A Study of STTRAM-based Page Walker Caches
for Energy-Efficient Address Translation

Kyle Kuan and Tosiron Adegbija
Department of Electrical & Computer Engineering
University of Arizona, Tucson, USA
ckkuan@email.arizona.edu; tosiron @arizona.edu

Abstract—This paper studies spin-transfer torque RAM
(STTRAM) as an energy-efficient alternative to SRAM for im-
plementing page walker caches (PWCs) in resource-constrained
systems’ memory management units. We analyze the access
characteristics and persistence of PWC blocks in a set of
multithreaded workloads, revealing that individual threads might
have different runtime behaviors. Given this observation, we
explore and analyze the benefits of heterogeneous retention time
STTRAM—wherein STTRAM’s data retention time is specialized
to cache blocks’ persistence needs—for implementing the PWC in
multicore systems. Based on our analysis, we propose NECTAR,
an energy-efficient heterogeneous STTRAM-based page walker
cache architecture. Experimental results using multithreaded
PARSEC benchmarks show that NECTAR enables runtime
adaptability and offers substantial energy benefits for implement-
ing the PWC, reducing the average energy by 81.36% compared
to SRAM, without introducing significant overheads.

Index Terms—Page walker cache, energy-efficient address
translation, spin-transfer torque RAM cache

I. INTRODUCTION

An important component of modern processors, with critical
implications for performance, is the memory management unit
(MMU) [1], [2]. The MMU is a hardware unit that performs
virtual address translation, and contains a translation look-
aside buffer (TLB), a page walker, and page walk caches
(PWCs). The TLB is a small data structure that caches the
most recently used page table entries (PTEs) of address
translations. However, due to dynamic runtime applications,
virtual addresses can exceed the TLB’s reach, resulting in TLB
misses, and causing the page walker to initiate expensive page
walks. The page walks involve fetching the desired PTE on
the page table stored in the main memory.

The PWC can substantially mitigate the cost of page
walks by caching page table entries [3]. Prior works have
proposed various page table schemes to efficiently organize
PTEs and PWCs [3]]. However, most prior PWC research focus
on high-performance computing where energy efficiency is
often not prioritized. While PWCs’ main goal is improving
performance, the energy consumption is increasingly impor-
tant, especially in resource-constrained systems (like mobile
devices, embedded systems) [2]. Depending on the design,
the PWC can contribute ~10% to the processor’s overall
energy consumption. This paper aims to bridge this gap in
the state-of-the-art by focusing on energy in exploring spin-

978-1-6654-3922-0/21/$31.00 ©2021 IEEE

transfer torque RAM (STTRAM) as an alternative to traditional
SRAM for implementing PWCs. STTRAM is a non-volatile
memory (NVM) technology that has emerged as one of
the top contenders for replacing traditional technologies like
SRAM and DRAM in emerging architectures. STTRAM offers
several advantages, such as low leakage power, higher density
than SRAM, compatibility with CMOS, etc [4]. However,
STTRAM also introduces important challenges that must be
addressed for it to be effectively used for PWCs.

Some of STTRAM’s drawbacks include its long write
latency and high write energy [5], [6]. These challenges are
partly attributed to STTRAM’s long retention time—the dura-
tion of data retention in the absence of power. However, we
observed that PWC accesses are dominated by read operations;
thus, the PWC is less likely than a traditional data cache
to be negatively impacted by STTRAM’s write latency and
energy overheads. Figure [I] illustrates this observation using
the percentage of reads and writes in the PWC accesses for
eleven PARSEC 3.0 [7] benchmarks. In all of the applications,
write accesses accounted for less than 7% of all memory ac-
cesses. Furthermore, like data/instruction caches, PWC blocks
only remain in the PWC for short periods of time (< 1s).
Thus, STTRAM’s retention time can be substantially reduced
and specialized to PWC access patterns to mitigate the write
energy/latency overheads. In this work, we leverage reduced
retention STTRAM for implementing energy-efficient PWC.

Through detailed experiments and analysis, this paper de-
rives new insights into: (1) the block sharing capability en-
abled by a shared PWC in comparison to private per-core
PWCs; (2) how block sharing among different cores affects
the impacts of prematurely expired data blocks in reduced
retention STTRAM PWCs; and (3) the variability of STTRAM
retention times across different applications in the context of
page walk and the PWC. Based on our analysis, we propose
an energy-efficient STTRAM-based page walker cache ar-
chitecture, called NECTAR. NECTAR features heterogeneous
retention STTRAM cache ways and a new least recently used
(LRU) retention time-aware replacement policy—LRU-RT—

§5
®
a

O ¢
8
=
o
[l

]
2
o
8
3
g

R =
Y

Q]
NN
RN
SIS

Read-write
n
8
SRR

9,

R SN]
TR o
FETTENEN
Y

%
S5,

4
e
b
%,
6, ‘o
%, S
%,
(‘0/7
%,
5. %
%
%
R
%
2,
/0 ®
%
%,
,;0
. +°¢ T
<<\04;)‘%
%,
W

Fig. 1: Percentages of PWC read/write accesses

that uses hardware performance counters to determine the
best retention time to service core requests. To the best of
our knowledge, we are the first to take energy efficiency
into consideration in the PWC design space. We are also the
first to adopt STTRAM for implementing PWCs and consider
STTRAM'’s retention time in PWC'’s replacement policy.

In summary, this paper makes the following contributions:

o« We analyze the access footprints and persistence of
PWC blocks in multithreaded workloads, in the context
of STTRAM, and explore the use of reduced retention
time STTRAM in PWCs to achieve low-overhead energy
benefits compared to SRAM.

e« We propose a novel PWC architecture, NECTAR, for
energy-efficient page walk. NECTAR features heteroge-
neous retention STTRAM PWC ways and a replacement
policy (LRU-RT) that enables the runtime assignment
of blocks to the PWC ways that satify the blocks’
persistence needs.

o« We extensively analyze NECTAR for multithreaded
PARSEC benchmarks. Results show that NECTAR can
achieve average energy savings of 81.36% compared to
SRAM, with minimal overheads. Furthermore, NECTAR
specializes the PWC to individual application threads,
improving the latency by up to 35.51% compared to
uniform retention times.

II. BACKGROUND AND RELATED WORK
A. Implementing reduced retention STTRAMs

STTRAM has been widely studied, prototyped, and com-
mercially implemented, making it one of the top contenders
for implementing caches in resource-constrained systems [8]].
STTRAM uses a magnetic tunnel junction (MTJ) cell as the
binary storage cell. MTJ contains two ferromagnetic layers
separated by an oxide barrier/tunnel layer [4]. Updating the
MT]J cell’s data bits relies on the magnetization switching of
MTJ’s free layer [4]. Due to the long switching time of the
free layer’s magnetization state, it takes more time and energy
to write to STTRAM than to SRAM. This overhead can be
mitigated by reducing STTRAM’s thermal factor, thereby also
reducing the retention time—the time until a bit-flip occurs and
disrupts the data’s integrity [9].

B. Adaptable retention STTRAM caches

Recent STTRAM cache optimizations have exploited the
variability of applications’ cache block needs to minimize
energy. For example, Sun et al. [|6] proposed a multi-retention
STTRAM cache hierarchy with different retention times en-
abled by different MTJ designs, wherein applications can
be run on the cache level with the best retention time for
the applications’ access patterns. More recently, Kuan et al.
[S] analyzed the retention times of different applications and
proposed a sampling-based logically adaptable retention time
(LARS) cache that used multiple STTRAM units with differ-
ent retention times. Each executing application is executed on
the best retention time unit for its retention time needs. Like
prior work, we explore different retention times for different

Virtual addres

3938 3029 2120 1211
‘ Level 0 Index ‘ Level 1 Index ‘ Level 2 Index ‘ LeveISIndex PA[11:0] ‘

(a) Address translatlon of 4K page in ARM 64 archi-
tecture

Ways

Page table
TTBRx/ index

Page table
base address

> > 125

physical address

042

(b) Translation descriptor stored in page walker cache
Fig. 2: Illustration of a page table walk in the ARM-64
architecture. (a) The page walker walks through all levels
of page table entries on a TLB miss; (b) cached translation
descriptor can shorten the latency of a page walk

applications. Ours is, however, the first that explores the design
of STTRAM for page walk caches (PWC).

C. Address translation and PWC in ARM-64 architecture

To exploit temporal locality, the memory management unit
(MMU) features a TLB to track the most recent address
translations. However, to keep up with the processor speed,
the TLB size is usually small, and the processor often requests
translations outside the TLB. When a TLB miss occurs, the
page walker must search the page table to find the right entries.

Figure [2a|illustrates the address translation process using an
ARM-64 page walker [10]] as a proxy for resource-constrained
systems. The translation table base registers (TTBRx)—the
ARM equivalent of x86-64’s "CR3’ register—points to the
base address of the first level page table. ARM uses TTBR1 to
indicate the translation tables for the kernel address space, and
TTBRO for the application’s table. The page walker adds the
base address taken from TTBR to the level O virtual address
index (VA[47:39]), obtains the physical address of the level 1
table from level 0, and repeats the process for each level until
the desired physical address (PA) is obtained. ARM-64 uses
an 8B descriptor format to wrap the page table base address
across all levels of the page table [1].

Figure [2b] illustrates how a page walker cache stores copies
of translation descriptors, which contain the information of
the base address. In Figure the page walker obtains the
physical address of the level 1 table’s base address by adding
the TTBR and level 0 virtual index, and must retrieve the level
1 table’s base address. To speed up the process, the memory
request for the level 1 table base address can be passed to
a PWC, as depicted in Figure [2b] This reference returns the
table’s base address, represented by the number at label (1
(PPN 508). In this case, three tables’ base addresses can be
retrieved from the PWC (D),), and (), thus reducing the
latency overhead caused by accesses to the main memory.

III. STTRAM PAGE WALKER CACHE ANALYSIS

We begin by analyzing PWCs in the context of STTRAM
and explore the PWC access footprints based on application
behavior. We performed the analysis based on the ARM-64
architecture using the PARSEC 3.0 benchmarks. Our detailed
experimental setup is described in Section

Expiration misses in
shared PWC normalized
to private PWC

W 4 b b 4) &
6 S e & @
o T
SEPCC g R I
& & & & @& &R N
N AP S SIS

Fig. 3: Expiration misses in the shared PWC normalized to
private PWCs. The average is shown for brevity.

A. Effectiveness of shared STTRAM PWC

Like prior work [J3]], our analysis showed that shared SRAM
PWC in a multicore system substantially reduces the PWC
miss rates compared to private PWCs. We observed similar
trends for STTRAM with different retention times. The shared
PWC reduced the average miss rates by 40.08%, 40.12%,
36.29%. and 40.42% for 5ms, 10ms, 50ms, and 100ms re-
tention times, respectively. Shared PWCs significantly reduce
the miss rate compared to private per-core PWCs due to the
substantial reduction in shared block misses. However, due to
increased hit rates from block sharing in shared PWCs, the
cache blocks must remain in the cache longer, i.e., the block
lifetimes increase. This observation raises a unique concern to
reduced retention STTRAM—expiration misses.

B. Expiration misses in STTRAM shared PWCs

Expiration misses occur when a cache block is prematurely
expired because the retention time is shorter than the block’s
lifetime. Subsequent references to that block then result in
misses that would not have occurred in an SRAM or non-
volatile cache. Figure [3] quantifies the number of overall
expiration misses in the shared PWC normalized to the private
PWC as the retention time increased. In short retention times
(25us, 50us, 75us, and 100us, most of which were under-
provisioned for the block lifetimes), shared PWC reduced
the expiration misses compared to private PWC (by 9.46%,
11.70%, 9.24%, and 8.91%, respectively). However, the shared
PWC expiration misses increased by 26.30% on 1ms, and by
more than 2.5X on the 50ms and 100ms retention times. We
observed that cache blocks’ lifetimes in private PWCs were
generally shorter than in shared PWC, due to lack of block
sharing in private PWCs. As such, on the longer retention
times, even though shared PWC reduced the overall misses,
the expiration misses dominated the misses, while most blocks
in private PWC had sufficient retention times. This motivated
us to further study the expiration misses in shared PWCs, and
how to minimize their impacts, in order to fully exploit the
benefits of shared PWCs in higher retention times.

C. Sensitivity of shared PWC blocks to retention times

We analyzed the sensitivity of different applications to the
PWC’s retention time. If diversity exists in the applications’ re-
tention time requirements, we can further improve the PWC’s
efficiency by using heterogeneous retention times that enable
a tighter specialization to applications” PWC block lifetimes.
Since shorter retention times result in less latency and energy
overhead, the idea is to use retention times that are only as

)

o
®

———blackscholes —=mmm=bodytrack
canneal ——dedup
facesim ferret

°
R

e fluidanimate emm=freqmine

o o o o
°
=

o
5

= streamcluster e====swaptions
—264

)

Number of expiration misses
normalized to overall misses

NS GOV goW® OV A o g g o® qpt
RS A7 A0 AT ST (A0 0 400
S e e gﬂw" P e s““wsﬂwﬁﬂ“w

Fig. 4: Number of expiration misses normalized to total misses
in the shared PWC. The points indicate how long the PWC
blocks generally remain in the cache before eviction.

long as needed for the applications’ PWC block needs. On
the other hand, if the retention time is inordinately short, it
could result in substantial latency and energy overheads due
to expiration misses that a shared PWC is unable to mitigate.

Figure 4] depicts the number of expiration misses normalized
to the total misses for the PARSEC 3.0 applications. The dots
in the figure represent the lowest retention time that incurred
expiration misses not exceeding an expiration miss threshold
of 10% of the total misses. Our analysis revealed that the
impact of expiration misses on latency and energy was most
significant when the expiration misses exceeded 10% of the
total misses. Satisfying this threshold implies that the cache
misses are dominated by misses due to regular block replace-
ments (i.e., conflicts) and not due to an insufficient retention
time. Therefore, a retention time that satisfies this threshold
for an application is long enough for the application’s PWC
blocks. We repeated this analysis for SPEC 2017 benchmarks
and found that the 10% threshold still holds.

We observed that none of the benchmarks satisfied the
threshold at any retention time below Ims because PWC
blocks generally have longer lifetimes. Furthermore, there was
diversity in the PWC blocks’ needs. For instance, whereas
Sms and 10ms satisfied the expiration miss threshold among
several applications, some (e.g., freqmine, streamcluster) re-
quired longer retention times to satisfy the threshold. This
diversity motivated us to explore the heterogeneous retention
time principle for implementing STTRAM PWCs.

IV. HETEROGENEOUS RETENTION STTRAM PWC

An ideal STTRAM PWC should dynamically adapt to
different applications’ needs. However, due STTRAM cell’s
physical constraints, the retention time cannot be physically
changed during runtime. The need for a shared STTRAM
PWC precludes the multi-unit design in prior work [5] due
to the resultant area overhead. Therefore, we propose NEC-
TAR—a shared heterogeneous retention time STTRAM page
walk cache architecture—that allows accesses from different
parallel threads without the area overhead of prior designs [5]].

A. Hardware architecture

NECTAR uses ARM’s PWC architecture (described in
Section [[I-C)) as a baseline. Each address translation descriptor
in the ARM architecture is 8B [1]. NECTAR’s cache block
size is set to 64B to allow the transfer of eight entries per
access. Figure [3] presents an overview of NECTAR’s design
and the details of two hardware counters used in the design:

100ms 50ms 10ms 5ms

l clk_5ms/N

|V |Tag|Data| |V |Tag|Data ||V |Tag |Data ||V |Tag |Data Expiration counter (Runtime profiling) Expiration counter (Execution)
If WriteBlock == True: If WriteBlock == True:
;e =\ exp_count =0 exp_count=0
clk_Sms/N Else if exp_count == N: Else if exp_count == N:
clk_10ms/N RefreshBlock() ExpireBlock()
clk_50ms/N . .
* * + + ok 100ms/N \ Else: Else:
- exp_count++ exp_count++
O) RS) ¢ 1-bit it 4-bit
O] [] Tag -
address Valid " exp_count " emu_count " Tag ...
4-bit
clk_physical_STTRAM Emulation counter

If WriteBlock or Base == True:
emu_count =0

Else if emu_count == N:
ExpireBlock()

clk_10ms/N
clk_50ms/N
clk_100ms/N

Cache hit data

Cache hit

\| clk_

Else:
emu_count++

Fig. 5: Overview of NECTAR’s multi-retention design, illustrated using a PWC four-way set with different retention times in
each way. Details shown of expiration and emulation counters for ensuring data validity and emulating retention times

Runtime profiling phase

ThreadlD —p Build cost table
Retention time:

5ms, 10ms, 50ms, 100ms

Latency lteration
sampling

Execution phase

Blks (COSt!
ttable |

\ 4

LRU-RT replacement b]

Cache set layout: Latency iCachvelset layout!

[Retention time combinations] | |comparison| W/ minimal cost |
Iteration

Fig. 6: Overview of LRU-RT replacement policy

the expiration counter and emulation counter. We describe
these two counters in section [[V-B1] and TV-B2] The figure
also depicts the connection of retention time clocks used by
the two counters. The left-hand side of the figure depicts an
overview of NECTAR’s implementation, illustrated using a
base 4-way cache with different retention times in each way.
The different retention times—100ms, 50ms, 10ms, Sms—are
determined through analysis of the target applications.

It remains possible that retention times elapse before some
data blocks are evicted or invalidated through normal cache
accesses. When this occurs, the data blocks can become
corrupted. To address this challenge, we used a per-block
expiration counter and preemptive block eviction process to
maintain the validity of data and tag memory. The right-hand
side of Figure [3] illustrates how NECTAR uses the expiration
counter. The expiration counter exp_count is implemented
as a simple 4-bit counter that increments at every positive
clock edge. When a block is written into the PWC, exp_count
is reset to 0 and increments until the maximum count N.
Thereafter, the PWC controller preemptively evicts the block
by invalidating it (a write-back occurs if the block is dirty).
The counter up-counts at a period of retention_time/N, such
that the block is evicted just before the retention time elapses.

B. Determining the best configuration: retention time-aware
block (re)placement

An important consideration in NECTAR is how to place
blocks in the appropriate PWC way during runtime. Figure
[6] depicts our approach to orchestrate the block placement
process. When the PWC controller receives a request from
an unmapped thread ID in a process, the controller enters the
runtime profiling phase, during which a CostTable is created
for that thread to keep track of the lowest latency retention

time. When a replacement is triggered during the execution
phase, the cache controller uses an LRU retention time-aware
(LRU-RT) policy to determine the new block’s placement.

1) Runtime profiling phase: The main goal of the profiling
phase, which occurs every time an unmapped thread is run, is
to measure the runtime latency in different retention times for a
thread. This profiling phase incurs negligible overhead within
the context of the total runtime of executing applications. We
used the latency as our overhead indicator due to observations
that different retention times had high impacts on latency over-
heads, whereas the energy was relatively invariant to different
retention times. To measure the correct latency for a retention
time option, the retention time associated with the thread being
profiled should be fixed during the sampling period. However,
the PWC controller may be unable to guarantee that every
block in a thread accesses a specific retention time way without
severely degrading the latency for other running threads. We
address this challenge using the emulation counter, which
enables the PWC controller to emulate different retention
times within each physical retention time. The PWC controller
simultaneously monitors both the emulation counter and the
expiration counter during the profiling phase. When the expi-
ration counter reaches its maximum count, but the emulation
counter has not, the controller refreshes the block to keep
the block alive until the emulated retention time has elapsed.
The refresh mechanism features a refresh buffer to temporarily
store the cache block before it is written back to the PWC. To
minimize overhead, the refresh buffer is only used during the
runtime profiling phase, and otherwise disabled.

The emulation counter, emu_count, is implemented simi-
larly to exp_count (Section[IV-A). When a write request is sent
to a PWC block in the profiling phase, the PWC controller en-
ables and resets emu_count (and exp_count). When emu_count
reaches its maximum count(N), the PWC controller invalidates
and preemptively expires the block regardless of the status of
exp_count. The emulation counter enables a runtime emulation
of any arbitrary retention time for a PWC block, and in effect,
a sample of the miss latency for any desired retention time. To
achieve this, emu_count uses a different clock than exp_count,
allowing the PWC controller to maintain data validity while
emulating the desired retention time.

2) Execution phase and LRU retention time-aware (LRU-
RT) replacement policy: We propose a replacement policy—
called LRU-RT—that accounts for the retention time needs
of threads’ PWC blocks (Figure [6). LRU-RT first ensures
that the victim block in a replacement is the least recently
used block. Thereafter, LRU-RT ensures that the placement of
blocks within the PWC set are in the cache ways that best
serve the blocks’ retention time needs. When a replacement
is required, NECTAR reads all PWC blocks of the indexed
cache set into a small replacement buffer and replaces the
LRU victim block in the buffer. Next, LRU-RT assigns the
blocks to the best PWC ways by iteratively calculating the
cost of assigning each block to different retention times to
determine the lowest-cost assignment. LRU-RT first picks an
arbitrary retention time from the retention time set R as
the start point rStart. Thereafter, a sequence of retention
times, CacheSetLayout, is created to iterate through different
retention time combinations. For each iteration, the cost is
stored in a RetentionCost hashmap until all the combinations
are explored. The combination with the lowest latency cost
is returned as the final CacheSetLayout, representing the
retention time mapping with the minimum latency cost.

C. Implementation overhead

One of STTRAM’s important benefits is its high density
[11]]. As a result, NECTAR’s area remained ~50% less
than SRAM. NECTAR uses 4 bits each for exp_count and
emu_count to monitor the cache block’s retention status (Fig-
ure [3)), resulting in a per-block overhead of 1.56% (8 bits
per cache block). We used a 1KB 4-way 64B cache for the
profiling phase’s refresh buffer. To minimize overhead, we
used a 50us retention time STTRAM, which has a 1 cycle
read/write access latency, and a leakage power of 17.314mW.
For the replacement buffer, we used a 512B direct-mapped
64B cache that proved sufficient for the replacement process
and only incurs a 3.916mw leakage power overhead.

Finally, the CostTable and PWC block attributes (e.g., the
block’s thread ID) are stored in the software meta-data field of
the translation descriptor [1]] without incurring additional over-
heads. For the profiling phase calculation, NECTAR requires
four 32-bit registers and one 32-bit division circuit; and two
32-bit registers, one 32-bit comparator, and one 32-bit adder to
calculate the minimum cost retention time. Overall, NECTAR
imposes < 1% area overhead compared to modern processors
like the ARM Cortex-A78 [10].

V. EXPERIMENTAL SETUP

We performed our analysis and implemented the proposed
PWC design using a modiﬁe(ﬂ version of gem5 [12]]. We
performed full system simulations of both shared and private
PWC configurations using the Linaro Linux operating system.
We modeled a 4-core processor with configurations like the
ARM Cortex A78 [10], with a 2GHz clock. We focused our
studies on the data PWC, since it dominates the page walk

IThe modified gem5 is at www.ece.arizona.edu/tosiron/downloads.php|

W Latency Energy

NECTAR vs. SRAM
0000 Rk
oNbooRNE

Fig. 7: NECTAR’s average latengy and energy normalized to
SRAM

BASTTRAM-5ms ESTTRAM-10ms ESTTRAM-50ms §STTRAM-100ms

0
S 7|
0 g AN
s 0 B
i 7
s I n b

] i
o A ln ol Nom. o AN
: 0B u N

z
=
gE
o
E

Y 5

N° ot @ a0 A (@ e
00 o0 e e e
2 O TSN
WX QY &«

Fig. 8: NECTAR’s latency reduction vs. uniform retention time
STTRAMs

requests (more than 10x the instruction page walker requests).
We used 11 PARSEC 3.0 multithreaded benchmarks [[7]], cross-
compiled for the ARMv8-A ISA. Each benchmark was run
with four threads using the simlarge inputs for 1B instructions
after restoring the checkpoints from the region of interest.

For comparison, we also modeled private PWCs with 8KB
size (1024 TLB-equivalent entries) per core. We used the
equivalent total cache size for the shared PWC—32KB size
(4096 TLB-equivalent entries) for the four-core system. We
considered four retention times: 5ms, 10ms, 50ms, 100ms,
which we empirically found to be sufficient for the considered
applications. We used the MTJ modeling techniques proposed
in [13]] to model the different retention times, and used NVSim
[14] to estimate the STTRAM energy.

€ xef .00 A0k o
@B (0™ 20 e
o <
&3«\(4 S\,@? W

VI. RESULTS

This section first quantifies the PWC access latency and
energy of NECTAR compared to SRAM. Thereafter, we
compare LRU-RT to LRU, and then compare the latency and
energy of shared PWC to private PWC to contextualize the
benefits of shared PWCs with current PWC designs [10].

A. Latency/energy comparison of NECTAR to SRAM

Figure [/| depicts NECTAR’s latency and energy compared
to SRAM. On average, NECTAR reduced the energy by
81.36%, and only incurred a 3.45% latency overhead. NEC-
TAR achieved such high energy savings, in large part, because
of STTRAM’s low leakage power—approximately one-sixth
that of SRAM. Furthermore, since the majority of the PWC
accesses are read operations, the high dynamic write energy
is not a prominent source of overhead for STTRAM-based
PWCs. NECTAR traded latency for energy savings for body-
track, whose threads required long (100m) retention times, but
performed consistently well for the other benchmarks.

An important benefit of NECTAR, compared to a uniform
retention time, is the ability to satisfy diverse workloads’
retention time needs. Thus, while a uniform retention time
(e.g., 50ms or 100ms) would also achieve high energy savings,
NECTAR enables the savings to be maximized for individual
applications and robust to new applications, while also mini-
mizing the latency overheads compared to SRAM.

www.ece.arizona.edu/tosiron/downloads.php

MW Latency

=

v 7
/ 7
mla, 7

5 X > K .&

3 & PR S <& .
O & & AN o v
SV Q\é\ S & @QQ T
&P RSEENIEOES

@ & R

Fig. 9: LRU- RT vs. LRU

i

>

LRU-RT improvement
over LRU (%)

BEnergy

.
o
S

[N
[SR-R-R<}

Shared vs. private
NECTAR (/u

)

& > O GRS
RS & N b\) &% K@é < 0,\0\\\":;‘ SR %vb
& S ELE W
& S e 0

Fig. 10: Shared vs. prlvate NECTAR
Figure [§] illustrates NECTAR’s ability to mitigate the la-
tency overhead of uniform retention STTRAMs for individual
applications. NECTAR reduced the average latency com-
pared to STTRAM-5ms, STTRAM-10ms, STTRAM-50ms,
and STTRAM-100ms by 8.24%, 5.51%, 1.25%, and 1.34%,
respectively. Even though these average improvements seemed
modest, NECTAR improved the latency by up to 26% (for
streamcluster). A closer look at individual threads revealed
even higher latency improvements of up to 35.31% (additional
figures are omitted due to limited space). In rare instances,
NECTAR incurred overhead compared to a uniform retention
time when all the threads within an application required long

retention times (e.g., blackscholes and bodytrack).

B. LRU-RT vs. LRU in a shared PWC

Here, we quantify LRU-RT’s improvement over LRU re-
placement policy used in prior work [3]. To isolate the
impact of LRU-RT, we compare NECTAR+LRU-RT with
NECTAR+LRU. Figure 0] shows the percentage of latency
improvement of LRU-RT over LRU. On average across the
applications, LRU-RT reduced the average latency overhead
by 2.52% compared to LRU, and by up to 26.30% for some
individual threads (additional figures are omitted for brevity).
LRU-RT consistently outperformed LRU for all threads and
applications and achieved similar energy benefits.

C. Shared vs. private NECTAR configurations

We also quantified the benefits of the shared NECTAR pro-
posed herein to a private per-core NECTAR implementation.
Figure [I0] shows the percentage of latency and energy savings
of shared NECTAR over private NECTAR configurations. On
average, the shared NECTAR reduced the latency by 15.74%,
with latency savings of up to 46.47% for blackscholes. The
shared NECTAR substantially reduced the average energy by
81.60% compared to the private configuration, making the
shared configuration a clear choice for energy- and latency-
efficient STTRAM-based PWC implementation.

VII. CONCLUSION

In this paper, we performed the first study of STTRAM’s
viability for implementing energy-efficient page walker caches
(PWCQC). Our analysis provides compelling new insights regard-
ing the benefits of STTRAM for PWCs and challenges that
must be addressed to achieve low-overhead implementations.

Based on our analysis, we proposed NECTAR, a heterogeneous
retention time STTRAM PWC for energy-efficient page walk.
NECTAR includes a new LRU-based replacement policy,
LRU-RT, that enables the placement of blocks to the PWC
ways based on the blocks’ retention time needs. Overall,
for a variety of multithreaded applications, NECTAR reduces
the average energy by 81.36% compared to SRAM, while
imposing minimal latency and area overhead.

ACKNOWLEDGEMENT

This work was supported by the National Science Founda-
tion (NSF) under grant CNS-1844952. Any opinions, findings,
conclusions, or recommendations expressed are those of the
authors and do not necessarily reflect the views of the NSF.

REFERENCES

[1] “Armv8-A Address Translation.” [Online]. Available: https://developer.
arm.com/documentation/100940/0101

[2] H.Jang, K. Han, S. Lee, J. Lee, and W. Lee, “Mmnoc: Embedding mem-
ory management units into network-on-chip for lightweight embedded
systems,” IEEE Access, vol. 7, pp. 80011-80019, 2019.

[3] A. Bhattacharjee, “Large-reach memory management unit caches,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-46. New York, NY, USA: Association
for Computing Machinery, 2013, p. 383-394. [Online]. Available:
https://doi.org/10.1145/2540708.2540741

[4] Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L.-C. Wang, and
Y. Huai, “Spin-transfer torque switching in magnetic tunnel junctions
and spin-transfer torque random access memory,” Journal of Physics:
Condensed Matter, vol. 19, no. 16, p. 165209, 2007.

[5] K. Kuan and T. Adegbija, “Energy-efficient runtime adaptable 11 stt-
ram cache design,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 6, pp. 1328-1339, 2020.

[6] Z. Sun, X. Bi, H. Li, W. F. Wong, Z. L. Ong, X. Zhu, and W. Wu,
“Multi retention level STT-RAM cache designs with a dynamic refresh
scheme,” in 2011 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Dec 2011, pp. 329-338.

[7]1 C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[8] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis,
K. Moon, X. Luo, E. Chen, A. Ong et al., “Spin-transfer torque magnetic
random access memory (STT-MRAM),” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 9, no. 2, p. 13, 2013.

[9] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan,

“Relaxing non-volatility for fast and energy-efficient STT-RAM caches,”

in 2011 IEEE 17th International Symposium on High Performance

Computer Architecture, Feb 2011, pp. 50-61.

“Arm® Cortex®-A78 Core Technical Reference Manual Revision

rlp2.” [Online]. Available: https://developer.arm.com/documentation/

101430/1atest

P. Chi, S. Li, Y. Cheng, Y. Lu, S. H. Kang, and Y. Xie, “Architecture

design with stt-ram: Opportunities and challenges,” in 2016 21st Asia

and South Pacific design automation conference (ASP-DAC). 1EEE,

2016, pp. 109-114.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,

M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”

SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1-7, Aug. 2011.

K. C. Chun, H. Zhao, J. D. Harms, T. H. Kim, J. P. Wang, and C. H.

Kim, “A Scaling Roadmap and Performance Evaluation of In-Plane

and Perpendicular MTJ Based STT-MRAMs for High-Density Cache

Memory,” IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 598-

610, Feb 2013.

X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level

performance, energy, and area model for emerging nonvolatile memory,”

Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 31, no. 7, pp. 994-1007,

Jul. 2012.

[10]

(11]

[12]

[13]

[14]

https://developer.arm.com/documentation/100940/0101
https://developer.arm.com/documentation/100940/0101
https://doi.org/10.1145/2540708.2540741
https://developer.arm.com/documentation/101430/latest
https://developer.arm.com/documentation/101430/latest

	Introduction
	Background and Related Work
	Implementing reduced retention STTRAMs
	Adaptable retention STTRAM caches
	Address translation and PWC in ARM-64 architecture

	STTRAM PAGE WALKER CACHE ANALYSIS
	Effectiveness of shared STTRAM PWC
	Expiration misses in STTRAM shared PWCs
	Sensitivity of shared PWC blocks to retention times

	Heterogeneous Retention STTRAM PWC
	Hardware architecture
	Determining the best configuration: retention time-aware block (re)placement
	Runtime profiling phase
	Execution phase and LRU retention time-aware (LRU-RT) replacement policy

	Implementation overhead

	Experimental Setup
	Results
	Latency/energy comparison of NECTAR to SRAM
	LRU-RT vs. LRU in a shared PWC
	Shared vs. private NECTAR configurations

	Conclusion
	References

