
DOSAGE: Generating Domain-Specific
Accelerators for Resource-Constrained Computing

Ankur Limaye
Department of Electrical & Computer Engineering

University of Arizona
Tucson, USA

ankurlimaye@email.arizona.edu

Tosiron Adegbija
Department of Electrical & Computer Engineering

University of Arizona
Tucson, USA

tosiron@arizona.edu

Abstract—Integrating low-overhead domain-specific accelera-
tors with low-energy general-purpose processors can improve
the processors’ performance efficiency in resource-constrained
systems (e.g., embedded systems). However, current function-
based approaches for designing domain-specific accelerators
require substantial programmer efforts for hardware/software
partitioning and program modifications to access the best avail-
able hardware accelerators. This paper presents DOSAGE, an
LLVM compiler-based methodology to generate domain-specific
accelerators for resource-constrained computing systems. Given
a set of applications, DOSAGE automatically identifies and ranks
the recurrent and similar code blocks that would benefit the most
from hardware acceleration, based on the code blocks’ composi-
tion. We illustrate the benefits of the proposed approach using a
case study that involves generating domain-specific accelerators
for a diverse set of healthcare applications and evaluate the
accelerators via FPGA-based prototyping. Compared to a base
low-resource RISC-V processor, DOSAGE accelerators improved
the system’s performance and energy by 24.85% and 8.54%, re-
spectively. Furthermore, compared to a state-of-the-art function-
based accelerator generation approach, DOSAGE eliminated the
function-level granularity constraint of the generation process
and reduced the number of required accelerators—and, in effect,
the interfacing overhead—by 33.33%, while achieving equal or
better program coverage and performance/energy results.

Index Terms—Domain-specific accelerators, hardware software
co-design, low-energy, embedded systems, resource-constrained
computing

I. INTRODUCTION

The current generation of microprocessors has hit perfor-
mance and power walls due to the slowdown in technology
scaling and cooling constraints for increasing power density.
Current microprocessors’ inability to sustain the historically
observed performance scaling has necessitated design alter-
natives for improving the execution efficiency of emerg-
ing systems. One design approach is an entirely hardware-
based solution: using custom-designed ASIC modules for the
target applications. An alternative approach involves hard-
ware/software co-design, wherein the applications (entirely or
selective code blocks) are executed on hardware accelerators
attached to general-purpose microprocessors.

Fig. 1 illustrates the trade-offs between programming flex-
ibility and performance efficiency offered by these two ap-
proaches. Custom-designed ASIC modules are typically gen-

Fig. 1. Programming flexibility and performance efficiency trade-offs for
ASIC designs and three CPU-based systems: only CPU, with general-purpose
accelerators (GPA), and with domain-specific accelerators (DSA)

erated using the high-level synthesis (HLS) flow. In the HLS
flow, HLS tools (e.g., Vivado HLS [1], Microchip’s LegUp
[2]) compile applications written in a high-level programming
language (e.g., C/C++) to synthesizable modules in hardware
description languages (HDL) (e.g., Verilog/VHDL). The HLS
flow is highly automated, and the resulting custom ASIC de-
signs are typically optimal for specific applications. However,
ASICs exhibit limited flexibility and programmability since
they are fabricated for specific applications.

Alternatively, utilizing hardware/software co-design to in-
tegrate hardware accelerators with microprocessors provides
much more flexibility than ASIC modules [3], [4]. These
hardware accelerators execute select program code blocks
more efficiently than the microprocessor pipeline. However,
the applications may need to be redesigned to optimally
access these accelerators, or the accelerators may need to be
redesigned if the application changes. These accelerators can
be classified into two categories: general-purpose and domain-
specific accelerators.

General-purpose accelerators (e.g., GPUs, DSPs, Au-
dio/Video codecs) [5], [6] are commonly found on mi-
croprocessor systems. These accelerators have standardized
application program interfaces (APIs), making it easier to
port/redesign the application to access them, hence offering
long-term stability. However, these accelerators typically have
a high area footprint that may be prohibitive and underutilized
in resource-constrained computing systems.

Domain-specific accelerators, on the other hand, are cus-
tomized for common code blocks within an application do-
main [7], [8]. They are more optimized—they have better
performance and smaller area footprint—than general-purpose
accelerators for the specific application domain. However,978-1-6654-3922-0/21/$31.00 ©2021 IEEE

(a) CFG (b) Valid (c) Invalid

Fig. 2. Super-block illustration: (a) Example CFG, (b) Valid super-blocks, (c)
Invalid super-block

these benefits come at the cost of increased hardware/software
co-design effort and more application code modifications to
interface with the accelerators since the APIs may not always
be stable. In addition, current design approaches generate
accelerators that may not be reusable across different appli-
cations within an application domain [9]. Our work aims to
address these drawbacks posed by current approaches.

In this paper, we present DOSAGE, a programmer-agnostic
methodology for domain-specific accelerator generation
for resource-constrained systems. DOSAGE is an LLVM
compiler-based semi-automated approach to minimize pro-
grammer efforts for code modifications to interface with
the accelerators. Given a set of applications, the DOSAGE
workflow first identifies the computationally similar code
blocks among the applications that would highly benefit from
acceleration. Thereafter, DOSAGE applies a ranking heuristic
that uses the code blocks’ size and frequency to choose the
best candidates—the appropriate code block dosage, so to
speak—for hardware acceleration. To evaluate DOSAGE, we
used a case study of a set of diverse real-world healthcare
applications from the HERMIT benchmark suite [10]. Using
the DOSAGE methodology, we generated a set of domain-
specific accelerators for a resource-constrained system running
the HERMIT workloads, and evaluated the generated accelera-
tors via FPGA-based prototyping. Compared to a base RISC-
V processor, DOSAGE improved the system’s performance
and energy by 24.85% and 8.54%, respectively. Compared
to a state-of-the-art accelerator generation approach using
Microchip’s LegUp HLS tool, DOSAGE minimized designer
involvement in the accelerator generation process, reduced
the number of required accelerators for the applications by
33.33%, and achieved equal or better program coverage.

II. RELATED WORK

The design of application-specific and domain-specific ar-
chitectures is an active research area due to evolving ap-
plications and system architectures. Accelerators have been
designed for applications in different domains, like image pro-
cessing and embedded vision applications [11], cryptography
[12], deep learning [13], graph processing [14], etc. These
works focus on designing optimal accelerators for specific ap-
plications. However, the current design process is ad hoc. That
is, the accelerators work for the specific applications for which

they are designed; any change in the application or algorithm
would require a hardware re-implementation, potentially from
scratch. In this paper, our focus is not on optimizing specific
accelerators but on developing a methodology to automate
the generation and integration of reusable domain-specific
accelerators with general-purpose processor systems.

There are a few prior works that are similar to ours. For ex-
ample, Venkatesh et al. [7] presented specialized co-processors
that could support multiple general-purpose computations for
improving energy efficiency. Their toolchain synthesized Qs-
Cores by mining for similar code patterns within and across
applications. Their analysis showed that multiple data struc-
tures could be represented only by four distinct computation
patterns, and they integrated the QsCores supporting those pat-
terns with the system. Canis et al. [2] presented an HLS tool,
LegUp, capable of compiling a standard C program to a hybrid
processor/accelerator architecture; however, their hybrid flow
was constrained to the granularity of functional blocks, which
limits the reusability of the generated accelerators. Kumar et
al. [15] presented an automated toolchain, Needle, that could
select accelerator-friendly regions within the application codes.
They used a new abstraction called ‘braids’ to merge paths
with many common basic blocks to increase the accelerator’s
code coverage without impacting the hardware complexity.

Our work has two major distinguishing features from
prior work. First, we consider a set of input applications
and prioritize the recurrent similar blocks so that most of
the applications benefit collectively and require a minimal
number of accelerators, rather than prioritizing the hotspots
in individual applications and generating accelerators for all
the applications as in [15]. Second, our work emphasizes
the reusability of accelerators for different applications or
algorithms, without the need to re-implement the accelerators.
To this end, we use a different code granularity, which we
call super-block, to generate the accelerators, rather than the
constrained function-based approach used in prior works [2],
[7]. Furthermore, the accelerators in [7] are generated based on
similarity in code segments found in the applications’ hotspots.
In contrast, we generate super-blocks for entire applications
and use a ranking methodology to select the best super-block
to be accelerated. Since DOSAGE analyzes entire applications
at compile-time, instead of just hotspots, our approach can
capture more program similarities across multiple applications.

III. A NEW GRANULARITY: SUPER-BLOCKS

In general, domain-specific accelerators can be generated
at three application granularities: basic blocks, functions, and
modules. Basic blocks are the smallest container of sequential
instructions. The function granularity is at the same level as
the functions defined in the high-level program code. Module
is the largest granularity and can represent a large part of the
application. The open-source LLVM compiler, which we use
in this work, supports intermediate representations (IRs) in
these three granularities.

Most prior accelerators use the function-based approach [2]
for generating accelerators, since this approach is easier and

Fig. 3. A high-level overview of the DOSAGE workflow, comprising of
super-block generation, super-block ranking, and accelerator generation

can provide long-term stability. The functions can be converted
as standard APIs to access the accelerators. However, program-
mer efforts are needed to modify existing program codes to
access the accelerators using new APIs. DOSAGE aims to be
programmer-agnostic; as such, the function-based approach is
not a good fit.

Using the basic block granularity to generate accelerators
would seem like a good fit for our work. However, we found
the overhead of this granularity to be prohibitive due to the
large number and small size of the generated accelerators
using this approach. By analyzing different applications’ basic
blocks, we found a balanced approach that involved using a
new granularity, which we call super-blocks (SB). A super-
block is a container of adjacent basic blocks in the control flow
graph (CFG), and has exactly one entry and one exit point. The
single-entry and single-exit condition allows super-blocks to
be self-contained units having a deterministic instruction flow,
but without the strict constraint of sequential instructions as
in a basic block. Thus, super-blocks enable more flexibility
with similar analyzability to basic blocks. Super-blocks will
generally vary in size; they will typically be larger than basic
blocks, but may be smaller or larger than a function.

Fig. 2a illustrates a CFG for a sample arbitrary application.
The containers AA, BB, BB1, BB2, and CC are the basic
blocks; multiple super-blocks can be generated from the same
CFG (in practice, workloads can have hundreds of super-
blocks). For example, the highlighted portions of Fig. 2b
illustrate two valid super-blocks that can be generated from
the CFG. On the other hand, the super-block highlighted in
Fig. 2c is invalid since there are two exit points defined (BB
to BB1 and AA to CC).

IV. DOSAGE WORKFLOW

Fig. 3 depicts a high-level overview of the DOSAGE work-
flow. The input is a set of applications written in a high-level
programming language (e.g., C/C++). The user has an option
to specify each application’s persistence, which we define
as how frequently the application is run compared to other
applications within the domain. DOSAGE defaults to an equal
persistence for all the applications. The DOSAGE workflow
consists of three stages: super-block generation, super-block
ranking, and accelerator generation.
Super-block generation: In the first step, using LLVM analy-
sis passes, DOSAGE generates a list of super-blocks for each
application by first generating the basic blocks and CFGs
using the LLVM compiler tool to obtain the intermediate
representations (IR). The applications are compiled using the
-emit-llvm LLVM flags, which generates an LLVM IR
bitcode file (i.e., in the .bc format). DOSAGE extracts an
LLVM IR instruction-level CFG and a basic block list—each
node in the CFG is a basic block—from the bitcode file.
To generate a list of all super-blocks, the basic blocks are
recursively merged with parent/child nodes and checked for
their validity to ensure that each super-block only has one
entry and one exit point. Once the list of all super-blocks is
generated, DOSAGE then ranks and prioritizes them in the
super-block ranking stage.
Super-block ranking: Since several super-blocks—
potentially hundreds—can be generated in the super-block
generation step, the ranking process is required to prune
the generated super-blocks. The super-block ranking process
involves a simple ranking heuristic to prioritize the generated
super-blocks based on each super-block’s provided benefit
for hardware acceleration. The ranking heuristic is a two-step
process. First, the super-blocks within each application are
ranked, and then the ranked super-blocks are compared for
similarity across all applications.

The super-blocks are ranked based on three parameters:
execution frequency (i.e., loops), the types of instructions
(e.g., divide, mod, and multiply instructions), and super-block
size measured by the number of instructions. Super-blocks
containing code regions with higher execution frequency are
ranked higher to ensure that the accelerator is frequently uti-
lized. Complex multi-cycle instructions, like divide, mod, and
multiply, are also prioritized for acceleration, since they are
typically inefficient in traditional pipelines. The super-block
size is considered to minimize the overhead of interfacing the
accelerator. Thus, for example, in Fig. 2b, the super-block on
the right will have a higher priority than the left super-block.
The three parameters have equal weightage in determining the
super-block ranking within each application.

Since the focus of DOSAGE is to generate domain-specific
accelerators, the highly ranked super-blocks that are common
across different applications would be prioritized for hardware
acceleration. As depicted in Fig. 3, the process of finding the
common blocks follows an iterative heuristic. The highest-
ranked super-blocks for the applications are compared for

Fig. 4. System overview of the processor in our case study

similarity based on a designer-specified similarity threshold.
To measure similarity, DOSAGE compares the CFGs of the
super-blocks to find how similar they are in terms of their
compositions. This threshold can be varied based on the
designer’s needs or system resource constraints. A higher
threshold would imply stricter similarity requirements, which
may result in smaller super-block sizes and fewer common
super-blocks, while a lower threshold would increase the
super-block sizes at the cost of introducing more uncommon
application-specific blocks into the mix of super-blocks. If
the similarity criterion is not matched in the first iteration,
subsequent iterations compare lower-ranked super-blocks (i.e.,
for nth iteration, top n-ranked) until a super-block satisfying
the similarity threshold is found.
Accelerator generation: When the super-block acceleration
candidates are determined, the accelerator(s) are then gener-
ated through the traditional high-level synthesis process (e.g.,
using LegUp, Vivado HLS, etc.). A few modifications may be
required to ensure input validity to the selected HLS tool. For
instance, in this work, we used LegUp, which can only gener-
ate accelerators from inputs that are at the function granularity.
However, since DOSAGE is a super-block-based methodology,
we modified the LLVM IR (using the llvm-extract tool)
to wrap the super-blocks in order to emulate a function and
provide valid inputs to LegUp. Note that this modification may
not be required for other HLS tools.

V. CASE STUDY AND EXPERIMENTAL SETUP

To rigorously evaluate and exemplify the benefits of
DOSAGE, we opted to use a set of diverse real-world ap-
plications written by different programmers. Therefore, we
chose the applications from the HERMIT benchmark suite
[10] to illustrate the effectiveness of the DOSAGE work-
flow. The benchmark suite comprises of Internet of Medical
Things/healthcare applications ranging from wearable device
applications to compute-intensive signal processing applica-
tions. For the purpose of this work, we classify the HERMIT
applications into two domains: ECG-based applications and
Image & Signal processing applications. While the applica-
tions were not classified as such in [10], we found the classi-
fication to be instructive for our analysis. Table I summarizes
the HERMIT benchmarks, and our classification of the ap-
plications. For brevity, we omit the details of the benchmarks
and direct readers to [10] and the associated Github repository
for the description and code of the benchmarks. We did not
modify any of the code for our experiments.

We built DOSAGE on top of Clang-LLVM (v3.8), which
we used to compile the applications, generate the super-blocks,

TABLE I
SUMMARY OF ACCELERATORS & KERNELS

SB-based Corresponding
HERMIT applications

accelerators FBAs

ECG-based applications
SB1 fn(ecgsignal) activity, apdet, hrv, sqrs, wabp
SB2 fn(sqr), fn(sqrt) activity, apdet, hrv
SB3 fn(sin) apdet, hrv

Image & Signal processing applications

SB4
fn(mac a1) imghist
fn(mac a2) iradon

and perform the ranking heuristic described in Section IV. The
output of this process is an LLVM intermediate representation
(*.ll files) of the code blocks for which hardware acceler-
ation would be the most beneficial. We used the LegUp HLS
tool (v8.1) to generate the Verilog modules from the LLVM IR.
Note that DOSAGE does not specifically depend on LegUp;
any other HLS tools capable of using LLVM IR inputs can be
used. We chose LegUp since it natively supports the LLVM
IR inputs.

Fig. 4 depicts a high-level system overview of our case
study. To represent the base processor, we used a RISC-V-
based Rocket-core processor. The processor comprises of a
single-core 64-bit processor, featuring 16 KiB, 4-way set-
associative L1 instruction and data caches, and an off-chip
single bank 512 KiB, 8-way set associative L2 cache. For
comparison to the state-of-the-art, we also generated accel-
erators for the HERMIT applications using the function-
based approach [2] and compared them to the DOSAGE-
generated domain-specific accelerators. The accelerators were
connected as custom co-processors to the RISC-V processor
using the Rocket Custom Co-processor (RoCC) interface. We
implemented the base processor, DOSAGE-generated acceler-
ators, and function-based accelerators (FBAs) using a Nexys4-
DDR FPGA to evaluate the performance, energy, and area
implications.

VI. EXPERIMENTAL RESULTS

This section discusses the experimental results of generating
hardware accelerators using DOSAGE for the HERMIT appli-
cations. We also analyze the DOSAGE-generated accelerators
in comparison to FBAs generated using prior work [2] within
the context of the baseline processor.
Generated super-blocks: In total, the first DOSAGE step
generated the following number of super-blocks for the seven
applications: activity: 564; apdet: 606; hrv: 591; sqrs: 511;
wabp: 485; imghist: 693; and iradon: 739. After the super-
block ranking step, using a sample similarity threshold of
80%, DOSAGE pruned the super-blocks to just four candidate
super-blocks for all the HERMIT benchmarks (three for the
ECG-based applications, and one for the signal processing
applications). For simplicity, we refer to these super-blocks
as SB1, SB2, SB3, and SB4 (see Table I). To understand the
super-blocks’ composition, we analyzed them and identified
their corresponding functions in the applications’ high-level
codes, as depicted in Table I. For the ECG-based applications

(a) DOSAGE-based accelerators (b) FBAs

Fig. 5. Program coverage of hardware acceleration using (a) DOSAGE-
based accelerators (b) FBAs (prior work). DOSAGE achieves equal or better
program coverage using fewer accelerators.

(activity, apdet, hrv, sqrs, and wabp), the best candidate for
hardware acceleration (and the highest-ranked common super-
block by DOSAGE) was SB1, which was common to five
HERMIT benchmarks. The second best candidate for hardware
acceleration was SB2, which was common to three HERMIT
applications and consisted of the math functions sqr and sqrt,
while SB3 was common to two HERMIT applications. For the
image and signal processing applications, imghist and iradon,
the sole generated super-block SB4 comprised of multiply and
accumulate (MAC) operations. To select SB1, SB2, and SB3,
DOSAGE required 31 iterations in the super-block ranking
step, while it required 14 iterations to select SB4.
Static analysis of program coverage: In total for all seven
benchmarks, four DOSAGE-based accelerators were required
as opposed to six FBAs (Table I), representing 33.33% fewer
accelerators. More FBAs were required due to the program-
ming of the different applications, wherein functions with
similar computations were coded in different ways. For in-
stance, in imghist and iradon, functions with similar MAC loop
operations required two different FBAs, whereas DOSAGE
consolidated the operations into one accelerator, SB4. Even
though this diversity is an artifact of modern-day programs,
DOSAGE mitigates this limitation by searching for common
code blocks and computations at a lower level without being
constrained to the function-level granularity.

Ideally, the DOSAGE-generated accelerators must provide
similar program coverage to the state-of-the-art accelerators.
Thus, we analyzed the amount of each application covered
by the DOSAGE-based accelerators compared to FBAs. Fig.
5 depicts the percentage of program coverage using the
DOSAGE-generated accelerators (Fig. 5a) and the correspond-
ing FBAs (Fig. 5b). We measured the program coverage as
the percentage of the LLVM IR lines accelerated by the
different approaches. On average, DOSAGE accelerated an
extra 2.30% and 1.41% of the program for the ECG-based
and signal processing applications, respectively, compared
to FBAs. DOSAGE achieved equal or better coverage than
the function-based approach, while also reducing the total
number of accelerators. For instance, 37.42% of activity’s code
could be accelerated with two accelerators using DOSAGE,
compared to three FBAs. The amount of code that could be

TABLE II
IMPLEMENTATION OVERHEAD OF DOSAGE ACCELERATORS COMPARED

TO FBAS (PRIOR WORK).

FBA
Area Power

DOSAGE
Area Power

(LUTs) (W) (LUTs) Gain (W) Gain

fn(ecgsignal) 1641 0.057 SB1 1692 -3.11% 0.056 1.75%

fn(sqrt) 3443 0.131
SB2 6533 -3.48% 0.230 0.86%

fn(sqr) 2870 0.101

fn(sin) 1816 0.065 SB3 1876 -3.30% 0.066 -1.54%

fn(mac a1) 1175 0.046
SB4 1239 47.79% 0.047 49.46%

fn(mac a2) 1198 0.047

accelerated was constrained by the application characteristics.
For instance, iradon has the least possible application accel-
eration at 8.42% due to the application’s characteristics (e.g.,
large code size, limited ILP, etc.) [10].
Overhead analysis: Table II summarizes the post-
implementation results of the different hardware accelerators.
Overall, DOSAGE did not increase the overhead compared to
the FBAs, even though DOSAGE accelerators covered more
operations. For instance, even though SB2 consumed the
largest area among all super-blocks, it was only marginally
larger (3.48%) than the combination of the two equivalent
accelerators in the function-based approach. On the other
hand, SB4 substantially reduced the area and power by 47.79%
and 49.46%, respectively, compared to the equivalent FBAs.
In addition, the critical paths of the DOSAGE-generated
accelerators were similar to those of the FBAs.
Dynamic analysis of speedup and energy savings: Fig. 6
summarizes the execution time speedup, energy savings, and
area overhead by incrementally adding DOSAGE accelerators
(e.g., first just SB1, then SB1 + SB2, etc.) and the equiva-
lent FBAs to the baseline processor. The priority order for
the accelerators for ECG-based applications, determined by
DOSAGE, was: SB1, SB2, and SB3. The equivalent priority
for the FBAs was: fn(ecgsignal), fn(sqrt), fn(sqr), and fn(sin).
For the signal processing applications, the priority order for
the two FBAs based on program coverage was: fn(mac a1)
and fn(mac a2).

In a resource unconstrained scenario, where all the gen-
erated accelerators were included in the system, DOSAGE
outperformed the FBAs in both execution time and energy con-
sumption. DOSAGE achieved 30.43% and 4.53% execution
time speedups over the baseline processor and the function-
based approach, respectively. DOSAGE reduced the energy by
4.23% and 6.20% compared to the base and the function-based
approach, respectively, without introducing any area overhead
compared to the FBAs.

We observed that as the number of accelerators increased
in the system, the acceleration efficiency decreased due to
the increase in area overhead. For example, in Fig. 6, using
only SB1 improved the system’s performance (by 16.71%)
and energy savings (by 7.49%) for just 4.48% area overhead
compared to the base processor. In contrast, when three
accelerators (SB1, SB2, and SB3) were used, the system’s
performance and energy savings improved by 30.43% and
4.23%, respectively, for a high 24.77% area overhead. Note

Fig. 6. Average execution time speedup, energy savings, and area overhead
results for HERMIT applications using DOSAGE-based accelerators and
FBAs compared to the base RISC-V processor. Accelerators are incrementally
added to the system. For example, ‘+SB2’ means both SB1 and SB2 are added;
‘+SB3’ means SB1, SB2, and SB3 are added; etc.

(a) Execution time speedup (b) Energy savings

Fig. 7. Execution time speedup and energy savings for HERMIT applications
using single DOSAGE-generated accelerators (SP1 and SP4) and FBAs
(fn(ecgsignal) and fn(mac a1)) compared to the base RISCV processor

that prior work incurred a higher area overhead than ours.
Interestingly, the energy savings reduced with an increase in
the number of accelerators. This reduction was due to the
under-utilization of the accelerators, since the accelerators
were not equally useful to all the applications. As such,
the accelerators continued to consume power even when not
in use. This overhead can be mitigated by switching the
accelerators into a low-power state when not in use, but this
optimization is outside the scope of this paper. For the FBAs,
we observed an energy increase with more accelerators. While
an unrestricted increase in accelerators is not an ideal design,
these results illustrate the efficiency of DOSAGE compared to
the function-based approach.

To further illustrate the efficiency of DOSAGE, we explored
a more resource-constrained scenario wherein the system
could only be designed with a limited number of acceler-
ators. DOSAGE chose the SB1 and SB4 super-blocks as
the ideal acceleration candidates for the ECG-based and im-
age/signal processing domains, respectively. Fig. 7 shows the
results for the resource-constrained scenario using DOSAGE-
generated accelerators and the equivalent FBAs ((fn(ecgsignal)
and fn(mac a1)). Compared to the function-based approach,
DOSAGE improved the average execution time and energy by
4.34% and 3.18%, respectively, for all the applications. In the
resource-constrained scenario, iradon could not be accelerated
by the fn(mac a1) FBA; however, DOSAGE was able to
speedup iradon by 11.25% with 9.38% energy savings. Im-
portantly, as previously alluded to, DOSAGE also substantially
reduced the area overhead in this scenario.

VII. CONCLUSION

In this work, we presented DOSAGE, a programmer-
agnostic LLVM compiler infrastructure-based methodology
for generating domain-specific accelerators for resource-
constrained computing systems. The DOSAGE methodology
uses a simple ranking heuristic to prioritize the recurrent and
similar code blocks from a set of applications, and identifies
the code blocks that would benefit the most from hardware ac-
celeration. Experiments using benchmarks in two application
domains showed that DOSAGE reduced the required number
of domain-specific accelerators and improved the system’s
performance and energy efficiency compared to prior work.
For future work, we will explore DOSAGE in multi-processor
systems and include runtime execution characteristics to im-
prove the accelerator ranking heuristic.

REFERENCES

[1] T. Feist, “Vivado Design Suite,” White Paper, Xilinx, Inc., pp. 1–14, Apr.
2012. [Online]. Available: http://xilinx.eetrend.com/files-eetrend-xilinx/
download/201205/2440-4537-4wp416-vivado-design-suite.pdf

[2] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. Brown, and J. H. Anderson, “LegUp: An Open-Source High-Level
Synthesis Tool for FPGA-Based Processor/Accelerator Systems,” ACM
Trans. Embed. Comput. Syst., vol. 13, no. 2, pp. 24:1–24:27, Sep. 2013.

[3] G. De Michell and R. K. Gupta, “Hardware/software co-design,” Proc.
IEEE, vol. 85, no. 3, pp. 349–365, Mar. 1997.

[4] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke, “Bridging the computation
gap between programmable processors and hardwired accelerators,” in
Proc. IEEE 15th Int. Symp. High Performance Computer Architecture
(HPCA’09), Mar. 2009, pp. 313–322.

[5] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and
D. Marr, “Accelerating binarized neural networks: Comparison of fpga,
cpu, gpu, and asic,” in Proc. 2016 Int. Conf. Field-Programmable
Technology (FPT’16), Dec. 2016, pp. 77–84.

[6] A. HajiRassouliha, A. J. Taberner, M. P. Nash, and P. M. Nielsen, “Suit-
ability of recent hardware accelerators (DSPs, FPGAs, and GPUs) for
computer vision and image processing algorithms,” Signal Processing:
Image Communication, vol. 68, pp. 101 – 119, 2018.

[7] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K. Venkata, M. B.
Taylor, and S. Swanson, “QsCores: Trading Dark Silicon for Scalable
Energy Efficiency with Quasi-Specific Cores,” in Proc. 44th Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO’11), Dec. 2011, pp.
163–174.

[8] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware
accelerators,” Commun. ACM, vol. 63, no. 7, p. 48–57, Jun. 2020.

[9] T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright, “Pushing
the limits of accelerator efficiency while retaining programmability,”
in Proc. IEEE Int. Symp. High Performance Computer Architecture
(HPCA’16), 2016, pp. 27–39.

[10] A. Limaye and T. Adegbija, “HERMIT: A Benchmark Suite for the
Internet of Medical Things,” IEEE Internet Things J., vol. 5, no. 5, pp.
4212–4222, Jun. 2018.

[11] B. Sun, L. Yang, P. Dong, W. Zhang, J. Dong, and C. Young, “Ultra
power-efficient cnn domain specific accelerator with 9.3tops/watt for
mobile and embedded applications,” 2018.

[12] L. Wu, C. Weaver, and T. Austin, “CryptoManiac: a fast flexible
architecture for secure communication,” in Proc. Annu. Int. Symp.
Computer Architecture, 2001, pp. 110–119.

[13] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,”
IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[14] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in Proc. Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO’16), 2016, pp. 1–13.

[15] S. Kumar, N. Sumner, V. Srinivasan, S. Margerm, and A. Shriraman,
“Needle: Leveraging Program Analysis to Analyze and Extract Accelera-
tors from Whole Programs,” in Proc. IEEE Int. Symp. High Performance
Computer Architecture (HPCA’17), Feb. 2017, pp. 565–576.

