
Sparsity-Aware Hardware-Software Co-Design of
Spiking Neural Networks: An Overview

Ilkin Aliyev∗, Kama Svoboda∗, Tosiron Adegbija∗, Jean-Marc Fellous†
∗Department of Electrical & Computer Engineering

†Departments of Psychology and Biomedical Engineering
University of Arizona, Tucson, AZ, USA

Email: {ilkina,ksvoboda,tosiron,fellous}@arizona.edu

Abstract—Spiking Neural Networks (SNNs) are inspired by the
sparse and event-driven nature of biological neural processing,
and offer the potential for ultra-low-power artificial intelligence.
However, realizing their efficiency benefits requires specialized
hardware and a co-design approach that effectively leverages
sparsity. We explore the hardware-software co-design of sparse
SNNs, examining how sparsity representation, hardware archi-
tectures, and training techniques influence hardware efficiency.
We analyze the impact of static and dynamic sparsity, discuss the
implications of different neuron models and encoding schemes,
and investigate the need for adaptability in hardware designs.
Our work aims to illuminate the path towards embedded neuro-
morphic systems that fully exploit the computational advantages
of sparse SNNs.

Index Terms—Spiking Neural Networks (SNNs), hardware-
software co-design, sparsity, energy efficiency, event-driven pro-
cessing

I. INTRODUCTION

Energy-efficient and high-performance computing architec-
tures have become more essential than ever in the era of per-
vasive machine learning (ML) and artificial intelligence (AI).
Spiking Neural Networks (SNNs), which mimic the event-
driven communication of biological neurons, hold the promise
of surpassing the energy efficiency of conventional Artificial
Neural Networks (ANNs) [1]. An important reason for the
potential efficiency of SNNs is that they exploit the inherent
sparsity observed in biological neural systems, characterized
by sparse coding [2], [3] and sparse connectivity [4], [5], and
computation using partial synchrony instead of firing rate [6].
This sparsity translates directly into potential computational
savings in hardware implementations, especially if the sparsity
is explicitly exploited [7], [8].

In sparse coding, only a fraction of neurons are activated
at a time. As a result, hardware designs that explicitly exploit
sparse coding in SNN models can conserve energy by pow-
ering down inactive neurons, thus only consuming power for
processing active signals on demand. This selective activation
aligns well with event-driven processing, where computations
are performed only when events (spikes) occur, reducing the
overall energy consumption. Moreover, sparse connectivity
implies that each neuron is connected to only a subset of
other neurons, rather than a fully connected network. This
reduces the complexity of the inter-neuronal communication
infrastructure required. For an SNN hardware accelerator,

this translates to fewer necessary connections and routing
paths, which can simplify the accelerator’s physical layout
and reduce the energy costs associated with data transfer and
storage. Furthermore, the high reliability of digital hardware
(compared to biological neurons) makes it possible to increase
the sparsity of the computations beyond what is observed in
the brain to potentially achieve even more energy efficiency.

However, translating this theoretical efficiency into tangible
gains on real-world hardware remains a critical challenge.
Specialized hardware platforms that explicitly exploit the
characteristics of SNN workloads are necessary to reap the full
benefits of sparse SNN computations [7], [8]. As such, the co-
design of hardware and software holds the key to unlocking the
energy-saving potential of SNNs. Algorithms and models must
be tailored to work in synergy with hardware architectures
optimized to handle the unique computational characteristics
of sparse SNNs.

Key considerations in this co-design process involve how
sparsity is represented and how it interacts with the underly-
ing hardware. Sparse operations in SNN computations often
require different approaches for hardware acceleration than
dense operations. Additionally, model configurations, such as
the synaptic connectivity patterns, neuron models, encoding
schemes, and the balance between different kinds of sparsity,
including static and dynamic sparsity, can have profound
impacts on hardware efficiency. For example, static sparsity,
which refers to a fixed pattern of zero-valued weights in
the SNN model, allows for predetermined optimizations like
memory compression and skipping of computations with zero
weights. On the other hand, dynamic sparsity, referring to
the temporal event-based neuron activations, offers potential
for further efficiency, but requires flexible hardware to handle
variable, irregular, and unpredictable computational loads.

This paper provides an overview of the multifaceted field
of hardware-software co-design for sparse SNNs, emphasiz-
ing the critical role of sparsity in achieving energy-efficient
neuromorphic computing. We investigate the dynamic na-
ture of sparsity, exploring its dependency on various factors
such as training hyperparameters, neuron models, and input
encoding methods. Through empirical analysis and detailed
exploration, we quantify the impact of these factors on
sparsity, offering valuable insights for optimizing SNNs for
hardware implementation. We also address the challenges



Σ
x1

x2

xn

y

w1

w2

w3

Fig. 1: SNN neurons integrate incoming spikes x with corre-
sponding synaptic weights w to generate output spikes y every
time the integrated membrane potential reaches a threshold.

inherent in hardware-software co-design of SNNs, highlighting
the need for specialized hardware architectures and sparsity-
aware training techniques. Furthermore, we survey existing
hardware architectures and techniques specifically designed
to exploit sparsity, showcasing the potential for significant
performance and energy efficiency gains in SNN accelerators.
By bridging the gap between theoretical potential and practical
implementation, this paper aims to contribute to the advance-
ment of neuromorphic computing and pave the way for a new
generation of energy-efficient AI applications.

II. BACKGROUND ON SPIKING NEURAL NETWORKS

While both SNNs and ANNs ultimately map input patterns
to outputs, their computational models differ significantly.
ANNs rely on continuous-valued activation functions, whereas
SNNs utilize discrete binary spikes within the temporal do-
main to represent information [9]. As depicted in Figure 1,
using the integrate-and-fire neuron model [10] as an example,
SNN neurons accumulate incoming spikes, integrating their
weighted influence over time. A neuron fires an output spike
only when its membrane potential surpasses a defined thresh-
old. In this section, we present a brief overview of SNNs
underpinned by the importance of sparsity as a core feature.

1) Neuron models: At the heart of an SNN lies the indi-
vidual neuron model and its synapses which determine the
network’s learning dynamics. Simple neuron models like the
Leaky Integrate-and-Fire (LIF) [11] mimic the thresholding
behavior of neurons, i.e., spikes are generated when their mem-
brane potential exceeds a threshold. More complex models,
such as the Hodgkin-Huxley [12], do not have an explicit
threshold but detail the dynamics of membrane ion channels
for greater biological realism and introduce computational
overhead. The choice of neuron model profoundly impacts the
efficiency obtained from network sparsity, learning dynamics,
and the suitability for different hardware implementations.

2) Spatiotemporal dynamics: SNNs fundamentally differ
from traditional ANNs in their approach to information pro-
cessing. While both utilize the activation patterns of neurons
to encode information, SNNs introduce the precise timing of
neuronal spikes as an additional dimension [13]. This timing
allows neurons to convey information through single spikes,
bursts, or complex temporal patterns. Learning mechanisms
like Spike Timing Dependent Plasticity (STDP) [14], which
modify synaptic strengths based on the relative timing between
pre- and post-synaptic spikes, enable SNNs to learn both
spatial and temporal patterns. This unique capability positions

SNNs for applications in sequence recognition, temporal pre-
diction, and adaptive behavior within dynamic environments.
Furthermore, the inherent temporal sparsity of SNNs, where
neurons only fire when necessary, contributes significantly to
their energy efficiency [15].

3) Learning in SNNs: Although backpropagation [16] has
become a workhorse for effectively training ANNs in prac-
tice, training SNNs presents unique challenges due to the
non-differentiability of spike-based signals. Several training
methods address this, including ANN-to-SNN conversion [17],
where a conventional ANN is trained and then converted to
an SNN, potentially sacrificing accuracy and efficiency gains.
Unsupervised methods utilize STDP [14], but often suffer from
slow convergence, high sensitivity to noise and high sensitiv-
ity to parameter setting. More recently, supervised learning
with surrogate gradients [18] has shown promise by using
differentiable surrogate functions during backpropagation-like
training, allowing optimization of SNNs for both accuracy and
hardware efficiency.

4) Input encoding: Input encoding in SNNs, the translation
of real-world data into spikes, significantly affects informa-
tion representation, network sparsity, robustness to noise, and
hardware efficiency. Different encoding methods offer distinct
trade-offs. For example, rate coding [19] encodes information
in the average firing rate over time, offering high performance
in deep networks (e.g., VGG9, VGG11) [20], but often at the
cost of reduced sparsity due to the high spike rate. Temporal
coding [21], conversely, focuses on the precise timing of spikes
or patterns of spikes within short time frames [22]. While gen-
erally sparser than rate coding, it can sometimes lead to lower
accuracy, though methods like time-to-first-spike (TTFS) have
achieved high accuracy in certain applications [23], [24]. Delta
encoding [25] strikes a balance by using the temporal change
of input features to generate spikes, offering a compromise
between sparsity and accuracy. Radix encoding [26] aims for
ultra-short spike trains, achieving high accuracy with few time
steps, but may require specialized hardware. Direct coding
[27] bypasses explicit input encoding, allowing the training
algorithm to learn the optimal mapping of input data to spiking
patterns. The choice of encoding scheme depends on various
factors, including input data characteristics, neuron models,
and the target application.

5) Applications: SNNs are well-suited for tasks where tem-
poral dynamics and efficient processing are vital (e.g., machine
learning implementations on resource-constrained devices).
They are particularly well-suited for processing data from
event-based sensors (such as neuromorphic vision sensors
or dynamic audio sensors) [28], where the sensor output
aligns naturally with the sparse, spike-based communication
in SNNs. This enables low-power, real-time processing in
resource-constrained edge computing systems. SNNs also
show promise in embedded pattern recognition tasks [29]
where stringent power constraints must be adhered to. Their
ability to learn temporal patterns makes them applicable to
tasks such as gesture recognition [30], anomaly detection
in time-series data [31], or adaptive control systems [32].



Additionally, the biological plausibility of SNNs opens up
opportunities for computational and experimental neuroscience
research, enabling the modeling of specific computations im-
plemented by a given brain region and the investigation of
learning and memory mechanisms.

III. NEUROBIOLOGICAL FOUNDATIONS OF SPARSITY

Neuroscience research reveals that sparsity may be funda-
mental to the brain’s organization and function, influencing
storage [2], energy consumption [33], robustness to noise
[34], and processing efficiency [35]. This sparsity manifests
in various ways:

1) Sparse neural coding: The brain employs a sparse dis-
tributed coding scheme, where only a small subset of neurons
are active in response to specific stimuli or tasks, enhancing
energy efficiency and robustness to noise [36], [37].

2) Structural sparsity: The brain exhibits a high degree
of sparse connectivity—i.e., neurons form connections with
only a fraction of other neurons [5]. This minimizes metabolic
wiring costs and promotes modular and specialized subnet-
works for efficient processing.

3) Sparsity, plasticity, and learning: Sparsity interacts dy-
namically with learning mechanisms such as STDP [38],
allowing for flexible synaptic modifications and synaptic prun-
ing, which refines network representation during development
and learning [39].

4) Computational models of sparsity: Theoretical models
suggest that sparsity enhances brain computing power by
reducing redundancy and facilitating pattern separation [40],
aiding in classification tasks [41].

Understanding the biological basis of sparsity is crucial
for developing neuromorphic computing systems that aim to
mimic the brain’s efficiency and low power consumption.
Insights from biological sparsity can inspire the design of
algorithms, hardware optimizations, and plasticity mechanisms
for more efficient AI in resource-constrained systems.

IV. UNDERSTANDING THE DYNAMICS OF SPARSITY IN
PRACTICAL SNNS

The inherent sparsity of SNNs is key to their energy
efficiency. Sparsity is a dynamic property influenced by var-
ious factors like the network’s training algorithms, neuron
models, input encoding methods, and dataset characteristics.
This section explores the impact of neuron models, their
hyperparameters, and encoding methods on sparsity.

A. Sparsity in the LIF and Lapicque neuron models

To examine the sparsity characteristics of neuron models,
we consider two simple models: Lapicque [42] and leaky
integrate-and-fire (LIF) [11]. The Lapicque model, introduced
in 1907, represents a neuron as a single point with a membrane
potential that evolves in response to incoming inputs (I(t)).
If the membrane potential (uj(t)) exceeds a threshold (θ), the
neuron fires a spike and resets to its resting value (urest):

duj(t)

dt
=

{
I(t) if uj(t) < θ

urest if uj(t) ≥ θ
(1)

Due to its simplicity, sparsity emerges naturally in the
Lapicque model. If the input is insufficient to push the
membrane potential above the threshold, the neuron remains
silent. Sparsity in this model is primarily determined by the
distribution of input weights and the chosen threshold value.
However, its lack of temporal dynamics limits the complexity
of sparsity patterns it can exhibit.

The LIF model extends the Lapicque model by introducing
a “leak” term, simulating the gradual decay of the membrane
potential towards its resting state. The interplay between input
strength, the membrane potential’s leak term, and the firing
threshold governs the neuron’s spiking behavior. The leak’s
time constant influences how quickly the neuron “forgets”
previous inputs, impacting sparsity. A shorter time constant
leads to a more rapid decay of the membrane potential in the
absence of new inputs and effectively increases the amount
of input current required to reach the firing threshold, thereby
leading to sparser activity. The LIF neuron’s characteristics
can be expressed as:

uj [t+ 1] = β · uj [t] +
∑
i

wij · si[t]− sj [t] · θ (2)

sj [t] =

{
1, if uj [t] > θ

0, otherwise
(3)

where β (decay factor) controls the membrane potential decay
rate, and impacts how the previous potential uj [t] affects the
current potential uj [t+1]. θ represents the firing threshold to
produce a spike sj [t]. A higher β and θ can lead to sparser
firing. More complex neuron models can similarly be analyzed
based on their configurable parameters.

B. Practical impacts of model hyperparameters on sparsity

Model hyperparameters can significantly influence SNN
sparsity and hardware efficiency. For example, a previous
study [43] showed that using the fast sigmoid surrogate
gradient function instead of arctan increased sparsity and
improved frames per second/watt (FPS/W) by 11%. Fine-
tuning neuronal parameters like decay rate and threshold
further reduced latency by 48% with minimal accuracy loss.

To further examine the LIF and Lapicque neuron models, we
performed experiments to explore the impacts of their different
hyperparameters on sparsity. These experiments underscore
the importance of sparsity-aware hardware-software co-design
in the development of SNNs, illustrating the need for carefully
balancing the trade-offs between accuracy and sparsity.

We used snnTorch [44] to build spiking neuron models
and PyTorch to train a convolutional SNN (CSNN) on the
Street View House Numbers (SVHN) dataset. We used a
VGG-9-based [45] CSNN architecture with the structure:
64C3-P1-112C3-P1-192C3-P1-216C3-P1-480C3-P1-504C3-
P1-560C3-P1-1064FC-P1-5000FC-P1-Dropout, where xCy
denotes convolutional layers with x filters of size y × y.
Depending on the neuron model employed, P1 represents
either the LIF or Lapicque layer. xFC is a fully connected
layer containing x neurons. Training was performed for



(a) LIF Accuracy

(b) LIF Sparsity

Fig. 2: LIF neuron model cross sweep results for β and θ
parameters.

200 epochs. Given prior research on its ability to enhance
sparsity [43], we used the fast sigmoid surrogate gradient
function for training the network. Network parameters were
updated via the Adam optimizer with an initial learning rate
of 5.0× 10−3.

1) Beta-threshold exploration: We started by performing
a detailed exploration of β (the leakage factor) and θ (the
firing threshold) for both the LIF and Lapicque neuron models
using direct encoding, evaluating accuracy and sparsity. The
Lapicque neuron is implemented using RC circuit parameters,
with β = e−

1
RC . R (resistance) defaults to 1 and C (capaci-

tance) is inferred based on the value of β. The results of these
explorations can be seen in Figures 2 and 3.

In Figure 2a, we observe that the accuracy using the LIF
neuron remains relatively high across various values of β and
θ, with a maximum accuracy of 95.29% achieved at β = 0.15
and θ = 2. Figure 2b shows the LIF sparsity, measured by the
number of spikes. Here, we see that in general, the sparsity
increases (fewer spikes) as β and θ increase. The sparsest
configuration, with 92,069 spikes, occurs at β = 0.9 and
θ = 2. These observations suggest that higher thresholds
and decay factors encourage more selective neuronal activity,
leading to higher sparsity. Combining insights from both

TABLE I: Accuracy and sparsity for LIF and Lapicque models
across different encoding methods.

Encoding Model Accuracy Spikes

Rate LIF 77.99% 1,091,195
Lapicque 75.88% 690,700

Delta LIF 38.40% 79,969
Lapicque 40.53% 34,246

Direct LIF 94.46% 92,069
Lapicque 93.23% 61,761

figures illustrates the trade-offs between sparsity and accuracy.
While high sparsity, and in effect, hardware efficiency, can
be achieved by increasing the threshold and decay factor, it
may come at a cost to accuracy. As such, a balance must
be found where accuracy remains high without significantly
compromising on sparsity. In this case, for example, the
sparsest configuration (β = 0.9, θ = 2) might represent a
satisfactory balance when hardware efficiency is the priority.
This configuration increased sparsity by 13.5% compared to
the best accuracy configuration, with only a 0.83% decrease in
accuracy, indicating that this configuration is efficient in terms
of sparsity while maintaining high performance.

To illustrate the diversity in the sparsity of different neuron
models and the need for detailed exploration of software and
hardware configurations, Figure 3 depicts a similar exploration
for the Lapicque neuron. In Figure 3a, we observe a notable
decline—more so than for the LIF neuron—in accuracy as
θ increases, particularly at lower β values. Interestingly, the
accuracy remains relatively robust at higher decay factors
(β = 0.95), even with an increase in threshold, maintaining a
minimum accuracy of 86.99%.

As with the LIF neuron, the sparsity for the Lapicque neuron
increases as β and θ increase. In this case, the optimal balance
for the Lapicque neuron model was found with θ at 2.0 and
β at 0.7, achieving 93.23% accuracy and 61,761 spikes. This
configuration increased sparsity by 33.0% compared to the
best accuracy configuration, with a 1.53% accuracy loss. These
results suggest that while the Lapicque neuron might be more
sensitive to changes in β and θ than the LIF neuron, the
Lapicque neuron might be more efficient regarding sparsity
than the LIF model while maintaining comparable accuracy.

2) Impacts of encoding methods: To investigate how dif-
ferent encoding approaches affect accuracy and sparsity, we
used the optimal β and θ (highlighted in Figures 2 and 3)
for the LIF and Lapicque neurons, respectively, and trained
the model using each encoding methods. Table I presents a
comparative analysis of the accuracy and sparsity of LIF and
Lapicque neuron models across three encoding methods: rate
encoding, delta encoding, and direct encoding.

The direct encoding method yields the highest accuracy for
both models, with LIF achieving 94.46% and Lapicque achiev-
ing 93.23%, while also demonstrating a moderate amount
of sparsity with 92,069 spikes for LIF and 61,761 spikes
for Lapicque. This indicates a good performance in terms
of both accuracy and sparsity. In this case, the Lapicque
model performs similarly to the LIF model, with slightly



(a) Lapicque Accuracy

(b) Lapicque Sparsity

Fig. 3: Lapicque neuron model exploration for β and θ.

lower accuracy and fewer spikes. This makes it an attractive
option for scenarios with stricter hardware requirements where
minimizing the number of spikes is crucial.

In contrast, rate encoding shows moderate accuracy levels
(77.99% for LIF and 75.88% for Lapicque) but results in
much higher spike counts, particularly for the LIF model with
1,091,195 spikes, indicating lower sparsity. Delta encoding
exhibits the lowest accuracy for both models (38.40% for
LIF and 40.53% for Lapicque) and maintains the lowest spike
counts (79,969 for LIF and 34,246 for Lapicque). Although
delta encoding achieved the highest amount of sparsity, this
was at the cost of a significant loss of accuracy.

In summary, the choice of neuron model and encoding
method significantly impacts the accuracy and sparsity of
SNNs. Direct encoding consistently outperforms rate and delta
encoding in terms of accuracy, with the Lapicque neuron
model exhibiting slightly lower accuracy but higher sparsity
compared to the LIF model. While rate encoding offers mod-
erate accuracy, it suffers from low sparsity. Delta encoding,
despite achieving the highest sparsity, is impractical due to
its significantly lower accuracy. The optimal choice depends
on the specific application requirements, with direct encoding
being preferable for high accuracy and the Lapicque model
being advantageous for hardware-constrained scenarios prior-
itizing sparsity.

V. CHALLENGES OF HARDWARE-SOFTWARE CO-DESIGN
OF SNNS

While the potential benefits of SNNs are substantial, real-
izing these advantages in the real world necessitates careful
co-design of the algorithms and the specialized hardware
that supports them. In this section, we identify several key
challenges that must be addressed to enable successful co-
design for SNNs.

1) Mapping algorithms to hardware: The complexity of
the chosen neuron model has profound implications for hard-
ware design. Complex models (e.g., Hodgkin-Huxley) might
demand a large number of computations per timestep [46],
straining embedded neuromorphic devices. Implementing on-
chip learning rules, especially those beyond simple STDP,
adds complexity in terms of memory technologies, update
mechanisms, and potential trade-offs between flexibility and
power consumption. Input encoding also plays a crucial role
on the challenge of mapping SNN algorithms to hardware. For
example, rate-based encoding can lead to dense activity, reduc-
ing the benefits of hardware-level sparsity support [47], while
temporal encoding might necessitate specialized hardware for
spike-time processing [48].

2) Scalability and network architectures: Building large-
scale SNNs necessitates the efficient routing of the poten-
tially massive number of spike events, requiring specialized
routing fabrics or memory-centric architectures that reduce
communication overhead [49]. Implementing diverse SNN
topologies introduces unique challenges at both the software
and hardware levels. For example, deep convolutional SNNs
need efficient distribution of convolutional kernels and man-
agement of spike-based data [8]. Replicating the connectivity
of large-scale brain regions onto resource-constrained neuro-
morphic platforms might demand simplifying assumptions or
distributed implementation strategies. Furthermore, real-time
systems require optimized hardware-software mappings for
real-time performance and sparsity [50].

3) Accuracy vs. efficiency trade-offs: SNN optimizations
for efficiency, like reducing the bit precision of weights and
activations (i.e., quantization) [51], can significantly increase
sparsity. However, such optimizations for efficiency might
also carry the risk of severe accuracy degradation. Finding
hardware-aware, optimal quantization strategies is important.
Similarly, although pruning away weights creates sparsity,
different SNN architectures might exhibit varying degrees
of sensitivity to pruning. In addition, changes to the SNN
architecture can create new trade-off considerations for dif-
ferent workloads. For instance, expanding an integrate-and-
fire neuron model to a more bio-realistic leaky mechanism
might increase the area overhead [47], leading to important
workload-specific trade-off considerations regarding the effi-
ciency impacts of the more realistic neuron model.

4) Neuromorphic hardware heterogeneity: Analog neuro-
morphic chips [52], [53] might offer superior energy efficiency
but can suffer from device mismatch and noise, impacting
accuracy. Digital platforms offer flexibility but could demand
more complex circuitry to achieve equivalent sparsity benefits.



TABLE II: Summary of hardware architectures for SNNs, with a focus on techniques for exploiting sparsity to enhance
performance and energy efficiency

Work Key Focus Notable Features Strengths
Cerebron [56] Spatiotemporal Sparsity Exploita-

tion
Online workload scheduling, data reuse Broad handling of sparsity, reduced

computation time
MISS [57] Irregular Sparsity Support Unstructured pruning, sparsity-stationary

dataflow
Efficient memory usage, handles
complex sparsity patterns

ESSA [58] Inference Throughput Optimiza-
tion

Adaptive spike compression, flexible fan-in/fan-
out

High throughput, handles both tem-
poral & spatial sparsity

SATA [7] Sparsity-Aware Training Systolic architecture, exploits sparsity in spikes,
gradients, membrane potentials

Improved training energy effi-
ciency

MF-DSNN [59] Temporal Coding for Biological
Realism

Multiplication-free coding, parallel neuron com-
putations

Enhanced efficiency, aligns with
biological mechanisms

Kuang et al. [60] Input Sparsity Handling On-chip sparse weight storage, adaptive spike
compression/decompression

Optimized for sparse inputs, high
computational efficiency

SpinalFlow [61] Dataflow Optimization Compressed time-stamped input spikes Reduced storage overheads, lower
energy consumption

Aliyev et al. [62] Design Space Exploration Hardware & model parameter alignment Peak performance optimization,
value of exploration

The diversity of hardware also means navigating specialized
programming tools and abstractions, potentially creating ven-
dor lock-in and hindering the portability of SNN solutions.

5) Lack of standardized tools and benchmarks: Comparing
the performance of SNNs fairly across different algorithms and
hardware platforms is hindered by a lack of standardization.
Several current benchmarks focus on simple datasets (e.g.,
MNIST, FashionMNIST) [54], which do not fully capture the
strengths of SNNs in handling temporal or spiking sensor data
(e.g., neuromorphic vision sensors, audio). While there is a
growing body of work focused on developing neuromorphic
datasets (e.g., [55]) the development of SNNs would benefit
from more comprehensive benchmarks that include tasks like
dynamic object recognition, spatiotemporal pattern analysis,
and processing event-based sensor data, reflecting real-world
scenarios where SNNs could excel. Additionally, software
frameworks for SNNs [44] currently lack the maturity of
debugging, profiling, and hardware mapping tools available for
ANNs, potentially slowing down the research and deployment
cycle of SNNs.

VI. SURVEY OF SPARSITY-AWARE HARDWARE
ARCHITECTURES FOR SNNS

Addressing the challenges in hardware-software co-design
for sparsity-aware SNNs demands specialized hardware that
can seamlessly handle the unique computational demands of
these networks. The potential for extreme energy efficiency
hinges on architectures explicitly designed to exploit irregular
sparsity patterns and event-driven communication. Table II
summarizes several innovative designs and approaches that
have emerged. This section surveys some of the recent ad-
vances in this field, providing a representative overview of the
strategies being explored to unlock the power of sparsity-aware
SNN hardware.

One notable sparsity-aware implementation is Cerebron, a
reconfigurable architecture that effectively handles both spatial
and temporal sparsity in SNNs [56]. It utilizes an online
channel-wise workload scheduling strategy to maximize data
reuse and reduce computation time. This leads to significant

reductions in prediction energy and faster processing, high-
lighting the importance of exploiting sparsity for neuromor-
phic computing.

Liu et al. [57] introduced the MISS (Memory-based Ir-
regular Sparsity Support) framework to tackle irregular spar-
sity with a combination of software and hardware optimiza-
tions. The framework applies unstructured pruning to synap-
tic weights for increased efficiency. The hardware utilizes
a sparsity-stationary data flow to optimize memory usage
and minimize processing overheads associated with sparsity,
improving energy efficiency and speed. The MISS framework
achieved an average of 36% improvement in energy efficiency
and 23% speedup over baseline SNN accelerators by ex-
ploiting irregular sparsity in both input spikes and synaptic
weights. Kuang et al. [58] presented an accelerator called
ESSA (Efficient Sparse SNN Accelerator) that targets both
temporal sparsity (in spike events) and spatial sparsity (in
weights) for enhanced SNN inference throughput. Key de-
sign features include adaptive spike compression for efficient
handling of sparse spike patterns and a flexible fan-in/fan-
out trade-off to work within neuromorphic system constraints.
Results showed that ESSA achieved a performance equivalent
of 253.1 GSOP/s and an energy efficiency of 32.1 GSOP/W
for 75% weight sparsity on a Xilinx Kintex Ultrascale FPGA,
showing significant improvements in throughput and energy
savings compared to other neuromorphic processors.

Unlike the prior works, which focused on inference, Yin
et al. [7] proposed a sparsity-aware accelerator for training
called SATA. SATA (Sparsity-Aware Training Accelerator
for SNNs) focuses on making SNN training more efficient
using backpropagation through time (BPTT). Its systolic-based
accelerator architecture exploits various forms of sparsity (in
spikes, firing function gradients, and membrane potentials) to
improve training energy efficiency. SATA’s analysis demon-
strates that SNN training can be less energy-intensive than
traditional ANN training. The analysis showed that although
SNN training consumed approximately 1.27 times more total
energy than ANNs when considering sparsity, it improved



computational energy efficiency by 5.58 times over non-
sparsity exploiting methods.

Another sparsity-aware implementation, the MF-DSNN ac-
celerator [59], focuses on a temporal coding scheme that
removes the need for multiplication, enhancing biological
realism. In concert with minimizing weight data access, this
design achieves superior performance and energy efficiency,
exemplifying the advantage of leveraging temporal sparsity.

Further exploring optimizations, an event-driven SNN ac-
celerator by Kuang et al. [60] features on-chip sparse weight
storage and a self-adaptive spike compression/decompression
mechanism, optimizing its handling of input spike sparsity.
This enhances both speed and computational efficiency, evi-
denced by its high GSOPs/s performance even under elevated
weight sparsity. The SpinalFlow architecture [61] tackles SNN
efficiency through a novel data flow strategy that processes
compressed, time-stamped sequences of input spikes. This
substantially reduces storage overheads and computational
cost, demonstrating the power of optimized data handling in
lowering energy consumption and boosting performance.

In the domain of sparsity-aware design space exploration,
Aliyev et al. [62] focused on exploring the vast design
space of sparsity-aware SNN accelerators. Their work sought
configurations that provide peak performance by carefully
aligning hardware and SNN model parameters. The proposed
hardware leverages SNN sparsity for significant reductions in
resource usage and increased speed. This work underscores the
value of thorough design space exploration in creating highly
efficient SNN accelerators. The proposed sparsity-aware SNN
accelerator designs achieved up to 76% reduction in hardware
resources and a speed increase of up to 31.25 times, validating
the effectiveness of tailoring hardware to specific sparsity-
aware configurations for optimal performance.

Collectively, these advancements showcase the rapid
progress in SNN accelerator design. By strategically exploiting
different dimensions of sparsity, more efficient, effective, and
biologically plausible computing models can be created.

VII. CONCLUSION

We provided an overview of the hardware-software co-
design of sparse SNNs, emphasizing the critical role of spar-
sity in achieving energy-efficient neuromorphic computing.
Key takeaways include the understanding that sparsity is a dy-
namic property, influenced by various factors such as network
architecture, training algorithms, neuron models, and input
encoding methods. The exploration of different sparsity-aware
hardware architectures reveals the potential for significant
performance and energy efficiency gains through specialized
designs that exploit irregular sparsity patterns and event-driven
communications. The insights presented in this paper pave the
way for future research in developing neuromorphic systems
that fully exploit the computational advantages of sparse
SNNs, enabling highly energy-efficient artificial intelligence
in resource-constrained systems.

ACKNOWLEDGMENT

This work was partially supported by the Technology and
Research Initiative Fund (TRIF) provided to the University of

Arizona by the Arizona Board of Regents (ABOR) and by the
National Science Foundation under grant CNS-1844952.

REFERENCES

[1] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, “Deep learning in spiking neural networks,” Neural networks,
vol. 111, pp. 47–63, 2019.

[2] P. Foldiak, “Sparse coding in the primate cortex,” The handbook of brain
theory and neural networks, 2003.

[3] A. Spanne and H. Jörntell, “Questioning the role of sparse coding in the
brain,” Trends in neurosciences, vol. 38, no. 7, pp. 417–427, 2015.

[4] F. Faghihi, S. Cai, and A. A. Moustafa, “A neuroscience-inspired spik-
ing neural network for eeg-based auditory spatial attention detection,”
Neural Networks, vol. 152, pp. 555–565, 2022.

[5] H. Eavani, T. D. Satterthwaite, R. Filipovych, R. E. Gur, R. C. Gur,
and C. Davatzikos, “Identifying sparse connectivity patterns in the brain
using resting-state fmri,” Neuroimage, vol. 105, pp. 286–299, 2015.

[6] R. Brette, “Computing with neural synchrony,” PLoS computational
biology, vol. 8, no. 6, p. e1002561, 2012.

[7] R. Yin, A. Moitra, A. Bhattacharjee, Y. Kim, and P. Panda, “Sata:
Sparsity-aware training accelerator for spiking neural networks,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2022.

[8] I. Aliyev and T. Adegbija, “Pulse: Parametric hardware units
for low-power sparsity-aware convolution engine,” arXiv preprint
arXiv:2402.06210, 2024.

[9] F. Ponulak and A. Kasinski, “Introduction to spiking neural networks:
Information processing, learning and applications,” Acta neurobiologiae
experimentalis, vol. 71, no. 4, pp. 409–433, 2011.

[10] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input,” Biological cybernetics, vol. 95, pp. 1–
19, 2006.

[11] P. Lansky, P. Sanda, and J. He, “The parameters of the stochastic
leaky integrate-and-fire neuronal model,” Journal of Computational
Neuroscience, vol. 21, pp. 211–223, 2006.

[12] M. Nelson and J. Rinzel, “The hodgkin-huxley model,” The book of
genesis, vol. 2, 1995.

[13] X. She, S. Dash, D. Kim, and S. Mukhopadhyay, “A heterogeneous
spiking neural network for unsupervised learning of spatiotemporal
patterns,” Frontiers in Neuroscience, vol. 14, p. 615756, 2021.

[14] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri,
and B. Linares-Barranco, “Stdp and stdp variations with memristors
for spiking neuromorphic learning systems,” Frontiers in neuroscience,
vol. 7, p. 2, 2013.

[15] B. Han and K. Roy, “Deep spiking neural network: Energy efficiency
through time based coding,” in European Conference on Computer
Vision. Springer, 2020, pp. 388–404.

[16] R. Rojas and R. Rojas, “The backpropagation algorithm,” Neural net-
works: a systematic introduction, pp. 149–182, 1996.

[17] T. Bu, W. Fang, J. Ding, P. Dai, Z. Yu, and T. Huang, “Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural
networks,” arXiv preprint arXiv:2303.04347, 2023.

[18] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based opti-
mization to spiking neural networks,” IEEE Signal Processing Magazine,
vol. 36, no. 6, pp. 51–63, 2019.

[19] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “Enabling deep spiking
neural networks with hybrid conversion and spike timing dependent
backpropagation,” arXiv preprint arXiv:2005.01807, 2020.

[20] Z. Kang, L. Wang, S. Guo, R. Gong, S. Li, Y. Deng, and W. Xu,
“Asie: An asynchronous snn inference engine for aer events processing,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 16, no. 4, pp. 1–22, 2020.

[21] S. Zhou, X. Li, Y. Chen, S. T. Chandrasekaran, and A. Sanyal,
“Temporal-coded deep spiking neural network with easy training and
robust performance,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 35, no. 12, 2021, pp. 11 143–11 151.

[22] J.-M. Fellous, P. H. Tiesinga, P. J. Thomas, and T. J. Sejnowski, “Dis-
covering spike patterns in neuronal responses,” Journal of Neuroscience,
vol. 24, no. 12, pp. 2989–3001, 2004.



[23] J. Sommer, M. A. Özkan, O. Keszocze, and J. Teich, “Efficient hardware
acceleration of sparsely active convolutional spiking neural networks,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 11, pp. 3767–3778, 2022.

[24] D. Lew, K. Lee, and J. Park, “A time-to-first-spike coding and conversion
aware training for energy-efficient deep spiking neural network processor
design,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, 2022, pp. 265–270.

[25] S. Y. A. Yarga, J. Rouat, and S. Wood, “Efficient spike encoding
algorithms for neuromorphic speech recognition,” in Proceedings of the
International Conference on Neuromorphic Systems 2022, 2022, pp. 1–
8.

[26] Z. Wang, X. Gu, R. S. M. Goh, J. T. Zhou, and T. Luo, “Efficient
spiking neural networks with radix encoding,” IEEE Transactions on
Neural Networks and Learning Systems, 2022.

[27] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct training for
spiking neural networks: Faster, larger, better,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp.
1311–1318.

[28] S. Singh, A. Sarma, S. Lu, A. Sengupta, V. Narayanan, and C. R.
Das, “Gesture-snn: Co-optimizing accuracy, latency and energy of snns
for neuromorphic vision sensors,” in 2021 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED). IEEE,
2021, pp. 1–6.

[29] H. Kim, S. Hwang, J. Park, S. Yun, J.-H. Lee, and B.-G. Park, “Spiking
neural network using synaptic transistors and neuron circuits for pattern
recognition with noisy images,” IEEE Electron Device Letters, vol. 39,
no. 4, pp. 630–633, 2018.

[30] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo,
T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza, J. Kusnitz,
M. Debole, S. Esser, T. Delbruck, M. Flickner, and D. Modha, “A low
power, fully event-based gesture recognition system,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 7243–7252.

[31] B. Yusob, Z. Mustaffa, and J. Sulaiman, “Anomaly detection in time
series data using spiking neural network,” Advanced Science Letters,
vol. 24, no. 10, pp. 7572–7576, 2018.

[32] E. Nichols, L. J. McDaid, and N. Siddique, “Biologically inspired snn
for robot control,” IEEE transactions on cybernetics, vol. 43, no. 1, pp.
115–128, 2012.

[33] L. Yu and Y. Yu, “Energy-efficient neural information processing in
individual neurons and neuronal networks,” Journal of Neuroscience
Research, vol. 95, no. 11, pp. 2253–2266, 2017.

[34] T. Bricken, R. Schaeffer, B. Olshausen, and G. Kreiman, “Emergence
of sparse representations from noise,” 2023.

[35] N. Schweighofer, K. Doya, and F. Lay, “Unsupervised learning of
granule cell sparse codes enhances cerebellar adaptive control,” Neu-
roscience, vol. 103, no. 1, pp. 35–50, 2001.

[36] Y. Xu, Z. Xiao, and X. Tian, “A simulation study on neural ensemble
sparse coding,” in 2009 International Conference on Information Engi-
neering and Computer Science. IEEE, 2009, pp. 1–4.

[37] X. Li, X. Lu, and H. Wang, “Robust common spatial patterns with
sparsity,” Biomedical Signal Processing and Control, vol. 26, pp. 52–
57, 2016.

[38] C. D. Hassall, P. C. Connor, T. P. Trappenberg, J. J. McDonald, and
O. E. Krigolson, “Learning what matters: a neural explanation for the
sparsity bias,” International Journal of Psychophysiology, vol. 127, pp.
62–72, 2018.

[39] R. C. Gerum, A. Erpenbeck, P. Krauss, and A. Schilling, “Sparsity
through evolutionary pruning prevents neuronal networks from overfit-
ting,” Neural Networks, vol. 128, pp. 305–312, 2020.

[40] E. Herbert and S. Ostojic, “The impact of sparsity in low-rank recurrent
neural networks,” PLOS Computational Biology, vol. 18, no. 8, p.
e1010426, 2022.

[41] K. D. Harris, “Additive function approximation in the brain,” arXiv
preprint arXiv:1909.02603, 2019.

[42] N. Brunel and M. C. Van Rossum, “Lapicque’s 1907 paper: from frogs
to integrate-and-fire,” Biological cybernetics, vol. 97, no. 5, pp. 337–339,
2007.

[43] I. Aliyev and T. Adegbija, “Fine-tuning surrogate gradient learning
for optimal hardware performance in spiking neural networks,” arXiv
preprint arXiv:2402.06211, 2024.

[44] J. K. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz, G. Dwivedi,
M. Bennamoun, D. S. Jeong, and W. D. Lu, “Training spiking
neural networks using lessons from deep learning,” arXiv preprint
arXiv:2109.12894, 2021.

[45] Y. Dong, R. Ni, J. Li, Y. Chen, J. Zhu, and H. Su, “Learning accu-
rate low-bit deep neural networks with stochastic quantization,” arXiv
preprint arXiv:1708.01001, 2017.

[46] B. A. y Arcas, A. L. Fairhall, and W. Bialek, “Computation in a single
neuron: Hodgkin and huxley revisited,” Neural computation, vol. 15,
no. 8, pp. 1715–1749, 2003.

[47] N. Abderrahmane and B. Miramond, “Information coding and hardware
architecture of spiking neural networks,” in 2019 22nd Euromicro
Conference on Digital System Design (DSD). IEEE, 2019, pp. 291–298.

[48] S. Oh, D. Kwon, G. Yeom, W.-M. Kang, S. Lee, S. Y. Woo, J. S.
Kim, M. K. Park, and J.-H. Lee, “Hardware implementation of spik-
ing neural networks using time-to-first-spike encoding,” arXiv preprint
arXiv:2006.05033, 2020.

[49] S. Carrillo, J. Harkin, L. McDaid, S. Pande, S. Cawley, and F. Morgan,
“Adaptive routing strategies for large scale spiking neural network
hardware implementations,” in Artificial Neural Networks and Machine
Learning–ICANN 2011: 21st International Conference on Artificial
Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part
I 21. Springer, 2011, pp. 77–84.

[50] B. Meftah, O. Lezoray, and A. Benyettou, “Segmentation and edge
detection based on spiking neural network model,” Neural Processing
Letters, vol. 32, pp. 131–146, 2010.

[51] C. Li, L. Ma, and S. Furber, “Quantization framework for fast spiking
neural networks,” Frontiers in Neuroscience, vol. 16, p. 918793, 2022.

[52] J. Schemmel, S. Billaudelle, P. Dauer, and J. Weis, “Accelerated analog
neuromorphic computing,” in Analog Circuits for Machine Learning,
Current/Voltage/Temperature Sensors, and High-speed Communication:
Advances in Analog Circuit Design 2021. Springer, 2021, pp. 83–102.

[53] D. Miyashita, S. Kousai, T. Suzuki, and J. Deguchi, “A neuromorphic
chip optimized for deep learning and cmos technology with time-domain
analog and digital mixed-signal processing,” IEEE Journal of Solid-State
Circuits, vol. 52, no. 10, pp. 2679–2689, 2017.

[54] Y. Sakemi, K. Yamamoto, T. Hosomi, and K. Aihara, “Sparse-firing
regularization methods for spiking neural networks with time-to-first-
spike coding,” Scientific Reports, vol. 13, no. 1, p. 22897, 2023.

[55] W. He, Y. Wu, L. Deng, G. Li, H. Wang, Y. Tian, W. Ding, W. Wang,
and Y. Xie, “Comparing snns and rnns on neuromorphic vision datasets:
Similarities and differences,” Neural Networks, vol. 132, pp. 108–120,
2020.

[56] Q. Chen, C. Gao, and Y. Fu, “Cerebron: A reconfigurable architecture
for spatiotemporal sparse spiking neural networks,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 10, pp.
1425–1437, 2022.

[57] F. Liu, Z. Wang, W. Zhao, Y. Chen, T. Yang, X. Yang, and L. Jiang,
“Randomize and match: Exploiting irregular sparsity for energy efficient
processing in snns,” in 2022 IEEE 40th International Conference on
Computer Design (ICCD). IEEE, 2022, pp. 451–454.

[58] Y. Kuang, X. Cui, Z. Wang, C. Zou, Y. Zhong, K. Liu, Z. Dai, D. Yu,
Y. Wang, and R. Huang, “Essa: Design of a programmable efficient
sparse spiking neural network accelerator,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 30, no. 11, pp. 1631–1641,
2022.

[59] Y. Zhang, S. Wang, and Y. Kang, “Mf-dsnn: An energy-efficient high-
performance multiplication-free deep spiking neural network accelera-
tor,” in 2023 IEEE 5th International Conference on Artificial Intelligence
Circuits and Systems (AICAS). IEEE, 2023, pp. 1–4.

[60] Y. Kuang, X. Cui, C. Zou, Y. Zhong, Z. Dai, Z. Wang, K. Liu, D. Yu, and
Y. Wang, “An event-driven spiking neural network accelerator with on-
chip sparse weight,” in 2022 IEEE International Symposium on Circuits
and Systems (ISCAS). IEEE, 2022, pp. 3468–3472.

[61] S. Narayanan, K. Taht, R. Balasubramonian, E. Giacomin, and P.-
E. Gaillardon, “Spinalflow: An architecture and dataflow tailored for
spiking neural networks,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2020, pp. 349–
362.

[62] I. Aliyev, K. Svoboda, and T. Adegbija, “Design space exploration of
sparsity-aware application-specific spiking neural network accelerators,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
2023.


