
Designing Constant-Timed Accelerators using
High-Level Synthesis: A Case Study of ECG

Biometric Authentication
James Kuban and Tosiron Adegbija

Department of Electrical & Computer Engineering
University of Arizona, Tucson, USA

kubandj@arizona.edu; tosiron@arizona.edu

Abstract—High-level synthesis (HLS) is an increasingly popu-
lar approach for rapidly designing complex, high-performance,
and energy-efficient application-specific accelerators, enabling a
shorter time to market and increased productivity. This paper
explores a workflow for generating constant-timed accelerators
using generic HLS tools in order to eliminate the timing-based
side-channel vulnerabilities intrinsic to accelerators generated
using state-of-the-art HLS. Since security, performance, and en-
ergy are often conflicting design objectives, we also explore ways
to mitigate the design overhead. We demonstrate the workflow
using a case study of an ECG biometric authentication system,
which exemplifies a real-world system with significant timing
side-channel vulnerabilities. Results show that the workflow
successfully generates constant-timed accelerators and enables
designers to use generic HLS tools, thereby minimizing any
negative impacts on the design process.

I. INTRODUCTION AND MOTIVATION

High-Level Synthesis enables a rapid generation of hard-
ware by raising the design abstraction from low-level hardware
description languages (HDL), like Verilog and VHDL, to high-
level languages like C or C++. An HLS tool (e.g., Vitis
HLS, SmartHLS) can then be used to generate the HDL
implementation for synthesis. Given its productivity gains,
HLS is increasingly being used in numerous application do-
mains, including security-critical domains, such as biometric
authentication, cryptography, healthcare, etc. This raises an
important issue: in addition to performance, energy, and area
constraints, security constraints must now be considered in
the HLS design process [1]. Ideally, designers should be able
to use state-of-the-art HLS tools with which they are already
familiar in order to maintain design productivity.

This paper explores changes that can be made to the
high-level code to mitigate the side-channel vulnerabilities
of HLS-generated accelerators. Side-channel attacks rely on
monitoring physical signatures/leakages (e.g., timing or power
leakage) to deduce the computations occurring or private
information in the accelerator. For instance, timing attacks
[2]—the focus of this paper—rely on timing variances in the
accelerator when executing different portions of a workload
or with different input data. When an attacker obtains timing
patterns, the side-channel information can be analyzed to infer
private information [2]. This vulnerability can be mitigated by
designing constant-timed systems [3].

There has been some prior work to mitigate the side-channel
vulnerability of accelerators. For example, Bayrak et al. [4]
focused on obfuscating computation times by introducing jitter
on the clock line. While this method can increase the com-
plexity of attacks, an attacker can overcome it by increasing
the number of power traces used. Furthermore, this approach
drastically increases the area and power consumption, and
increases the complexity of the design process. Alternatively,
Peter et al. [3] proposed an approach to analyze the behavior
of high-level code and use the information to instruct the HLS
tool’s scheduler to add idle cycles to balance the branches in
the program. However, this approach is tightly coupled with
the LegUp HLS tool on which it is implemented.

Given that HLS primarily aims to increase design productiv-
ity, our goal is to maintain—or minimally impact—the benefits
of HLS by focusing on the high-level code being synthesized
as opposed to the RTL. To enable continuity of productivity, it
is important that designers can use HLS tools that they already
know. At the same time, designers must be equipped with a
straightforward repeatable process for modifying their code
to mitigate the vulnerability of the generated accelerators to
timing side-channel attacks.

This paper explores a workflow for generating constant-
timed hardware accelerators with HLS, using industry-
standard HLS tools like Vitis HLS and SmartHLS. The work-
flow focuses on identifying and modifying portions of the
high-level code to maintain constant timing across different
computations or input data. We demonstrate the proposed
workflow using an ECG biometric authentication (EBA) al-
gorithm and show that the approach achieves constant timing
across different functions and data inputs. The approach also
reduces the power consumption and resource usage compared
to the state-of-the-art HLS approach, while trading off latency.

II. BACKGROUND ON ECG BIOMETRIC AUTHENTICATION

ECG biometric authentication (EBA) is an increasingly
popular approach for biometric user authentication based on
physiological signals representing the electrical activity of
the human heart. The ECG (electrocardiogram) signals—the
heart’s electrical activity—contain lots of useful information
that are easy to obtain using readily available sensors, uniquely
identifiable, and permanent. EBA is an excellent case study for



(a) (b) (c)
Fig. 1: Dataflow graphs (DFG) illustrating (a) an unbalanced
branch, (b) a naively balanced branch, and (c) a branch
balanced using our workflow

our work because: 1) biometric systems are a prime target
for timing side-channel attacks [5]. As such, HLS design
approaches are urgently needed to mitigate the vulnerability of
EBA accelerators and 2) the EBA system is an important real-
world complex system that presents a variety of challenges
that must be overcome to achieve constant timing. The system
consists of distinct functions with disparate timing behaviors
between its functions and with different user inputs.

In summary, the EBA algorithm contains four main func-
tions that must be performed on input signals after data
acquisition: filtering, segmentation, feature extraction, and
matching. Here, we briefly describe these functions, but direct
readers to [6] for the algorithm’s low-level details.
Filtering: Filtering processes the input signal to remove noise
and enhance the quality of the biometric traits. Noise can
occur from a variety of factors such as muscle movement,
electromagnetic interference (EMI), or improper probe con-
tact. These signal spikes can cause false R-peak detection—
the maximum amplitude in the electrocardiogram—and must
be filtered before further processing.
Segmentation: Segmentation splits the ECG signal into its
unique P, QRS, and T waveforms. Given that these waveforms
typically repeat throughout the signal, segmentation also iden-
tifies and eliminates redundancies to reduce template size and
simplify the matching process.
Feature extraction: Feature extraction uses the segmentation
output to find wavelets in the original signal to parameterize
the individual characteristics of each user. This function gen-
erates each user’s ECG fingerprint using the amplitude and
temporal locations of the waveforms’ fiducial points (P, QRS,
and T), which are recorded as a fraction of the wavelet size
and averaged over the dataset.
Matching: The final step compares the averaged features to a
set of stored user profiles using a simple Euclidean distance
algorithm. The comparison—whether or not the new user’s
biometric traits match the stored template—determines the
new input user’s authorization to access the system.

III. WORKFLOW FOR HLS OF CONSTANT-TIMED
ACCELERATORS

The constant timing approach is well-known for mitigat-
ing the vulnerability of processing systems to side-channel
attacks [6], [7], [3]. In general, the primary source of timing

inconsistency in HLS-generated accelerators is the presence of
unbalanced branches in the high-level program. Unbalanced
branches are data-dependent branches with varying numbers
and complexity of computations such that the branch path
affects how long it takes to execute the program. Fig. 1 depicts
an arbitrary dataflow graph (DFG) to illustrate the security-
relevant kinds of branches that might occur in a program. Fig.
1a illustrates an unbalanced branch whose timing depends on
the value of x: the code takes much longer to execute if x ==
y than if x != y. Balanced branches, on the other hand, are
those that have an equivalent number and complexity of com-
putations regardless of the branch direction. Balanced branches
enable constant timing regardless of the data inputs. Fig. 1b
illustrates a naively balanced branch with the computations
on the longer branch path of Fig. 1a replicated on the shorter
path; dummy/idle operations can be performed on the no path
to maintain the result’s consistency.

Our approach aims to minimize the overhead (especially
the power and resource overhead) of balanced branches by
reducing the redundancy. The branch balancing achieved using
our workflow is illustrated in Fig. 1c. Given the resource
constraints of the target system, our approach trades off
execution latency for minimizing the resource usage, while
also limiting the latency overhead. In what follows, we de-
scribe the proposed workflow and suggested high-level code
modifications for generating constant-timed accelerators.

A. Overview of the workflow

Fig. 2 depicts an overview of the workflow for modifying
high-level programs to generate constant-timed accelerators.
Given an input program (in this case, the EBA algorithm), the
program is broken down into its component functions (see
Section II). The granularity depends on the complexity of
the program and can also affect the tractability of the design
process. The EBA algorithm can be cleanly broken down into
different functions based on the different operations being per-
formed. Some other programs might not have the functions as
clearly demarcated and would require some designer effort to
break them down into their functions. Each function’s timing
is then analyzed to determine the timing variations. This can
be achieved using simulations of the high-level code, via RTL
behavioral simulations, or synthesis for different inputs. The
goal is to ensure that timing variations do not exceed an attack
threshold—the time required for an attacker to gather the
necessary traces for an attack. For the EBA system, we used a
threshold of 500µs, based on prior work [8], [6]. Once timing
information has been obtained, if unbalanced branches are
identified, the program is modified to achieve intra-function
constant timing. Then, inter-function constant timing can be
achieved by reducing the number of functions, optimizing the
longest function, and elongating shorter functions, if necessary.

B. Intra-function constant timing

Intra-function constant timing ensures that the timings
within functions remain constant regardless of the input data.
To this end, the number and types of computations in all



Fig. 2: Overview of the constant timing workflow. The workflow provides a systematic approach and suggestions for modifying
the high-level code to enable constant timing, while mitigating the attendant overheads.

branch paths are first determined and the shorter branch path is
taken as the lower limit of the branch’s timing. Thereafter, the
excess computations are moved before the branch and assigned
to dummy variables. The computations in the branches can
then be replaced by an assignment of those dummy variables
to their final variables.

C. Inter-function constant timing

Inter-function constant timing ensures that the timings
across different functions remain constant. This mitigates the
vulnerability in an attacker being able to infer what operations
are being performed at any given time, especially in systems,
like the EBA system, where the timing of the current function
can provide clues about the operations being performed [5].

One approach to achieving inter-function constant timing
is to elongate the shorter functions in the program to match
the longest function. This approach was followed in prior work
[6] using architecture changes (e.g., slower clocks) to lengthen
shorter functions to match the longest functions. From the HLS
perspective where using different clock frequencies might not
be an option, computations can be taken out of all the branches
and the bounds of each loop increased. When there is still a
substantial difference in latency, loops can be added around
computationally complex segments of the code to artificially
inflate the latency (at the potential expense of energy). Sim-
ilarly, loops can be placed around shorter functions to make
their latency equal to that of the longest function.

D. Strategies for mitigating the latency overhead

An important challenge that arises with inter-function con-
stant timing is the increase in latency since the shorter
functions are elongated to match the longest. As a result,
the longest function’s latency will be multiplied by the total
number of functions. At a high level, this overhead can be
mitigated by either reducing the latency of the longest function
or by reducing the number of functions.

The easiest approach for mitigating the latency overhead
is function merging, which involves reducing the number
of functions by combining them. Functions can be merged
when the output of one of the functions is only required
by one other function. As such, the code can be written to
consolidate both functions into one. For example, the output
of the filtering function in the EBA algorithm is only required
by the segmentation function, and the filtering does not need
to finish before segmentation can begin. Thus, the signal can

be pipelined to overlap filtering and segmentation, thereby
reducing the overall latency while consolidating the functions.
The latency overhead can be further mitigated by exploring
additional optimizations (e.g., reducing loop bounds, reducing
the number of loops, removal of nested loops, etc.).

IV. EXPERIMENTAL RESULTS

This section reports the results of employing the proposed
workflow to design a constant-timed accelerator for the EBA
system. We evaluate the approach with respect to the timing
variance of the original synthesized code—the original algo-
rithm is implemented in C—compared to that of the balanced
code using the workflow described herein.

To compare our work with the state-of-the-art, we imple-
mented the EBA algorithm using the current HLS approach [9]
and analyzed the timing across different functions and with 8
different users (the input data) from the Physionet Fantasia
dataset [10]. We used Xilinx Vitis HLS to synthesize the C
program to Verilog and used Xilinx Vivado to program the
FPGA. We implemented the EBA system on a Nexys4 DDR
FPGA at a 100MHz clock frequency.

A. Intra- and inter-function constant timing

Overall, our workflow successfully generated similarly
constant-timed accelerators to prior work [3], [11] with the
notable distinction that our approach can be used with any
state-of-the-art HLS tool.

From analyzing the EBA algorithm, we found that the
segmentation and feature extraction steps had the largest
timing variations (far surpassing the attack threshold). We
also observed that the process may need to be iterated upon.
For example, after modifying the program for inter-function
constant timing, the intra-function timing should be checked
to ensure that the behavior has not changed. Our workflow
substantially reduced the timing variations in the different
functions. For instance, the segmentation function’s timing
variance reduced by 1770x, from 39,473.79 µs to 22.3 µs.

Furthermore, to mitigate the latency overhead, we also used
function merging (Section III-D) for the filtering and segmen-
tation functions. We found that filtering takes significantly
less time than segmentation and the outputs of filtering are
only utilized by segmentation, making them great candidates
for merging. This approach reduced the latency overhead by
33.5% compared to an unmerged system (additional figures
and analysis omitted for brevity).



Fig. 3: Post-modification intra- and inter-function variance for
the different users. Inter-function variance is with respect to
each function’s timing for individual users and intra-function
variance is compared to user 0 which had the lowest latency.

Fig. 4: Comparison of power consumption between the base
accelerator and the constant-timed accelerator (CTA). The
matching function is not shown since it was unchanged.

Fig. 3 depicts the post-modification maximum intra- and
inter-function timing variances across the different users. Our
workflow reduced the maximum variance from 9322.94 µs to
16.94 µs, falling well below the attack threshold. Note that the
constant timing was achieved at the expense of latency, which
increased from 0.104s to 1.1s—a 10.6x increase. However, this
latency tradeoff is in line with prior works [6], [7] that have
shown that achieving constant timing systems usually involves
a latency tradeoff. Importantly, no functional timing violation
occurs as a result of our approach.

B. Power consumption and resource usage

Unlike latency, the constant-timed accelerator reduced the
power and resource usage compared to the base accelerator
(using the state-of-the-art HLS). Fig. 4 compares the power
consumption of the constant-timed accelerator (CTA) to the
base accelerator. The figure depicts the overall and function-
specific power comparisons. Overall, our workflow decreased
the power by 34.6% (from 0.609 to 0.398 W). The merged seg-
mentation function (consolidating the filtering and segmenta-
tion functions into a single unit within the accelerator) reduced
the power by 45.8% compared to the sum of the individual
functions. Even though the modified segmentation function
increased the number of calculations being performed, the
function merging process enabled a power reduction as a result
of the reduction in resource utilization.

Table I summarizes the CTA’s resource usage compared
to the base accelerator. On average for the different kinds
of resources, the CTA reduced the resource usage by 27%.
The CTA achieved the highest reduction in the block RAM
(BRAM) utilization, by 73%, due to the merging of filtering

TABLE I: Resource utilization
Resource Base CTA % improvement
LUT 39351 32950 16%
LUTRAM 919 587 36%
FF 53600 43830 18%
BRAM 105.5 29 73%
DSP 96 51 47%
IO 35 35 0%
BUFG 1 1 0%

and segmentation, which reduced the need to store/transfer
data between functions.

V. CONCLUSION

In this paper, we explored a workflow for modifying a
high-level program to enable the synthesis of constant-timed
accelerators. The goal is to enable designers to use generic
HLS tools with which they are familiar and mitigate the over-
heads of designing constant-timed accelerators. We evaluated
the proposed workflow using an ECG biometric authentication
accelerator. The results show that the proposed approach suc-
cessfully enables constant timing between different algorithm
functions and input data. The proposed approach also reduces
the power consumption and resource usage compared to the
state-of-the-art, at the expense of latency overhead. Future
work involves exploring ways to mitigate the latency overhead,
exploring the generalizability of the workflow to a wider
variety of applications, and extending the workflow to account
for power side-channel attacks.

REFERENCES

[1] C. Pilato, S. Garg, K. Wu, R. Karri, and F. Regazzoni, “Securing
hardware accelerators: A new challenge for high-level synthesis,” IEEE
Embedded Systems Letters, vol. 10, no. 3, pp. 77–80, 2018.

[2] B. B. Brumley and N. Tuveri, “Remote timing attacks are still practical,”
in European Symposium on Research in Computer Security. Springer,
2011, pp. 355–371.

[3] S. Peter and T. Givargis, “Towards a timing attack aware high-level
synthesis of integrated circuits,” in 2016 IEEE 34th International Con-
ference on Computer Design (ICCD), 2016, pp. 452–455.

[4] A. G. Bayrak, N. Velickovic, F. Regazzoni, D. Novo, P. Brisk, and
P. Ienne, “An eda-friendly protection scheme against side-channel at-
tacks,” in 2013 Design, Automation Test in Europe Conference Exhibi-
tion (DATE), 2013, pp. 410–415.

[5] J. Galbally, “A new foe in biometrics: A narrative review of
side-channel attacks,” Computers Security, vol. 96, p. 101902, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167404820301784

[6] R. Cordeiro, D. Gajaria, A. Limaye, T. Adegbija, N. Karimian, and
F. Tehranipoor, “Ecg-based authentication using timing-aware domain-
specific architecture,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 11, pp. 3373–3384, 2020.

[7] Z. B. Aweke and T. Austin, “Øzone: Efficient execution with zero timing
leakage for modern microarchitectures,” in 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp.
1123–1128.

[8] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in 23rd USENIX Security Symposium
(USENIX Security 14). San Diego, CA: USENIX Association, Aug.
2014, pp. 719–732.

[9] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction
to high-level synthesis,” IEEE Design Test of Computers, vol. 26, no. 4,
pp. 8–17, 2009.

[10] I. Silva and G. B. Moody, “An open-source toolbox for analysing and
processing physionet databases in matlab and octave,” Journal of open
research software, vol. 2, no. 1, 2014.

[11] Z. Jiang, S. Dai, G. E. Suh, and Z. Zhang, “High-level synthesis with
timing-sensitive information flow enforcement,” in 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE,
2018, pp. 1–8.


