy savings. The smallest graphs
result in low off-chip memory accesses, improving
both the performance and energy savings across the
system configurations. The real-world graphs, which
have large scale and degree, show poor energy sav-
ings, and the road graph even shows increased energy
consumption for higher core counts. The small-degree
graphs scale better than the larger degree graph since
they are less connected.

In the single-socket multithreaded execution, in-
creasing the thread counts resulted in lower energy
consumption for almost all the kernels; however, this
decrease is not linear and saturates to a lower bound.

Thus, we observed limited energy savings due to mul-
tithreading. Simultaneous multithreading on a single
socket is only beneficial and shows high energy sav-
ings for lower core counts. However, when the ker-
nel execution is spread across two sockets, the aver-
age energy savings reduces. Our study suggests that
even though simultaneous multithreading does not
significantly improve performance and energy sav-
ings, there are still significant opportunities to op-
timize the concurrency and single-core utilization for
graph applications, since the communication across
two sockets becomes more relevant from the energy
efficiency perspective.

Our study advances the state-of-the-art in graph
profiling research by providing valuable insights. Us-
ing our experimental data, we developed models that
consider the graph and system characteristics as in-
put features to predict the energy values for differ-
ent graph kernels. This work provides a baseline
for optimizing the energy, and the analysis discussed
herein can also provide insights for designing next-
generation energy-efficient systems for graph process-
ing and improving graph models.
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