
Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-021-01682-y

Exploring Domain-Specific Architectures for Energy-Efficient
Wearable Computing

Dhruv Gajaria1 · Tosiron Adegbija1

Received: 1 February 2021 / Revised: 23 April 2021 / Accepted: 2 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
This paper explores the use of domain-specific architectures for energy-efficient and flexible computing of a variety of
workloads, including signal processing applications, in wearable devices. As wearable devices become more popular, and
with growing consumer demands, these devices are expected to run a wide range of increasingly complex workloads.
A general-purpose solution for wearable computing (e.g., microcontrollers and microprocessors) affords high flexibility,
wherein a wide range of applications can be run, but offers mediocre performance and may result in high energy and area
overheads. On the other end of the computing flexibility spectrum, application-specific integrated circuits (or accelerators)
may optimize a specific algorithm, resulting in inflexible computing and under-utilization of computing resources. Domain-
specific architectures (DSAs) provide a happy medium of computing flexibility. DSAs focus on doing a few things—i.e.,
satisfying the computing requirements of a set of domain workloads with execution similarities—extremely well. As such,
DSAs maximize resource usage and achieve substantial performance and energy benefits for a variety of applications. In
this work, we first analyze wearable workloads to identify their execution patterns, data movement characteristics, execution
bottlenecks, and similarities. Thereafter, we explore various DSA design schemes to meet the increasing processing
requirements of wearable workloads, within the typically stringent design constraints of wearable devices. We analyze
the performance, energy, and area tradeoffs of the different DSA design schemes in comparison to multiple state-of-the-
art architectures, and show, through experimental results, that DSAs offer much promise for flexible, low-overhead, and
energy-efficient wearable computing.

Keywords Domain-specific architectures · Wearable devices · Energy efficient · Internet of Things (IoT) ·
Wearable computing

1 Introduction andmotivation

In today’s digital and connected world, consumer devices
such as wearables have become some of the fastest growing
Internet of Things (IoT) products. These wearable devices
perform many everyday functions characterized as mobile
information processing comprising of such functions like
email, navigation, fitness tracking, health monitoring, and
many more [1]. Due to a wide range of functionalities, the

� Dhruv Gajaria
dhruvgajaria@email.arizona.edu

Tosiron Adegbija
tosiron@arizona.edu

1 Department of Electrical & Computer Engineering, University
of Arizona, Tucson, AZ, USA

wearable market is expected to reach 21.4 billion dollars by
2024 [2] with an expected annual growth rate of 27%.

Unlike general-purpose systems, consumer wearable
devices are expected to perform a wide range of tasks within
stringent area and energy constraints. Despite these strin-
gent design constraints, wearable devices are increasingly
processing complex workloads due to increasing consumer
demand. To meet these computational demands, it is essen-
tial that wearable devices feature computational resources
that satisfy the workloads’ requirements without introduc-
ing substantial overhead.

There have been some prior research efforts on enhancing
the performance of wearable devices. For instance, Tan et.al
[3] proposed a low-power many-core architecture for wear-
ables in order to parallelize the wearable workloads. The
authors used a 16-core architecture, called LOCUS, to achieve
1.71x speedup while reducing power consumption by
44.8% compared to a quad-core ARM Cortex A7 processor.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-021-01682-y&domain=pdf
http://orcid.org/0000-0002-2800-4834
mailto: dhruvgajaria@email.arizona.edu
mailto: tosiron@arizona.edu

J Sign Process Syst

However, analysis from Liu et.al [4] showed that the thread
level parallelism (TLP) in wearable workloads is typically
limited; most wearable workloads do not require more than
2-4 cores to fully exploit the available TLP. As a result, a
many-core architecture may remain underutilized in an area
and power-constrained environment, and leave optimization
potential untapped. On the other hand, application-specific
integrated circuits (ASICs) may provide optimization for
a specific algorithm. But ASICs would typically result in
underutilization of the area and resources, and inflexibility
to compute a different algorithm than the one for which the
ASIC was designed. Furthermore, given the vast array of
wearable computing applications, it is unrealistic to design
ASICs for every application, given the non-recurrent engi-
neering (NRE) cost of ASIC designs. Therefore, it is essen-
tial to consider different architecture paradigms to address
these gaps in the wearable computing state-of-the-art.

In this paper, we explore the use of domain-specific
architectures (DSA) to provide a happy medium between
the efficiency of ASICs and the flexibility of general-
purpose architectures in wearable computing systems.
Unlike general-purpose architectures, which are typically
optimized for average case performance, domain-specific
architectures are specialized with computational resources
to optimize a particular domain of applications with simi-
lar execution characteristics [5]. Compared to ASICs, DSAs
substantially improve utilization while enabling perfor-
mance and energy benefits for a variety of applications.
Prior works have designed DSAs to improve the perfor-
mance and energy of different application domains, such as
ECG based authentication [6] and neural networks [7, 8].

In this paper, for the first time to the best of our
knowledge, we analyze the benefits of domain-specific
architectures for wearable workloads. First, we perform a
robust analysis of a set of wearable workloads to iden-
tify their computational characteristics and similarities (e.g.,
bottlenecks, available parallelism, read-write characteris-
tics, memory and compute boundness, etc.). Based on the
workload analysis, we explore a variety of architecture
optimizations that collectively specialize the architectures
for wearable workloads. Based on our analysis of dif-
ferent architecture alternatives and the workloads’ char-
acteristics, we provision the domain-specific architecture
with a set of optimizations. These optimizations include a
relaxed retention time STT-RAM cache [9], a low-power
SIMD architecture, a low access latency buffer to speed up
the computations for signal processing applications, and a
prefetch architecture to optimize processing that involves
non-contiguous memory locations. Furthermore, to embrace
the diversity of wearable workloads, we explore various
DSA designs (in the context of single and multi-core sys-
tems) for different workload requirements and analyze their
performance, energy, and area tradeoffs.

We make the following key contributions in this paper:

• We analyze the execution characteristics of several
wearable workloads to reveal their performance bottle-
neck and execution similarities.

• Informed by the workload analysis, we perform
a design space exploration to select architecture
design schemes that can satisfy the computational
requirements of wearable workloads.

• We study and analyze the performance, energy, and area
tradeoffs of the different proposed design schemes.

• We compare our DSA designs to a base ARM Cortex
A7 processor and show that our DSA designs achieve
average performance and energy improvements of
2.94x and 39.65%, respectively. Compared to prior
work—a 16-core architecture (LOCUS)—our single-
core DSA reduced the average energy by 38% and
reduced the area by 14.98x, while trading off 22.47% in
performance.

• We also explored a dual-core variant of our DSA, which
reduced the performance tradeoff of the single-core
DSA to 1.7% compared to LOCUS, at the cost of energy
optimization.

The rest of this paper is structured as follows: Section 2
provides a brief background of prior related work and moti-
vates the wearable workloads considered herein, Section 3
describes and analyzes the wearable workloads consid-
ered; Section 4 explores the design space of DSA compo-
nents, based on the workload analysis. Thereafter, Section 5
presents four DSA design schemes, which successively
build on each other to satisfy different workload require-
ments. To evaluate the proposed DSA design schemes,
Section 6 describes our experimental setup, and Section 7
presents and analyzes the results in comparison to prior
work.

2 Background and Prior Works

In this section, we first present some brief background on
signal processing workloads in wearable devices. There-
after, we briefly discuss prior works on optimizations for
wearable computing, focusing on architecture optimiza-
tions, for brevity, and provide an overview of the back-
ground on domain-specific architectures.

2.1 Importance of the considered workloads
in wearable devices.

We considered a range of wearable workloads, dominated
by signal processing workloads, for the analysis presented
herein. These workloads have wide-ranging uses in wear-
able devices, and as such, require computing resources to

J Sign Process Syst

efficiently process the signals. In what follows, we describe
a few examples of signal processing workloads that are rep-
resented in the workloads considered herein, and some of
their use-cases. For brevity, we only focus on example use-
cases and not on the low-level algorithmic details of the
different signal processing applications.

Convolution is a mathematical operation that blends
one function into another. It is commonly used in various
signal processing and analysis applications like ECG signal
processing [10], or even for human activity monitoring [11].
Histogram is an approximate representation of distribution
of the data. Histogram is used in various applications like
cognitive signal processing [12], hand gesture recognition
[13], etc.

Discrete time warping (DTW), which measures the sim-
ilarity between two temporal sequences, is a widely used
signal processing technique. It has a wide range of appli-
cations, like motion tracking [14], activity recognition [15],
gait recognition [16], etc.Discrete wavelet (DWT) transform
(or Haar transform) can be interpreted as spectral analysis
using a set of basic functions that are localized in both time
and frequency [17]. It has a wide range of applications from
signal filtering [15] to ECG authentication [18]. Apart from
these signal processing applications, we also consider other
applications that are commonly featured in wearable work-
loads, including encryption, authentication, navigation, and
neural networks. Further analysis of our workloads is in
Section 3.1.

2.2 Optimizations for Wearable Computing

Due to the stringent resource constraints of wearable
devices, most prior works have focused on optimizing
the power consumption of wearable computing. Proposed
optimizations include using energy harvesting techniques,
designing low-power ASICs or accelerators for specific
applications, and optimizing general-purpose multi-/many-
core architectures for wearable applications that exhibit high
parallelism. For instance, prior works [19–21] proposed
low-power hardware for healthcare and electrocardiogram
(ECG) monitoring. The proposed work involved developing
low-power wireless capacitive ECG sensors for wearables
[19], and a system-level architecture of ultra low-power
wireless body sensor nodes for real-time monitoring [20].
Dieffenderfer et. al. [21] explored energy harvesting for
wearable devices using thermal radiation of motion of the
body to power a multimodal sensing platform.

A common thread among prior work on architecture
optimizations for wearable computing involves attempting
to exploit as much parallelism as possible in wearable
workloads. For example, Dogan et.al. [22] proposed a
multicore solution for low-power healthcare monitoring
systems. The system comprises of 8-core processors, shared

multi-banked data and instruction memories, and flexible
crossbar interconnects to leverage the parallelism in the
workloads. Their work achieved power savings of 39.5%
compared to a 32-bit ultra low-power reduced energy
instruction set computer (ReISC) microprocessor [23].

Similarly, Tan et.al [3] proposed a low-power 16-core
architecture (LOCUS) to improve the performance and
power consumption in smartwatches. Compared to a quad-
core Cortex A7 ARM processor, LOCUS achieved a
71% performance improvement while reducing the power
consumption by 44.8% across all the kernels. In this
work, we use LOCUS to represent the state-of-the-art
against which we compare the domain-specific architectures
proposed herein. While LOCUS achieved performance
and energy benefits using parallelism in low-power cores,
employing a many-core architecture would still result in
high area overhead and under-utilization of resources. These
overheads can be prohibitive for wearable devices. In this
work, we explore DSAs to optimize wearable workloads
for higher resource utilization and to achieve improved
performance and energy consumption.

2.3 Prior Work on Domain-specific Architectures

Unlike an ASIC (otherwise referred to as accelerator),
a domain-specific architecture focuses on optimizing a
set of applications based on their similar execution
characteristics. Many works have proposed domain-specific
architectures for various application domains. For example,
Google proposed Tensor Processing Units (TPU) to achieve
performance per Watt improvements of up to 50x for
inference in machine learning [24]. The TPUs employ
256x256 systolic array of multipliers, use narrower data,
and eliminate unnecessary general purpose architecture
features that may be critical for general-purpose CPUs.
The goal was to increase performance and energy benefits
by emphasizing the resources that are used by inference
computations.

Cong et.al [25] proposed a domain-specific processor
for 3D integration medical image processing. The proposed
work utilizes 3D technology, for high memory bandwidth
and low-latency accesses, to stack their multiprocessor
and accelerators. The processor achieved 7.4x speedup
and 18.8x energy savings compared to a base CPU for
various applications in medical image processing. Tucci
et.al [26] proposed a domain-specific architecture based
on systolic arrays for DNA sequence alignment. Their
work achieved 350x performance benefits and 790x power
efficiency over an Intel Xeon processor. Similarly, domain-
specific architectures have been proposed for post-quantum
cryptography [27], accelerating sparse matrix multiplication
[28], energy-efficient communication in IoT [29], and for
data fusion based on Kalman filtering [30]. More recently,

J Sign Process Syst

Cordeiro et. al. [6] proposed a domain-specific architecture
for secure, fast and energy-efficient ECG authentication.
They proposed an architecture that provided constant timing
across all the steps of the authentication application, in order
to mitigate timing attacks while achieving 19% and 4.62x
performance and energy benefits compared to an ARM
Cortex A15 processor.

To the best of our knowledge, ours is the first
exploration of domain-specific architectures for wearable
computing. In order to design efficient DSAs and maximize
their benefits, we must first understand the execution
similarities that are featured in the domain. This is
more so important for wearable devices, where resource
constraints necessitate highly accurate specialization to
wearable workloads’ resource needs, without wasting area
or power on unnecessary components. Furthermore, since
wearable devices do not have the luxury of employing
accelerators for individual applications or large many-
core general-purpose processors, it is essential to explore
architectures that optimize a set of applications resulting in
high resource utilization, high performance, and low energy
consumption, with minimal area overheads. To this end, we
employ domain-specific architectures to gain performance
and energy benefits, while minimizing the area overheads
incurred by prior work.

3Wearable Devices Workload Analysis

To efficiently design domain-specific architectures for
wearable devices, it is important to first identify and under-
stand the domain characteristics and execution requirements
that are similar across the different workloads within the
domain. Our goal was to design architectures that exploit
the inherent characteristics of the workloads, especially
the available parallelism, while avoiding substantial over-
heads to the system. Furthermore, we sought ways to reduce
data movement, which is a common cause of bottlenecks,
and opportunities for specializing the data precision to the
workloads’ requirements.

This section describes our analysis of wearable device
workloads and the insights derived therein. We first enumer-
ate the workloads used in our experiments. Thereafter, we
present our analysis of the available parallelism in the dif-
ferent workloads, the similarities in the kinds of parallelism,
and some of the challenges in parallelizing the workloads
within the context of wearable devices’ typical resource
constraints.

3.1Workloads

Since there is no existing unified benchmark suite
for wearable devices, we used a variety of workloads

Table 1 Wearable workloads.

Category Kernel Input size

Image processing 2D convolution 300*300

Image processing Histogram 300*300

Pattern Matching Dynamic Time Warping 300*300

Compression Haar Transform 300*300

Biosignal authentication ECG 7500 samples

Navigation Astar 3770 nodes

Encryption Aes Encrypt 20 bytes

Encryption Aes decrypt 20 bytes

Machine learning Multiply Accumulate(MAC) 300*300

from different sources. The majority of workloads were
taken from [3], including kernels for 2D convolution,
dynamic time warping (DTW), haar transform or discrete
wavelet transform (DWT), histogram, AES encryption
and decryption, and Astar. Furthermore, we used the
ECG biometric authentication workload used in [6],
and implemented a kernel to implement multiply and
accumulate (MAC) operations, to represent the most
common function in neural network applications. The
workloads, their domains, and input sizes are depicted in
Table 1.

3.2Workload Analysis

Our first step in the workload analysis was to identify
the bottlenecks in the different workloads and, importantly,
the similarities across the workloads. For our experiments,
we used Intel Vtune Profiler [31]. Intel Vtune Profiler
is a performance analysis tool that enables the static
analysis of workloads. Intel Vtune can help developers
determine how much time was spent in each portion of
an application [32] in order to determine the bottlenecks
present in the applications. To properly analyze the
computationally relevant regions of the workloads, we
skipped the initialization phase of the workloads. This phase
consists mainly of fetching the data inputs from storage
and initializing them into appropriate data structures. The
computing architecture has minimal impact on this phase
and as such should not be an optimization focus.

One of the first observations while analyzing the different
workloads is that there was typically a single function
or loop that consumed a majority of the computational
time during the execution. This observation is illustrated in
Figure 1, which depicts the ratio of the biggest performance
hotspot to the overall computational time for the workloads.
As seen in the figure, in the smallest case, a single loop
accounted for 78% of astar. For haar and histogram,
a single loop accounted for their entire computations,

J Sign Process Syst

Figure 1 Ratio of largest
compute-intensive loop or
function to the overall
computation time.

0.6
0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05

noitcnuf
elgnisfo

oitaR
kcenelttob

with the other workloads exhibiting similar bottleneck
characteristics.

Given the prominence of loops in the different work-
loads’ bottlenecks, we further analyzed the loops to identify
opportunities for exploiting the inherent parallelism within
the loops. Specifically, we explored the potential amenabil-
ity to, and benefits of, vectorizing the different loops,
including the similarities in the vectorizability of the dif-
ferent workloads’ loops. Vectorization is an optimization
technique that exploits the data-level parallelism in an appli-
cation to simultaneously perform the same operation on
multiple data elements. Vectorizability in a program can
be analyzed by the compiler and can occur over countable
loops, functions, and basic blocks [33, 34]. A program’s
amenability to vectorization depends on the amount of data
dependencies present in the program’s loops. Some loops or
code blocks are easily vectorizable due to the presence of
few/no data dependencies, constant data types, or memory
strides. However, some loops are not readily vectorizable
due to data dependencies or irregular data accesses, and may
require code restructuring or additional memory hardware
to derive the benefits of vectorization [35, 36]. Figure 2
illustrates an easily vectorizable loop compared to a non-
vectorizable loop. In the vectorizable loop, the different
loop iterations are independent of each other, whereas in the
non-vectorizable loop, current iterations depend on previous
results of the loop.

We observed some similarities and differences in the
vectorizability of the different workloads. For instance,

kernels like 2dconv, dtw, and haar had easily vectorizable
loops due to the absence of data dependencies across
the loop iterations. However, kernels like histogram,
aes encrypt and aes decrypt had conditional dependencies
in their loops, which made them less amenable to
vectorization. Similarly, astar, which is a graph workload
that accesses irregular but predictable memory locations,
was difficult to vectorize. Finally, most of ecg’s execution
time was spent in a single function (segmentation) that
featured complex branching statements and multiple exit
conditions, thereby making it hard to vectorize.

Apart from the parallelism observed in the different
workloads, we also found that some of the applications
were memory or cache bound. For this analysis, we used
the GEM5 simulator [37] to model a Cortex A7 ARM
processor and gathered the statistics on the workloads’
memory activities (e.g., memory references, cache miss
rates, average memory access latencies, etc.) to identify
the memory bottlenecks. We observed that workloads like
2dconv, dtw, astar, haar and histogram exhibited high
amounts of data movement, and in effect, had high memory
bottlenecks compared to the other applications. Similarly,
mac exhibited a high data bottleneck, although, to a lesser
extent than the aforementioned workloads. We also found
that for all the workloads, except for astar, the main
source of memory activity resulted from data on which
the algorithms were performing computations. As a result,
majority of the stress was on the data caches. Astar, on
the other hand, also exhibited high memory activity in

Figure 2 Examples of
vectorizable and non
vectorizable loops.

foo()
{
int i;
for (i = 0; i < 256; i++)

{
a[i] = b[i] + c[i];

}
}
foo.c:4:4: note: LOOP VECTORIZED

sfoo()
{
int i;
for (i = 0; i < 256; i++)

{
a[i] = a[i - 1] + a[i] + a[i + 1];

}
}
sfoo.c:4:4: note: LOOP NOT VECTORIZED

J Sign Process Syst

the instruction cache, which had high amounts of conflict
misses due to the low reuse of the workload’s instructions.
We also observed that all the wearable workloads were read-
intensive, and exhibited high read-to-write ratios, ranging
from 2.3 for aes encrypt to 17.11 to 2dconv.

In what follows, we describe how the analyses presented
in this section informed the architecture design decisions we
made for designing the domain-specific architecture.

4 Domain-Specific Architecture Design
Space Exploration

Given the general characteristics of the wearable workloads,
we explored three different optimizations for the domain-
specific architecture: SIMD computing for the highly vector-
izable workload portions, incorporating a buffer to reduce
memory bottlenecks, and prefetching to preemptively access
predictable but non-contiguous memory locations. Our
exploration process followed a simple heuristic as depicted
in Figure 3. The figure describes our exploration process for
selecting optimizations for the domain-specific architecture

Code from biggest
bottleneck

Vectorizable? SIMD
execution unit

Solvable conditional
dependencies?

Predictable memory
locations?

Prefetching
unit

Buffer

Vectorizable?

Is data memory
bound?

Yes

Yes

Yes

Yes

Yes

No

No

No

Figure 3 Flowchart representing a high-level overview of our
exploration process.

based on the workload analysis. We performed the process
for each of the workloads considered in this work.

To satisfy the majority of wearable workloads, which
featured large data-parallel loops, we opted to feature low-
power single-instruction multiple-data (SIMD) [38, 39]
execution units within the processor core to parallelize
the computations. We chose to use SIMD units as
opposed to multi-threaded execution as in prior work
[3]. Multi-threaded execution would lead to initialization
overheads, data partitioning issues, or software interrupts
and overheads from other cores which could be prohibitive
for wearable workloads. These workloads typically have
fewer instructions, and thus, they are less likely to derive
high benefits from multi-threading [40, 41]. Furthermore,
even though some of the workloads, like histogram,
aes encrypt and aes decrypt were not readily vectorizable,
we found that their codes could easily be modified and
restructured to derive SIMD benefits. The modifications
involved utilizing more memory space to rearrange the data
to eliminate conditional dependencies.

Some applications like astar, similar to other graph
applications, do not access contiguous memory locations,
thus making them more difficult to vectorize. However, we
found that the memory locations used in the graphs were
predictable and thus could be prefetched and stored into
an array of contiguous locations to derive SIMD benefits.
To enable efficient prefetching, we designed a simple
prefetcher and also incorporated a buffer, implemented as
a tightly-coupled memory, to store the prefetched data in
order to reduce cache misses. Our prefetcher design is
described in Section 4.3.

To further reduce the overhead, given the tight resource
constraints of wearable devices, we employed a low-power
STT-RAM buffer to minimize the cost of data transfer. STT-
RAM has several qualities that make it a viable option for
resource-constrained wearable devices. Most importantly,
STT-RAMs cells have near zero leakage power and require
about 1/9 to 1/3 area of SRAMs cells. However, STT-
RAMs also suffer from long write latency and energy [42]
and are therefore more suited for read-intensive workloads.
Prior works have shown that the write latency and energy
overheads can be mitigated by relaxing the non-volatility
of STT-RAM, resulting in a relaxed retention STT-RAM
[43]. In our analysis of wearable workloads, we found that
the workloads exhibited low data reuse and also featured
short-lived data blocks. As such, memories do not need
to retain data for long periods of time, thus making the
relaxed retention STT-RAM a suitable option for these
workloads. Based on our analysis, we found that a 75μs

retention time sufficed for the wearable workloads. While
some relaxed retention STT-RAM designs have featured
refresh mechanisms to maintain data integrity after the
retention time has elapsed [42], we found this mechanism

J Sign Process Syst

to be unnecessary and found that allowing memory blocks
to expire did not negatively affect the performance of
the wearable workloads. To prevent data from becoming
unstable if the retention time elapses before a data block
is evicted, we incorporated a low-overhead 2-bit monitor
counter, similar to prior work [9], to proactively invalidate
memory blocks before the retention time elapses.

In addition, STT-RAM is especially suited for wearable
workloads due to the disproportionately high number of
reads vs. writes. As such, even though STT-RAM typically
has long write latencies (compared to SRAM) [42], the
overheads are mitigated since majority of memory accesses
in wearable workloads are read accesses. Thus, we also used
STT-RAMs instead of SRAMs for our cache memories.
Similar to prior work, we based the domain-specific
architecture designed herein on an in-order ARM processor,
similar to the ARM Cortex A7, as it is widely used in
fitness and smart wearable devices [44]. We found out-
of-order execution to be over-provisioned for the wearable
workloads due to the limited amounts of complex branching
and the hardware overheads of out-of-order execution.

In what follows, we describe in detail our implementation
of the SIMD unit, the buffer, and the prefetcher.

4.1 SIMD Architecture for Wearable Computing

There are several possible implementations of SIMD
architectures [45]. For example, SIMD units in Intel AVX
[46] architecture allow the amount of vectorization to be
specified based on the data type used. The architecture
uses 256-bit vector registers, and a long datatype, which
requires 64 bits to store one variable, thus allowing four
simultaneous computations (i.e., a vectorization factor of
4). A float datatype would allow a vectorization factor
of 8. Similarly, ARM NEON [47] uses 128-bit vector
registers supporting four 32-bit data computations, eight 16-
bit computations, or sixteen 8-bit computations. However,
traditional SIMD architectures contain significant area and
power overheads that would be prohibitive for wearable
devices [48, 49]. Thus, we describe a low-power SIMD
architecture that is more suitable for wearable devices.

First, rather than enable variable data types and
vectorization factors as in traditional SIMD architectures,
we decided to limit the data types and vectorization factors
that could be executed on our SIMD execution units. To this
end, we analyzed the workloads to identify their appropriate
data precisions, the ideal vectorization factor, and what

Figure 4 Critical path and
power impacts of (a) different
number and sizes of SIMD
ALUs and (b) the number of
supported ALU computations.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0

5

10

15

20

25

30

35

40

45

4_ALUs 8_ALUs
Po

w
er

 (W
)

 lacitir
C

)sn(htaP

Critical Path 16 bit Critical Path 32 bit
Power 16 bit Power 32 bit

(a)

0.01

0.015

0.02

0.025

0.03

0.035

0

5

10

15

20

25

30

35

40

45

D1 D2 D3 D4

Po
w

er
 (W

)

 lacitir
C

)sn(htaP

Critical Path SIMD Critical Path Scalar
Power SIMD Power Scalar

(b)

J Sign Process Syst

kind of ALU operations are required. Our evaluation
metric for this exploration was the power consumption,
critical path, and resource usage of the SIMD architectures.
We performed RTL analysis of the the different design
alternatives using synthesizable Verilog and evaluated them
using Xilinx Vivado synthesis.

Figure 4a presents our analysis of vectorization factors
of 4 and 8 and 16-bit and 32-bit SIMD ALUs. We limit
the analysis to these numbers of ALUs since increasing
them showed diminishing returns in optimization benefits.
Analysis of the wearable workload data also showed that
the 32-bit precision was overprovisioned for the workloads,
and the workloads could be effectively run at 16-bit. This
observation is in line with prior work [50–52]. We also
analyzed the impacts of 16-bit and 32-bit ALUs on the
critical path. The results showed that while the critical path
was not significantly impacted by a change in the number of
SIMD ALUs, the critical path significantly increased when
the ALU was changed from 16- to 32-bit. Increasing the
number of ALUs from 4 to 8 only increased the critical
path by 4.75%, whereas the power increased substantially
by 73%. Furthermore, increasing the size of the ALUs
from 16 to 32 bits increased both the critical path and
power consumption by 2x. We also found that increasing
the number of ALUs increased the resource usage by 45%,
while increasing the ALU size from 16 to 32 bits resulted
in a 2x increase in resource usage. Given these analyses, we
opted to use four 16-bit SIMD ALUs to enable at least four
simultaneous computations.

Secondly, we observed that the computations in the
wearable workloads were dominated by ALU operations.
Different workloads like 2dconv, ecg mainly had ADD,
SUBTRACT, and MULTIPLY operations, histogram and
haarmainly comprised of DIVIDE, SUBTRACT, and ADD
operations. Workloads like aes encrypt and aes decrypt
mainly had XOR, SHIFT, and ROTATE operations; dtw
also had AND, OR, and COMPARE operations, while
mac mainly had multiply-accumulate operations. Thus, we
explored the appropriate kinds of ALU resources required
and the impacts of the ALU operations on power, critical
path, and resource usage. Based on the workload analysis,
we explored four ALU design alternatives, which we
call, for simplicity, D1, D2, D3, and D4. D1 has basic
ALU operations of ADD, SUBTRACT, MULTIPLY, and
DIVIDE; D2 has operations in D1 plus XOR, ROTATE
and SHIFT; D3 has D2 plus all the compare operations
(e.g.,greater than, less than, greater than zero or less
than zero). D4 has D3 plus multiply-add operation which
dominates neural network applications.

Figure 4b presents the impact of the different design
alternatives on critical path and power. For this experiment,
we used an ALU of 16-bit data. As seen in the figure,
increasing the number of ALU operations did not have a

significant impact on the critical path and power. Compared
to D1, the critical path increased by 2.8%, 8.8% and 2.85%
for D2, D3 and D4, respectively, and the power increased by
3.5%, 5.3%, and 7.14% respectively. We also evaluated the
resource usage due to the addition of ALU operations and
found that compared to D1, the resource usage increased
by 78.35%, 88.76%, and 92.51%. Despite the increased
resource usage compared to D1, we opted to use D4, since it
includes all the required ALU operations to cover as many
wearable workloads as possible. We also compared the
SIMD ALU units with the base scalar ALU which supports
32-bit data and found that the critical path of the SIMD
ALU was 0.42x that of the scalar ALU. However, the SIMD
ALUs’ power was found to be 1.52x the power of scalar
ALU due to more computational units, demonstrating some
of the tradeoffs in domain-specific computing.

4.2 Buffer to Reduce Data Movement

Our main goal in exploring the use of a buffer was to
reduce the time and energy costs of data movement in data-
rich applications. In general, signal processing workloads
that process data from wearable sensors exhibit higher
data movement, as exemplified by the ecg application.
To save memory requirements, this application stores a
part of the ECG signal, performs some computations on
the data, and then combines the newer incoming signal
with the analyzed results, as illustrated in Figure 5. This
results in a lot of extra computations, and can substantially
increase the computation time and energy consumption
due to the data movement. To mitigate this overhead, we
used a tightly-coupled low latency buffer that allows the
processor to directly access stored raw signal samples,
thereby enabling the processor to analyze a larger portion of
the signal. This buffer significantly reduces the number of
computations and data movement by up to 89% compared
to the system without a buffer. Even though we incorporated
the buffer specifically for the ecg workload, the buffer
can also be utilized by other applications that process
raw signals samples, e.g., sleep detection, SpO2 analysis,
exercise tracker, etc [53, 54].

Segmentation() {
int i;
int j;
for (i = 0; i < SIGNAL_LENGTH; i++) {

if (SIGNAL_LENGTH > BUFFER_SIZE) {
for (j = 0; j < BUFFER_SIZE; j++) {

BUFFER_SIGNAL[j] = BUFFER_SIGNAL[j + 1];
}

}
PeakDetection();

}
}

Figure 5 Example of ECG code which shows dependency on buffer
size.

J Sign Process Syst

Figure 6 Impact of buffer size
on ECG authentication
execution time in seconds,
buffer energy in mJ and buffer
area in mm2.

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

Ar
ea

 (m
m

2)

(ycnetaL
 dna)s

(ygrene
m

J)
Buffer size in kB

Execution Time Energy Area

To determine the appropriate buffer size, we explored a
variety of sizes to determine their impacts on the execution
time and the energy/area tradeoffs. Figure 6 depicts the
execution time for different buffer sizes while running the
ecg workload. As seen in the figure, as the buffer size was
increased, the execution time of the ecg application reduced
significantly. There was a small increase in execution
time when going from 1kB to 2kB buffer size because
the whole signal did not fit in the buffer; as such, more
computations were required to compare the current signal
with the previously obtained computations. We observed
that a 16kB buffer was sufficient to store the whole signal
using a 16-bit data precision; further increases in buffer
size did not yield any significant benefits. Thus, we used
a 16kB buffer for our architecture. Furthermore, the buffer
accesses required by the ecg application were mainly to
contiguous memory locations, and no write operations (i.e.,
store instructions) were made to the buffer from the CPU.
As a result, the ecg workload had a high read-to-write ratio

to the buffer. Therefore, we used STT-RAM for the buffer
to reduce power and area overheads.

4.3 Prefetch Unit

The use of a prefetch unit was inspired by the fact that some
of the wearable workloads were not easily vectorizable,
not because of data dependencies, but because the mem-
ory addresses were non-contiguous. Thus, we decided to
incorporate a low-overhead prefetch unit to preemptively
fetch non-contiguous but predictable memory addresses
and store them into contiguous memory locations for easy
vectorization—this process is analogous to the gather opera-
tion in vector architectures. Given the increasing popularity
of graph kernels in wearable devices [3, 55], our goal was
to design a domain-specific architecture that could improve
the computation of graph kernels’ general characteristics.
Graph kernels have a structure comprising of nodes and
edges, wherein each of the nodes has its own specific data

Memory

Data buffer

Processor

Node size
computation

Control
Logic

Size of each
node

parameter

Prefetch registersAddress generator

Current
Address

Contiguous
array

generator

Node
size

Feature
size

Gather logic

Figure 7 Prefetch unit architecture.

J Sign Process Syst

or information with fixed data sizes, and each parent node
can point to one or multiple child nodes. By keeping track of
the number of successive nodes, it is possible to get all the
required node parameters of successive nodes and arrange
them into contiguous arrays. Thereafter, vectorization can
be used to perform simultaneous computations on the data
of all the successive nodes.

One approach to achieve this vectorization is to compute
the addresses of the successive nodes, store them in an array,
and use a gather architecture [56] to arrange them in con-
tiguous memory locations for vectorization. Intel’s SSE [57],
AVX [46] architecture supports these kinds of operations.
However, considerable CPU time is wasted in computing the
successive node addresses even though they have predictable
structures. In our work, we explored low-overhead archi-
tectures that help compute the successive node addresses,
thus freeing up the CPU for other computations. Hence, the
successive node parameters can be fetched and arranged in
contiguous memory locationswithout the CPU’s intervention.

Figure 7 depicts the architecture of our prefetch unit.
The prefetching architecture comprises of three main parts:
address generator, prefetch registers, and gather logic. The
prefetch registers hold the data size and offset addresses of
the node data to be searched once the current node address
is known. The address generator generates the addresses of
data to be prefetched from the successive nodes. The gather
logic arranges the data of the successive nodes coming from
the memory into contiguous memory locations. The data to
be stored in prefetch registers depend on the node structure
and definition, and thus are known at compile time. In
the address generator, the address of the current node is
passed to the node size compute block, which computes the
current node’s number of successors. To efficiently utilize
this unit, we modified the program code to ensure that
the node characteristics remain fixed at specific location
offsets from the base node address, which can be stored in
the prefetch register. After accessing this information, the
address generator can obtain the size of the node and the
successive node addresses from the memory and store it
in prefetch registers and gather logic. Once the successive
node’s base address is determined, the address of the other
associated data (e.g., distance from destination in a path
finding algorithm) can then be computed since the data
types and node structure remain unchanged from compile
time. Addresses are generated and sent to the memory. We
opted to directly connect the prefetch unit to the memory
and bypass the cache due to the potential for high cache miss
rates and low node reuse in graph traversal applications [58].

After the addresses are generated and return successive
node features, they are arranged into a contiguous array
using the gather logic. For example, for astar, the predeter-
mined distance from the destination data for all successive
nodes can be stored in one array in contiguous memory

locations. This is possible because the gather logic con-
tains information on node size, i.e., number of successive
nodes found using node size computation and size of data
required for each node parameter which is known at com-
pile time. Similarly, our prefetch unit can work for other the
graph traversal kernels that have predictable graph traversal
structures (e.g., breadth first search).

5 Domain-Specific Architecture Design
Schemes

This section describes different design schemes for our
domain-specific architectures based on the analysis in
Section 3 and the components described in Section 4. We
present three design schemes herein, with each successive
architecture building on the previous one to improve the
optimization potential. For each of our designs, we also
present the software modifications or functions needed to
enable proper utilization.

5.1 DSA vect

As seen earlier, the critical path of the SIMD ALU is 0.42x
the critical path of the scalar unit. Thus, for our execution
design, we implemented both scalar and SIMD ALUs to
support different kinds of wearable workloads. The critical
path of the execution units is bounded by the scalar ALUs,
with the SIMD ALUs completing their computations within
42% of the clock period. To take advantage of the clock
period to enable a high vectorization factor, while also
limiting the area overhead, we designed the SIMD ALU to
run eight computations in one cycle using only four parallel
execution units. We achieved this by running the first four
elements in the first half of the cycle and the next four in
the second half of the cycle. Figure 8 depicts our SIMD
architecture design. As seen in the figure, the execution
unit comprises of a 16-bit SIMD ALU and a 32-bit scalar
ALU. We used a 128-bit vector register to store eight 16-bit
data elements to be computed in the SIMD units. We also
incorporated flip-flop based dual-edge selectors that select
the top four data elements at the positive clock edge and the
next four at the negative clock edge. Implementing the flip
flop-based selectors only increased the latency of the SIMD
ALU increased by 15%, resulting in a 48% utilization of the
critical path by the SIMD ALU. As such, the critical path
remained bounded by the scalar ALU. To further enable area
and power savings, we replaced SRAM caches with STT-
RAM caches for all our designs due to high read-write ratio
of wearable workloads as seen in Section 3.2.

On the software side, to efficiently utilize the proposed
architecture, the wearable applications must be imple-
mented using 16-bit data types (int 16 and float 16) to

J Sign Process Syst

Figure 8 High-level overview
of our SIMD architecture
representation.

Vector
register
128 bit

Data
memory

Execution
stage

Scalar
register
32 bit

Decode
stage

Memory access
stage

Scalar ALU

32
bit

ALU

CLK

16
bit

ALU

16
bit

ALU

16
bit

ALU

16
bit

ALU

SIMD ALU

CLK

S1 S2

perform the 16-bit computations. The applications can
be compiled using ARM GCC compilers, which support
SIMD operations and are supported by the proposed SIMD
architecture. As such, wearable application developers can
develop applications to efficiently run on our proposed
architecture with minimal effort.

5.2 DSA buff

DSA buff builds on DSA vect by incorporating a tightly-
coupled memory buffer to enable data accesses without
the unpredictability of caches. Figure 9 illustrates the
integration of the buffer into our architecture. The data in
the buffer can be transferred directly from the main memory
or the wearable sensors. The data can then be accessed
directly by the processor via a multiplexer. The processor
sends out a select signal CS to select the incoming data from
the cache or buffer and another select signal SS to determine
whether the data from wearable sensors goes directly into
the buffer or to the main memory. To avoid data consistency
issues, we only allow CPU load operations from the buffer.
Furthermore, since the buffer operations are dominated by
reads, we use an STT-RAM buffer to reduce the leakage and
area overheads.

To enable the buffer utilization for wearable workloads,
we implement three high-level specialized functions for
buffer management called buffAlloc, buffStore, and buff-
Free. BuffAlloc allocates memory addresses to be utilized
by the buffer and buffFree frees the memory addresses for
use by other applications. Since wearable applications are
typically known a priori, the programmer can allocate an
application’s signal data size for the buffer in order to pre-
vent those address spaces from being simultaneous used by

other applications. The function buffStore stores the data in
the buffer, and this data will be accessed by the processor
only through the buffer.

5.3 DSA prefetch

Figure 10 illustrates the integration of the prefetcher with
our architecture. The base structure of the prefetcher is
as described in Section 4.3. This architecture features
the prefetcher along with a prefetch buffer to store the

L1 Cache STT-RAM buffer
16kb

Memory

Processor

SS

2:1 Mux

2:1 Demux

Wearable sensors

CS

Figure 9 System architecture illustrating the buffer integration.

J Sign Process Syst

Figure 10 High-level
illustration of prefetcher
integration in DSA prefetch.

SIMD
ALU

Scalar
ALU

Vector
register

Scalar
register

Execution stage Memory stageDecode stage

Memory

Cache

STT-RAM bufferPrefetcher

Address
generator

Gather
logic

Sel

prefetched data from the memory. As seen in the figure,
the buffer and the prefetching architecture are completely
independent of the cache and the processor needs to send
an instruction that specifies if the cache is to be accessed
or not. Note that the need for a prefetcher is not unique
to wearable workloads. The DSA prefetch design can be
employed in other domains as well to help prefetch data
for vectorization. However, for wearable devices, the buffer
has broader use since it can be used by other applications
like ecg, sleep detection, and graph applications via the
prefetcher. In general-purpose workloads, buffer utilization
will happen mainly via the prefetcher for graph workloads.
Thus the DSA prefetch design will have a higher utilization
for wearable devices.

To integrate this architecture into wearable devices, we
use the same buffer functions described in Section 5.2. For
the prefetcher operations, the programmer needs to spec-
ify whether or not the graph will use the prefetcher and
the needed prefetching parameters, to avoid unnecessary
prefetching. To this end, we propose a prefetch:init(graph,
parameters to prefetch) function, which enables the pro-
grammer to specify these parameters. During the application
initialization, different node parameters will be loaded into
the prefetcher registers. When the address of the successive
node is generated and needs to the prefetched, a function
prefetch successors(address) can be called to pass the gen-
erated address to the prefetcher, thus arranging the param-
eters of all the successive nodes into contiguous memory
locations within the buffer.

5.4 DSA energy

The previous architectures assume a maximum utilization of
necessary resources to optimize performance for the wear-
able workloads. However, given the stringent energy con-
straints of wearable devices, utilizing all available resources

may not be suitable for energy optimization. For example,
some workloads may not need the buffer in DSA buff, thus
wasting energy while running those workloads. To mitigate
these overheads, we explored the DSA energy architecture,
which aims to increase energy savings compared to the prior
architectures. The overall design of DSA energy is same as
DSA prefetch. While previous design schemes use all the
available hardware resources, the goal of DSA energy is to
only use additional hardware when necessary; if unused,
the additional hardware is power-gated to save energy. Prior
work [59] has shown that power-gating can be achieved
in resource-constrained systems with minimal performance
and area overheads. To help developers adapt the archi-
tecture to the running applications, a performance analysis
and estimator tool like ARM Streamline Performance Ana-
lyzer [60] can be used to provide insights, through a priori
analysis or through runtime hardware performance counter
monitoring, about benefits of the different design schemes
for latency and energy optimization on a per-application
basis. We note that the development of the performance
estimation tool is outside the scope of this paper.

6 Experimental Setup

In this section, we describe our experimental setup
for analyzing the different domain-specific architectures
proposed herein. We analyzed the workloads using Intel
Vtune to determine performance bottlenecks. We used C
and C++ flags along with the G++ compiler to validate
that the functions were vectorizable. We modified some of
the workloads as described in Section 3.2 to improve their
vectorizability. To estimate the optimization potential from
vectorization, we converted the programs into assembly
instructions and calculated the in-loop scalar and in-loop
vector computation costs for each loop. The scalar costs

J Sign Process Syst

of the loop include loop operations, function or class
addressing, and stack operations. The vector costs include
load and store operations, and various ALU operations as
seen in the ARM or RISC-V vector ISAs [61, 62].

For our base processor, we used a single-core 22nm
Cortex A-7 processor with a 1GHz clock speed and separate
32kB SRAM data and instruction caches, similar to many
wearable devices [3]. To evaluate the behavior of relaxed
retention L1 STT-RAM caches and buffer used in our DSA
designs, we used an in-house modified GEM5 simulator
that allows us to model the execution of both SRAM and
relaxed retention STT-RAM caches. To model the energy
and access latency of the caches, we used the NVSim [63]
modeling tool and combined with execution statistics from
the GEM5 simulator to determine the per-application cache
energy and latency. Table 2 presents our SRAM and STT-
RAM cache latency, energy, and area numbers. To estimate
the processor area and power numbers, we usedMcPAT [64]
and adjusted the power and area for STT-RAM accordingly.
We synthesized our architecture designs in Xilinx Vivado
[65] on a Kintex Ultrascale board and used McPAT to map
the area and power impacts of our hardware designs to the
base processor.

7 Results

This section presents the results of the performance
and energy analysis of our single-core DSA designs in
comparison to the base processor as well as to a dual-
core ARM processor. We also compared our designs to
prior work represented by LOCUS [3]. LOCUS is 16-
core architecture that was designed for high-performance
wearables and uses a Lightweight Message Passing protocol
for inter-core communications. Next, we estimate the area
and resource usage of the various design schemes, and
finally, we present the power and area overheads. In total,
this section compares seven different architectures: the four
DSA designs described in Section 5, the base processor,
dual-core ARM processor, and prior work (LOCUS).

Table 2 SRAM and STT-RAM cache parameters.

L1 cache configuration 32KB, 64B line size, 4-way

Memory device SRAM STT-RAM

Retention times – 75μs

Hit latency 0.486ns 0.445ns

Write latency 0.350ns 0.981ns

Read energy (per access) 0.0076nJ 0.003nJ

Write energy (per access) 0.0066nJ 0.035nJ

Leakage power 34.265mW 13.659mW

Area 0.023mm2 0.012mm2

To enable a fair comparison against the dual-core
ARM processor, we assumed that the workloads running
were optimized for multithreading. We estimated the
multithreading operations by implementing the workloads
using OpenMP [66], a popular multi-threading API that
is compatible with both ARM and Intel frameworks. We
annotated the code with the computational part the kernels
to be optimized using OpenMP. This approach enabled us to
use microarchitecture independent annotations rather than
microarchitecture-specific hardware performance counters
to approximate the performance optimization obtained
through OpenMP. Furthermore, this approach enabled us
to perform a stringent comparison of domain-specific
architectures against the upper bound of achievable
optimization using multicore/many-core systems. All the
simulations were performed using a 22nm technology node.

7.1 Performance Analysis

Figure 11 presents the DSA performance results normal-
ized to the base processor. Compared to the base pro-
cessor, we observed average performance gains of 1.72x,
2.89x, 2.948x, 2.946x, 1.52x, and 3.32x for DSA vect,
DSA buff, DSA prefetch, DSA energy, ARM dual, and
LOCUS, respectively. DSA vect achieved significant per-
formance gains for most of the workloads, except for
ecg and astar because of non-vectorizable codes, com-
pared to both the single and dual-core ARM processors.
DSA vect improved average performance by 13% compared
to the dual-core ARM architecture while DSA buff and
DSA prefetch improved the average performance by 1.9x
and 1.93x respectively. We also observed that implement-
ing a buffer for the ecg application improved the perfor-
mance gains by 12.05x compared to DSA vect. Similarly,
we observed significant performance benefits for astar

when we used the prefetcher. DSA prefetch improved the
performance for astar by 43.29% and 53% compared to the
base processor and DSA vect, respectively.

As mentioned earlier, we used DSA buff in an attempt to
reduce the memory bottlenecks for the different workloads.
However, majority of the benefits ofDSA buff was observed
for ecg, wherein the complete ECG signal was fit in the
buffer during execution. As a result, the whole signal could
be analyzed in one loop iteration, thereby substantially
reducing the execution time for that workload. For all the
other applications, DSA buff only improved performance
by about 0.5% compared to DSA vect, but by 82%
compared to the base processor. For DSA energy, where
the programmer can select the DSA units to optimize
the energy consumption as described in Section 5.4,
the performance deterioration was only 1% compared
to DSA prefetch, which was the best design scheme for
performance optimization.

J Sign Process Syst

Figure 11 Latency of different
architecture schemes normalized
to the base.

0
0.2
0.4
0.6
0.8

1
1.2ycnetal

dez il a
mro

N

DSA_vect DSA_buff DSA_prefetch DSA_energy ARM_dual LOCUS

For performance, LOCUS achieved the best results for
all the workloads, except for ecg. On average, LOCUS
outperformed the base processor by 3.61x and our best
performing architecture,DSA prefetch, by 22.47%. LOCUS
outperformed our work with respect to performance due
to a much higher number of parallel execution units. It
is worth noting, however, that even though LOCUS had
16 cores, the performance improvement over our single-
core DSA prefetch arguably modest at 22.47%. LOCUS
was unable to parallelize the ecg workload because the
bottleneck function exhibited high data dependencies that
were not amenable to parallelization.

We observed that replacing the SRAM with STT-RAM
memories resulted in an average latency penalty of 7%. The
latency degradation was as high as 11% for dtw, which
exhibited higher write-to-read ratio and higher conflict
misses than average. In general, the penalty of using STT-
RAM caches over SRAM caches was modest for our
workloads due to the high read-to-write ratio and higher
cache block utilization with contiguous data computations.
Despite the latency penalties of using STT-RAM, our work
still achieved substantial improvements for the different
workloads. For instance, for histogram, which required
code modifications for vectorization, DSA vect improved
the performance by 49% via partial vectorization wherein
only a part of the computations were vectorized due to
conditional dependencies. In contrast, for aes encrypt and
aes decrypt , our work also achieved a 13% performance
gain compared to the base processor due to small input size
and fewer vectorizable elements in the workloads.

7.2 Energy Analysis

Figure 12 presents the DSA energy analysis for the dif-
ferent design schemes. Compared to the single-core ARM
processor, DSA vect, DSA buff, DSA prefetch, DSA energy,
and LOCUS reduced the energy by an average of 24.32%,
32.87%, 34.13%, 39.65%, and 16.45%, respectively, while
ARM dual increased the energy by 15%. Significant energy
savings was achieved by all our design schemes for work-
loads like 2dconv, dtw, haar , mac and histogram, which
involved direct array computations. For aes encrypt and
aes decrypt , multithreading did not result in much latency
optimization due to low input size and high initialization over-
heads. As a result, the muticore systems (ARM dual and
LOCUS) increased the energy consumption for aes encrypt

and aes decrypt by 40% and 23%, respectively, compared
to the base processor. Conversely, DSA energy reduced the
energy consumption for these workloads by 4.61% and
4.4%, respectively, compared to the base.

For all the workloads, DSA vect, DSA buff, and
DSA prefetch achieved higher energy improvement than
ARM dual. For 2dconv, mac, and histogram, LOCUS
achieved higher energy savings compared to our domain-
specific architecture design schemes. We attribute this
to the highly parallelizable nature of these workloads
that gained huge performance benefits, which in effect,
resulted in significant energy savings despite the power
overheads of LOCUS. However, on average across all
the applications, DSA energy reduced the average energy
by 38% compared to LOCUS. These results exemplify

Figure 12 Energy of different
architecture schemes normalized
to the base.

0

0.5

1

1.5

2

2.5ygrene dezila
mro

N

DSA_vect DSA_buff DSA_prefetch DSA_energy ARM_dual LOCUS

J Sign Process Syst

the DSA energy architecture’s ability to adapt to differ-
ent workloads’ resource requirements in order to save
energy.

We also note that replacing the SRAM cache with STT-
RAM cache reduced the average energy consumption by
33.12% for the data cache and by 9.19% for the instruction
cache. The STT-RAM caches reduced the overall processor
average energy consumption by 15.13% with maximum
energy reduction of 17.56% for histogram.

As previously alluded to, DSA buff and DSA prefetch
keep all the available resources on while running all the
workloads. However, not all applications were benefited
significantly by using the prefetcher and buffer. As such,
this over-provisioning increased the energy consumption
of DSA buff and DSA prefetch compared to DSA vect for
some workloads. For instance, for 2dconv, dtw, haar ,
histogram, aes encrypt , aes decrypt and mac, DSA buff
and DSA prefetch increased the average energy by 4%
and 10%, respectively, compared to DSA vect. Overall,
DSA energy achieved the highest average energy savings

compared to all the design schemes and prior work due
to the effective utilization of domain-specific architecture
components, wherein unused components are dynamically
power-gated to reduce the power consumption.

7.3 Extending the DSA to aMulticore System

The analyses presented so far have focused on the DSA
design schemes implemented in a single-core system. We
also explored and analyzed the impact of our proposed
domain-specific architectures on multicore systems. For this
analysis, we assumed that the workloads were broken down
into different threads using OpenMP, where possible, and
run on a system featuring two homogeneous DSA energy
cores. Within each core, the running thread used the
domain-specific architectures, as required by the workloads,
to optimize their computation. In this section, we compare a
single core DSA energy architecture and M dsa—the dual-
core DSA energy architecture—to prior work, LOCUS,
which is a 16-core architecture.

Figure 13 Latency and energy
of single-core DSA energy,
dual-core M dsa, and 16-core
LOCUS normalized to the
dual-core ARM architecture.

J Sign Process Syst

Figure 13a presents our experiments with multicore
designs. From the figure, we observe that using the mul-
ticore architecture, M dsa achieved performance benefits
over the single core architecture across all the applications.
Compared to the dual-core ARM processor, DSA energy,
M dsa, and LOCUS improved the average latency by
10.69%, 45.01% and 45.97% respectively. We observed
that M dsa outperformed LOCUS for dtw, haar and ecg

by 12%, 8%, and 9.91x, respectively. On average across
all the workloads, the 16-core LOCUS only outperformed
the dual-core M dsa by 1.7%. These results illustrate the
benefits of using a domain-specialized architecture vs. a
general-purpose many-core architecture.

However, the energy results also illustrate the potential
tradeoffs between latency and energy when using multicore
processors in resource-constrained systems like wearable
devices. As seen in Figure 13b, DSA energy, M dsa and
LOCUS reduced the average energy by 48.20%, 21.9%
and 28.30%, respectively, compared to ARM dual. For all
the applications, except 2dconv, histogram, and mac,
DSA energy consumed the least energy compared to M dsa

and LOCUS, while LOCUS had lowest energy consumption
for those applications. LOCUS outperformed the other
architectures for these workloads because the workloads
were highly parallelizable. As such, LOCUS’s 16-core
architecture achieved much higher latency reduction,
resulting in higher energy savings. We also observed that
DSA energy consumed lower energy than M dsa for all the
applications, even though M dsa had better performance
than DSA energy. This was because the performance
improvement from M dsa was not sufficient to offset the
increase in power consumption imposed by the dual-core
system compared to the single-core DSA energy.

7.4 Area Analysis and Overheads

In this section, we present the area for all the DSA designs
in comparison to prior work. To enable a fair evaluation,

we estimated the area of LOCUS at 22nm technology node
to enable consistency across all the architectures. Using the
22nm node, we estimated LOCUS’s area to be 16.47 mm2

as opposed to the area of 36 mm2 at 32nm node, which
was used in the original work [3]. Figure 14 presents our
area analysis, with a breakdown of the different components
of the different architectures. We have omitted the LOCUS
area from the figure to maintain the scale of the figure.
The area of ARM dual, DSA vect, DSA buff, DSA prefetch
and LOCUS were 2.15x, 1.31x, 1.32x, 1.35x and 14.98x
larger than the base ARM processor. Importantly, one of
the key benefits of our work compared to prior work is the
substantial area reduction, without a concomitant energy or
latency increase.

We also found that using STT-RAM memories in our DSA
design schemes was an important source of additional area
benefits. Replacing the SRAM memories with STT-RAMs
reduced the memory area by 47.83% and reduced the overall
processor area by 20.18% compared to the SRAM-based pro-
cessor. The area of the 16-bit SIMD execution unit was 1.18x
that of the 32-bit scalar execution unit. The area overheads
of the SIMD execution unit, buffer, and prefetcher units
were 0.58 mm2, 0.06mm2 and 0.0266mm2, respectively.
The power requirement of the SIMD execution unit was
1.75x that of the scalar execution unit. The average power
overhead of the SIMD execution unit, buffer and prefetcher
were 0.0285 W, 0.00714 W, and 0.00744 W, respectively.

7.5 Selecting the Best Design for a Set of Workloads

We have proposed various domain-specific architectures to
optimize a range of applications and explored the tradeoffs
between the different architectures. A question that may
arise is whether or not there is an ultimate design choice
given a set of workloads. Clearly, the answer to this question
depends on the tradeoffs or design constraints of the target
system, and on what kind of applications will run on the
wearable devices. For example, if a designer aims to achieve

Figure 14 Area of various
architectures in mm2.

J Sign Process Syst

the least area overhead, potentially at the expense of energy
or latency optimization, DSA vect would be the best choice.
If alternatively, the wearable device is dominated by data-
rich workloads, like ECG authentication, the performance
gained by incorporating the additional buffer featured in
DSA buff may be worth the additional area overhead
imposed by the buffer. Similarly, if the workloads are
dominated by graph applications, then the designers can opt
for DSA prefetch. If the ultimate goal is to minimize energy
consumption, DSA energy would be the best choice.

8 Conclusion

Domain-specific architectures afford execution flexibility that
is unavailable in ASICs and also enable high optimiza-
tion potential with minimal resource wastage compared to
general-purpose architectures. In this paper, we explored
domain-specific architectures for resource-constrained wear-
able computing. To identify the appropriate domain-specific
optimizations, we analyzed various wearable workloads to
identify their bottlenecks, intrinsic parallelism, data move-
ment, and memory-boundedness. Based on the analysis, we
performed design space exploration of a low-power SIMD
unit to exploit the available data-level parallelism, an STT-
RAM buffer to reduce data movement and computations,
and a prefetch unit to preemptively fetch non-contiguous
data elements into contiguous memory locations to enhance
their parallelism. We analyzed how these optimizations
could be incorporated into various domain-specific designs
and proposed four DSA design schemes to satisfy different
resource requirements. For each of our designs, we ana-
lyzed their performance, energy, and area tradeoffs. We also
detailed the benefits and tradeoffs of the domain-specific
architectures in comparison to a general-purpose base pro-
cessor and prior art in wearable computing architecture opti-
mizations. Our experimental results show that there is much
optimization benefit, in the context of resource-constrained
wearable devices, to specializing the computing resources
to the wearable workload requirements via domain-specific
architectures.

References

1. Park, S., Chung, K., & Jayaraman, S. (2014). Wearables:
fundamentals, advancements, and a roadmap for the future. In
Wearable sensors (pp. 1–23). Elsevier.

2. eservices report 2020 - fitness. [Online]. Available: https://www.
statista.com/study/36674/fitness-report/.

3. Tan, C., Kulkarni, A., Venkataramani, V., Karunaratne, M., Mitra,
T., & Peh, L.-S. (2017). Locus: Low-power customizable many-
core architecture for wearables. ACM Transactions on Embedded
Computing Systems (TECS), 17(1), 1–26.

4. Liu, R., & Lin, F. X. (2016). Understanding the characteristics of
android wear os. In Proceedings of the 14th annual international
conference on mobile systems, applications, and services (pp.
151–164).

5. Hennessy, J. L., & Patterson, D. A. (2019). Computer architecture:
a quantitative approach.

6. Cordeiro, R., Gajaria, D., Limaye, A., Adegbija, T., Karimian,
N., & Tehranipoor, F. (2020). Ecg-based authentication using
timing-aware domain-specific architecture. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
39(11), 3373–3384.

7. Jouppi, N. P., Young, C., Patil, N., & Patterson, D. (2018). A
domain-specific architecture for deep neural networks. Communi-
cations of the ACM, 61(9), 50–59.

8. Jouppi, N. P., Yoon, D. H., Kurian, G., Li, S., Patil, N.,
Laudon, J., Young, C., & Patterson, D. (2020). A domain-
specific supercomputer for training deep neural networks.
Communications of the ACM, 63(7), 67–78.

9. Kuan, K., & Adegbija, T. (2019). Energy-efficient runtime
adaptable l1 stt-ram cache design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 39(6),
1328–1339.

10. Gotlibovych, I., Crawford, S., Goyal, D., Liu, J., Kerem, Y.,
Benaron, D., Yilmaz, D., Marcus, G., & Li, Y. (2018). End-to-end
deep learning from raw sensor data: Atrial fibrillation detection
using wearables, arXiv:1807.10707.

11. Janarthanan, R., Doss, S., & Baskar, S. (2020). Optimized
unsupervised deep learning assisted reconstructed coder in
the on-nodule wearable sensor for human activity recognition.
Measurement, 164, 108050.

12. Wiechert, G., Triff, M., Liu, Z., Yin, Z., Zhao, S., Zhong, Z.,
Zhaou, R., & Lingras, P. (2016). Identifying users and activities
with cognitive signal processing from a wearable headband. In
2016 IEEE 15th International conference on cognitive informatics
& cognitive computing (ICCI* CC) (pp. 129–136). IEEE.

13. Ren, Y., Xie, X., Li, G., & Wang, Z. (2016). Hand gesture recog-
nition with multiscale weighted histogram of contour direction
normalization for wearable applications. IEEE Transactions on
Circuits and Systems for Video Technology, 28(2), 364–377.

14. Liu, Y., Jiang, F., & Gowda, M. (2020). Application informed
motion signal processing for finger motion tracking using
wearable sensors. In ICASSP 2020-2020 IEEE International
conference on acoustics, speech and signal processing (ICASSP)
(pp. 8334–8338). IEEE.

15. Kale, N., Lee, J., Lotfian, R., & Jafari, R. (2012). Impact of
sensor misplacement on dynamic time warping based human
activity recognition using wearable computers. In Proceedings of
the conference on wireless health (pp. 1–8).

16. Rong, L., Jianzhong, Z., Ming, L., & Xiangfeng, H. (2007).
A wearable acceleration sensor system for gait recognition, in
2007 2nd. In IEEE conference on industrial electronics and
applications (pp. 2654–2659). IEEE.

17. Sundararajan, D. (2011). Fundamentals of the discrete haar
wavelet transform.

18. Majmudar, C. A., & Morshed, B. I. (2016). Autonomous
oa removal in real-time from single channel eeg data on a
wearable device using a hybrid algebraic-wavelet algorithm. ACM
Transactions on Embedded Computing Systems (TECS), 16(1),
1–16.

19. Park, C., Chou, P. H., Bai, Y., Matthews, R., & Hibbs, A. (2006).
An ultra-wearable, wireless, low power ecg monitoring system.
In 2006 IEEE biomedical circuits and systems conference (pp.
241–244). IEEE.

20. Braojos, R., Mamaghanian, H., Dias, A., Ansaloni, G., Atienza,
D., Rincón, F. J., & Murali, S. (2014). Ultra-low power

https://www.statista.com/study/36674/fitness-report/
https://www.statista.com/study/36674/fitness-report/
http://arxiv.org/abs/1807.10707

J Sign Process Syst

design of wearable cardiac monitoring systems. In 2014 51st
ACM/EDAC/IEEE design automation conference (DAC) (pp. 1–6).
IEEE.

21. Dieffenderfer, J., Goodell, H., Mills, S., McKnight, M., Yao,
S., Lin, F., Beppler, E., Bent, B., Lee, B., Misra, V., & eta l
(2016). Low-power wearable systems for continuous monitoring
of environment and health for chronic respiratory disease. IEEE
Journal of Biomedical and Health Informatics, 20(5), 1251–1264.

22. Dogan, A. Y., Constantin, J., Ruggiero, M., Burg, A., & Atienza,
D. (2012). Multi-core architecture design for ultra-low-power
wearable health monitoring systems. In 2012 Design, automation
& test in europe conference & exhibition (DATE), (pp 988–993).
IEEE.

23. Ickes, N., Sinangil, Y., Pappalardo, F., Guidetti, E., & Chan-
drakasan, A.P. (2011). A 10 pj/cycle ultra-low-voltage 32-bit
microprocessor system-on-chip. In 2011 Proceedings of the ESS-
CIRC (ESSCIRC) (pp. 159–162). IEEE.

24. Jouppi, N. P., Young, C., Patil, N., & Patterson, D. (2018). A
domain-specific architecture for deep neural networks. Communi-
cations of the ACM, 61(9), 50–59.

25. Cong, J., Guruaj, K., Huang, M., Li, S., Xiao, B., & Zou, Y. (2011).
Domain-specific processor with 3d integration for medical image
processing. In ASAP 2011-22nd IEEE International conference
on application-specific systems, architectures and processors (pp.
247–250). IEEE.

26. Di Tucci, L., Baghdadi, R., Amarasinghe, S., & Santambrogio,
M.D. (2020). Salsa: a domain specific architecture for sequence
alignment. In 2020 IEEE International Parallel and distributed
processing symposium workshops (IPDPSW) (pp. 147–150).
IEEE.

27. Xin, G., Han, J., Yin, T., Zhou, Y., Yang, J., Cheng, X., &
Zeng, X. (2020). Vpqc: A domain-specific vector processor for
post-quantum cryptography based on risc-v architecture. In IEEE
transactions on circuits and systems I: regular papers.

28. Jain, A. K., Omidian, H., Fraisse, H., Benipal, M., Liu, L.,
& Gaitonde, D. (2020). A domain-specific architecture for
accelerating sparse matrix vector multiplication on fpgas. In 2020
30th International conference on field-programmable logic and
applications (FPL) (pp. 127–132). IEEE.

29. Muzaffar, S., & Elfadel, I. M. (2019). A domain-specific processor
microarchitecture for energy-efficient, dynamic iot communica-
tion. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 27(9), 2074–2087.

30. Waheed, O. T., & Elfadel, I. A. M. (2019). Domain-specific
architecture for imu array data fusion. In 2019 IFIP/IEEE 27th
International Conference on Very Large Scale Integration (VLSI-
SoC) (pp. 129–134). IEEE.

31. Reinders, J. (2005). Vtune performance analyzer essentials. Intel
Press.

32. Thiel, J. (2006). An overview of software performance analysis
tools and techniques: From gprof to dtrace, Washington University
in St. Louis, Tech. Rep.

33. Tanaka, H., Ota, Y., Matsumoto, N., Hieda, T., Takeuchi, Y., &
Imai, M. (2010). A new compilation technique for simd code
generation across basic block boundaries. In 2010 15th Asia
and South pacific design automation conference (ASP-DAC) (pp.
101–106). IEEE.

34. Karrenberg, R. (2015). Whole-function vectorization. In Auto-
matic SIMD vectorization of SSA-based control flow graphs (pp.
85–125). Springer.

35. Shahbahrami, A., Juurlink, B., & Vassiliadis, S. (2007). Simd
vectorization of histogram functions. In 2007 IEEE International
conf. on application-specific systems, architectures and proces-
sors (ASAP) (pp. 174–179). IEEE.

36. Chang, H., & Sung, W. (2008). Efficient vectorization of simd
programs with non-aligned and irregular data access hardware. In
Proceedings of the 2008 international conference on compilers,
architectures and synthesis for embedded systems, (pp. 167–176).

37. Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A.,
Basu, A., Hestness, J., Hower, D. R., Krishna, T., Sardashti, S.,
& et al. (2011). The gem5 simulator. ACM SIGARCH Computer
Architecture News, 39(2), 1–7.

38. Raman, S. K., Pentkovski, V., & Keshava, J. (2000). Implementing
streaming simd extensions on the pentium iii processor. IEEE
Micro, 20(4), 47–57.

39. Pennycook, S. J., Hughes, C. J., Smelyanskiy, M., & Jarvis, S.A.
(2013). Exploring simd for molecular dynamics, using intel®
xeon® processors and intel® xeon phi coprocessors. In 2013
IEEE 27th International symposium on parallel and distributed
processing (pp. 1085–1097). IEEE.

40. Spracklen, L., & Abraham, S. G. (2005). Chip multithreading:
Opportunities and challenges. In 11th International symposium on
high-performance computer architecture (pp. 248–252). IEEE.

41. Olszewski, M., Ansel, J., & Amarasinghe, S. (2009). Kendo:
efficient deterministic multithreading in software. In Proceedings
of the 14th international conference on architectural support for
programming languages and operating systems (pp 97–108).

42. Sun, Z., Bi, X., Li, H., Wong,W.-F., Ong, Z.-L., Zhu, X., &Wu,W.
(2011). Multi retention level stt-ram cache designs with a dynamic
refresh scheme.

43. Smullen, C. W., Mohan, V., Nigam, A., Gurumurthi, S., & Stan,
M.R. (2011). Relaxing non-volatility for fast and energy-efficient
stt-ram caches. In 2011 IEEE 17th International symposium on
high performance computer architecture (pp 50–61). IEEE.

44. Qiu, H., Wang, X., & Xie, F. (2017). A survey on smart wearables
in the application of fitness. In 2017 IEEE 15th Intl conf on
dependable, autonomic and secure computing, 15th intl conf on
pervasive intelligence and computing, 3rd intl conf on big data
intelligence and computing and cyber science and technology
congress (DASC/PiCom/DataCom/CyberSciTech) (pp. 303–307).
IEEE.

45. Duncan, R. (1990). A survey of parallel computer architectures.
Computer, 23(2), 5–16.

46. Firasta, N., Buxton, M., Jinbo, P., Nasri, K., & Kuo, S. (2008).
Intel avx: New frontiers in performance improvements and energy
efficiency. Intel White Paper, 19, 20.

47. Reddy, V. G. (2008). Neon technology introduction. ARM
Corporation, 4, 1.

48. Fatemi, H., Corporaal, H., Basten, T., Kleihorst, R., & Jonker, P.
(2005). Designing area and performance constrained simd/vliw
image processing architectures. In International conference on
advanced concepts for intelligent vision systems (pp. 689–696).
Springer.

49. Fijany, A., & Hosseini, F. (2011). Image processing applications
on a low power highly parallel simd architecture. In 2011
Aerospace conference (pp. 1–12). IEEE.

50. Fabietti, P., Benedetti, M. M., Bronzo, F., Reboldi, G., Sarti, E.,
& Brunetti, P. (1991). Wearable system for acquisition, processing
and storage of the signal from amperometric glucose sensors. The
International Journal of Artificial Organs, 14(3), 175–178.

51. Yamaguchi, T., Mikami, S., Saito, M., Okada, K., & Gotouda, A.
(2018). A newly developed ultraminiature wearable electromyo-
gram system useful for analyses of masseteric activity during the
whole day. Journal of Prosthodontic Research, 62(1), 110–115.

52. Park, E., Kim, D., & Yoo, S. (2018). Energy-efficient neural
network accelerator based on outlier-aware low-precision compu-
tation. In 2018 ACM/IEEE 45th Annual international symposium
on computer architecture (ISCA) (pp 688–698). IEEE.

J Sign Process Syst

53. Lee, S. Y., & Lee, K. (2018). Factors that influence an individual’s
intention to adopt a wearable healthcare device: The case of a
wearable fitness tracker. Technological Forecasting and Social
Change, 129, 154–163.

54. Oliver, N., & Flores-Mangas, F. (2006). Healthgear: a real-
time wearable system for monitoring and analyzing physiological
signals. In International workshop on wearable and implantable
body sensor networks (BSN’06) (pp. 4–pp). IEEE.

55. Nakhkash, M. R., Gia, T. N., Azimi, I., Anzanpour, A., Rahmani,
A. M., & Liljeberg, P. (2019). Analysis of performance and energy
consumption of wearable devices and mobile gateways in iot
applications. In Proceedings of the international conference on
omni-layer intelligent systems, (pp. 68–73).

56. Coke, J. S., Bhatt, A. V., Graham, S., & Lent, D. (1998).
Implementing scatter/gather operations in a direct memory access
device on a personal computer, Jan. 13 1998, uS Patent 5,708,849.

57. Strey, A., & Bange, M. (2001). Performance analysis of intel’s
mmx and sse: A case study. In European conference on parallel
processing(pp. 142–147). Springer.

58. Limaye, A., Tumeo, A., & Adegbija, T. (2020). Energy
characterization of graph workloads. Sustainable Computing:
Informatics and Systems 100465.

59. Cherupalli, H., Duwe, H., Ye, W., Kumar, R., & Sartori, J.
(2017). Enabling effective module-oblivious power gating for
embedded processors. In 2017 IEEE International symposium on
high performance computer architecture (HPCA) (pp. 157–168).
IEEE.

60. A. Ltd., Arm development studio: Streamline perfor-
mance analyzer. [Online]. Available: https://developer.arm.
com/tools-and-software/embedded/arm-development-studio/
components/streamline-performance-analyzer.

61. Stephens, N., Biles, S., Boettcher, M., Eapen, J., Eyole, M.,
Gabrielli, G., Horsnell, M., Magklis, G., Martinez, A., Premillieu,
N., & et al. (2017). The arm scalable vector extension. IEEE
Micro, 37(2), 26–39.

62. Waterman, A. S. (2016). Design of the risc-v instruction set
architecture, Ph.D. dissertation, UC Berkeley.

63. Dong, X., Xu, C., Xie, Y., & Jouppi, N.P. (2012). Nvsim: A
circuit-level performance, energy, and area model for emerging
nonvolatile memory. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 31(7), 994–1007.

64. Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen,
D. M., & Jouppi, N.P. (2009). Mcpat: an integrated power, area,
and timing modeling framework for multicore and manycore
architectures. In Proceedings of the 42nd Annual IEEE/ACM
international symposium on microarchitecture, pp. 469–480.

65. Feist, T. (2012). Vivado design suite. White Paper, 5, 30.
66. Dagum, L., & Menon, R. (1998). Openmp: an industry standard

api for shared-memory programming. IEEE Computational
Science and Engineering, 5(1), 46–55.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://developer.arm.com/tools-and-software/embedded/arm-development-studio/components/streamline-performance-analyzer
https://developer.arm.com/tools-and-software/embedded/arm-development-studio/components/streamline-performance-analyzer
https://developer.arm.com/tools-and-software/embedded/arm-development-studio/components/streamline-performance-analyzer

	Exploring Domain-Specific Architectures for Energy-Efficient Wearable Computing
	Abstract
	Introduction and motivation
	Background and Prior Works
	Importance of the considered workloads in wearable devices.
	Optimizations for Wearable Computing
	Prior Work on Domain-specific Architectures

	Wearable Devices Workload Analysis
	Workloads
	Workload Analysis

	Domain-Specific Architecture Design Space Exploration
	SIMD Architecture for Wearable Computing
	Buffer to Reduce Data Movement
	Prefetch Unit

	Domain-Specific Architecture Design Schemes
	DSA_vect
	DSA_buff
	DSA_prefetch
	DSA_energy

	Experimental Setup
	Results
	Performance Analysis
	Energy Analysis
	Extending the DSA to a Multicore System
	Area Analysis and Overheads
	Selecting the Best Design for a Set of Workloads

	Conclusion
	References

