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ABSTRACT In recent years, the rapid growth of big data and the increasing demand for high-performance
computing have fueled the development of novel computing architectures. Among these, in-memory
computing architectures that leverage the high-density and low-latency nature of modern memory technologies
have emerged as promising solutions for domain-specific computing applications. STT-MRAM (Spin Transfer
Torque Magnetic Random Access Memory) is one of such memory technology that holds great potential for
in-memory computing due to numerous advantages such as non-volatility, high density, high endurance, and
low power consumption. This survey paper aims to provide a comprehensive overview of the state-of-the-art
in STT-MRAM-based domain-specific in-memory computing (DS-IMC) architectures. We examine the
challenges, opportunities, and trade-offs associated with these architectures from the perspective of various
application domains, like machine learning, image and signal processing, and data encryption. We explore
different experimental research tools used in studying these architectures, guidelines for efficiently designing
them, and gaps in the state-of-the-art that necessitate future research and development.

INDEX TERMS domain-specific architectures, in-memory computing, spin-transfer torque magnetic RAM.

I. INTRODUCTION AND MOTIVATION

Most modern computer systems are based on the von Neu-
mann architecture, where memory units are separated from
the processing units. During program execution, data must
be transferred back and forth between the processing and
memory units, leading to significant costs in latency and
energy. The latency associated with accessing data from the
memory units is the critical performance bottleneck for a
broad range of applications, given the "memory wall" [1]—
the significant disparity between the speed of the memory
and processing units. In addition, the energy cost of moving
data is another significant challenge, given the fact that the
computing systems are power-limited. Current approaches
such as graphics processing units (GPUs) [2] or application-
specific processors [3], [4] are unlikely to overcome the
problem of data movement because they are designed to
perform specific tasks or functions and are not intended to
handle the complexity of managing data movement between

different components. Therefore, novel architectures must be
explored to address this perennial problem inmodern computer
systems.

One promising and increasingly popular approach to mit-
igating the overheads of data transfer is to physically place
computing units closer to the memory. This concept is known
as near-memory computing (NMC) and has benefited signifi-
cantly from the recent commercialization of advanced memory
modules such as hybrid memory cube (HMC) [5], advances in
die stacking technology, and high bandwidth memory (HBM)
[6]. However, a physical separation between the memory and
processing units in NMC architectures still exists. In-memory
computing (IMC) [7], [8], illustrated in Fig. 1, enhances NMC
by co-locating the memory and processing elements, such
that computations are performed within the memory. This is
achieved by exploiting the attributes of the memory devices,
like their array-level organization, peripheral circuitry, and
control logic.
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FIGURE 1: Computing architectures a) Typical Von Neumann architecture b) in-memory computing architecture

In general, IMC architectures can be designed as application-
specific integrated circuits (ASICs), general-purpose archi-
tectures, or domain-specific architectures. ASICs are highly
optimized for specific computing tasks and offer the highest
performance, but they are limited in their versatility and can be
expensive to develop and manufacture. Alternatively, general-
purpose designs feature generalized arithmetic-logic units that
are more versatile but may not provide the level of performance
required for some applications. This paper is motivated by
the benefits of domain-specific design over ASIC or general-
purpose designs [9], [10]. Domain-specific designs focus on
providing optimal performance for specific domains (i.e., a
group of applications with similar characteristics and com-
putational needs) and enable a compromise between ASICs
and general-purpose designs for addressing the memory and
power walls inherent in modern-day computing architectures.

A. OVERVIEW OF EMERGING MEMORY TECHNOLOGIES
Today’s computing systems heavily rely on the memory
subsystem, which plays a crucial role in the performance and
energy of computer systems. In most traditional computers,
the memory hierarchy includes caches implemented using
static random-access memory (SRAM) and main memory
implemented with dynamic random-access memory (DRAM).
These memory technologies operate on a charge storage
mechanism, meaning they store data by manipulating the
electrical charge state of their storage elements. However,
challenges arise as these charge-based memories encounter
difficulties in scaling down to the 10-nm node and beyond.
The nanoscale susceptibility to charge loss poses challenges
in performance, reliability, and noise margin. To address
this, non-charge-based emerging memory technologies, most

commonly, non-volatile memories (NVMs), are actively re-
searched to revolutionize the memory hierarchy [11]. The
ideal memory device features include fast read/write speed
(<ns), low operation voltage (<1 V), low energy consumption
( fJ/b for read/write), long data retention time (>10 years), long
read/write cycling endurance (>10 17 cycles), and excellent
scalability (<10 nm). While achieving all these ideals in a
single universal memory device is nearly impossible, emerging
resistance-based NVM technologies like pin-transfer torque
magnetic Random Access Memory (STT-MRAM) , phase-
change RAM (PCRAM), and resistive RAM (ReRAM), among
others, are pursued to fulfill some of these characteristics
[12], [13], [14]. These NVMs share common features as
nonvolatile two-terminal devices, distinguishing states through
high-resistance state (HRS) and low-resistance state (LRS)
with differing switching mechanisms. STT-MRAM uses fer-
romagnetic layers, and relies on the manipulation of electron
spins to switch between these resistance states, while PCRAM
relies on phase change in materials to achieve the same
objective, and ReRAM changes resistance by altering the
conductivity of a material, typically metal oxides, through the
migration of defects. These NVM technologies offer diverse
solutions for nonvolatile data storage with various advantages
and characteristics. For instance, STT-MRAM has smaller
cell area compared to SRAM, maintaining low programming
voltage, fast read/write speed, and long endurance, making it
an attractive replacement for embedded memories in the last
level-cache and main memories [15], [16], [17]. PCRAM and
ReRAM offer low programming voltage and fast write/read
speed, making them attractive as a replacement for existing
technologies in resource-constrained memory systems.
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B. SUITABILITY OF STT-MRAM FOR IMC

To fully exploit the energy, performance, and area benefits
of domain-specific designs, the IMC architecture must be de-
signed using technologies uniquely suited to domain-specific
IMC designs. STT-MRAM—the focus of this paper—is one of
the most promising emerging technologies for domain-specific
IMC architectures due to its unique combination of properties,
including non-volatility, high endurance, high density, and
extremely low leakage. In addition, STT-MRAM’s features
include energy-efficient operation with non-constant refresh
cycles, low read and write latencies compared to other NVMs,
low power consumption [18], compact cell size that allows for
denser memory placement near computational units, robust
integration capabilities facilitating the co-location of memory
and processing units on a single chip, seamless compatibility
with CMOS logic for smooth interaction between memory and
computation elements, support for parallelism and pipelining,
and the capacity to modify individual bits for efficient data
storage, manipulation, and processing within IMC scenarios
[19], [20], [21].

As a result, a rapidly growing body of research focuses on
exploring designs for STT-MRAM-based IMC. There have
been a few prior works that have surveyed the state-of-the-
art in STT-MRAM-based IMC, some of which emphasize
STT-MRAM computing from the perspectives of the bit-
cell, circuit, and system levels [22], [23], [24]. However, our
survey approaches STT-MRAM-based IMC from the unique
perspective of domain-specific designs. Since much prior work
has shown the clear benefits of domain-specific designs over
ASICs or general-purpose designs for emerging computer
architectures [25], [26], [27], [9], we make a strong case
for more research emphasis on "STT-MRAM-based domain-
specific IMC (DS-IMC)". Given that the development of STT-
MRAM-based IMC architectures is still in its early stages,
and further research is required to fully realize the potential
of this technology, this survey aims to explore in detail the
potentials of STT-MRAM-based DS-IMC. We will examine
the challenges, opportunities, and trade-offs associated with
these architectures and discuss their potential for future re-
search and development. The analysis covers aspects such as
STT-MRAM cell design, type of MTJ, and parameters like
CMOS size and state-of-the-art simulation tools used in the
examined works. The survey categorizes articles based on real-
world scenarios, including applications in Machine Learning
(BNN, CNN, SNN), Image Processing, and Data Encryption.
Additionally, driven by insights from the surveyed works, we
enumerate some design guidelines for STT-MRAM-based DS-
IMC and discuss challenges and opportunities associated with
each design to offer a comprehensive overview of the current
landscape in this research domain.
In summary, this survey makes the following main contri-

butions:

• We review recent works proposed for implementing STT-
MRAM IMC from the perspective of domain-specific
architectures. Although complementary to other sur-

veys that focus on circuit-level [22], [23], [24] and
architectural-level [28], [29] designs, this is the first
survey that explores the tradeoffs involved with domain-
specific computing using STT-MRAM-based IMC. The
survey is performed from the perspective of three im-
portant domains: machine learning, image and signal
processing, and data encryption, and we draw important
insights that can be applied to other application domains.

• To enable practical research on STT-MRAM-based DS-
IMC, we explore different simulators and tools that can
be used to implement STT-MRAM IMC for a variety of
domains.

• We discuss some design guidelines, challenges, and gaps
associated with STT-MRAM-based DS-IMC. There is
a strong need to understand the factors that currently
limit the design and deployment of DS-IMC using STT-
MRAM. We provide some suggestions on research direc-
tions for addressing these gaps.

II. BACKGROUND
STT-MRAM is a non-volatile memory (NVM) technology
that outperforms other technologies such as ferroelectric
field effect transistor (Fe-FET), PCM, and RRAM, partic-
ularly in terms of read time and energy efficiency [28]. In
addition, STT-MRAM, more so than many other emerging
NVM technologies, has demonstrated commercial viability
[30], making it one of the best alternatives for IMC stud-
ies. Choe et al. [31] emphasize the dynamic research and
development of STT-MRAM technology by major industry
players, including Everspin Technologies, GlobalFoundaries,
Avalanche Technologies, Sony, Micron, IMEC, CEA-LETI,
Applied Materials, Samsung, Fujitsu, IBM, TSMC, and Spin
Transfer Technologies (STT). Notably, Everspin introduced a
3rd generation standalone 256Mb STT-MRAM (pMTJ) and
a 1Gb STT-MRAM. Collaborative efforts by Samsung, Sony,
and Avalanche resulted in the development of 28nm eSTT-
MRAM (pMTJ) and eSTT-MRAM (pMTJ) with a 40nm node.
Everspin offers a range of MRAM products, including Toggle-
mode MRAM (1st generation) and STT-MRAM (2nd to 4th
generation), with variations in MTJ structures.

Despite the appealing features of STT-MRAM, its adoption
faces challenges. Chi et al. [18] point out that the write opera-
tion is generally slower and more energy-consuming than the
read operation. As technology advances, the decreasing write
current, coupled with the limited scalability of read current,
leads to increased read disturbance errors [32]. Additionally,
overstressing theMTJ with write voltage may hinder achieving
the required endurance for on-chip caches, as highlighted by
Yu et al. [33].

In this section, we provide a summary background on
STT-MRAM and discuss its retention time, an important
configurable design parameter in STT-MRAMwith significant
implications for its efficiency. Thereafter, we summarize some
of the main challenges associated with using STT-MRAM
in practice and explore some methods for addressing those
challenges. In addition, we also provide a brief overview of
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domain-specific architectures (DSA) and the components that
make up a DSA.

A. BACKGROUND ON STT-MRAM
1) Overview of STT-MRAM
a: Basics of STT-MRAM
STT-MRAM is comprised of a magnetic tunnel junction (MTJ)
cell, which is used to store data, and an NMOS transistor,
as shown in Figure 2. A typical MTJ cell consists of two
ferromagnetic layers separated by an oxide layer. Themagnetic
orientation of one layer, the free layer, can be freely rotated,
while the magnetization of the other layer, the reference layer,
is fixed. Thus, the magnetization of the free layer can be
parallel or anti-parallel to the reference layer. As a result, the
electric resistance of the MTJ cell changes to high for anti-
parallel and low for parallel magnetization. These two states
represent bits "0" and "1", respectively. The difference in the
electric resistance values denoted as RAP and RAP, respectively,
is what is known as "tunnel magneto-resistance" (TMR) ratio.
TMR refers to the ratio of the difference in resistance between
the low-resistance state (parallel magnetization) and its high-
resistance state (anti-parallel magnetization) to the resistance
in the parallel state. Increasing the TMR ratio increases the
separation between states and improves the reliability of the
cell [34]. This ratio is crucial for the reliable reading of data
stored in the memory cell. The TMR ratio is given by the
following equation [35]:

TMR =
RAP − RP

RP
(1)

Data stored in an STT-MRAM cell is read when a read
current (Ir ) flows through the MTJ cell to sense its resistance
state. Likewise, data is written into an STT-MRAM cell when
a write current (Iw) is much higher than the read and the critical
current (Ic), which is the minimum current required to switch

the magnetization of the MTJ for a given write pulse. A high
write current or pulse results in high dynamic energy. This
issue is further exacerbated due to the stochastic nature of the
writing (switching) process as well as the high sensitivity to
process variation, thereby leading to large timing margins [36],
as described in Section II-A2d. The key parameter of the MTJ
is the Thermal Stability Factor∆, which specifies the stability
of the magnetic orientation of the free layer against thermal
noise [37], [38], [39]

Lots of research works address some of the issues discussed
above as they relate to MTJs. For instance, Amirany et
al. [40] develop a hardware model for a stochastic neuron
utilizing the stochastic behavior of MTJs in the subcritical
current regime. The model consists of four main components:
Pre-Charge Sense Amplifier (PCSA), Fixed MTJs, recon-
figurable MTJ, and write and control circuits. The PCSA
senses resistance between two MTJs during pre-charge and
evaluation phases, facilitating MTJ reconfiguration. Fixed
MTJs serve as reference resistors, and reconfigurable MTJ
introduces stochasticity. Write and control circuits manage
the reconfigurable MTJ through deterministic restoring and
stochastic switching. Image binary simulation results with over
10,000 images demonstrate approximately 0.25% PSNR and
0.02% SSIM variation compared to the software counterpart.
While performing sensing, a bit-line may exhibit varying

current levels depending on the stored bit. Likewise, sensing
the currents across multiple word-lines will yield distinct
output current values. Three potential current values can
be generated, contingent upon whether the bits are "1" or
"0." These current values encompass I0−0, I1−0/0−1, and
I1−1. These reference currents are employable for direct
computation of AND/NAND or NOR/OR operations.
Figure 3 illustrates a typical STT-MRAM in-memory

computational architecture. This configuration encompasses
several key components, including a row decoder, word line
(WL) drivers, memory array, peripheral circuits comprising
column decoders, sense amplifiers, and a digital interface.

The role of the row decoder is to select and activate a specific
row of memory cells based on the provided address, enabling
efficient data access. Meanwhile, the word line is responsible
for connecting to the memory cells within a row, facilitating
both data reading from and writing to these cells.
Furthermore, the column decoder plays a vital role by

selecting and activating a particular column of memory cells
for read or write operations. To enhance data accuracy during
read processes, the sense amplifier amplifies and detects
the subtle voltage differences that represent data within the
memory cells.
The peripheral circuitry’s function is to manage various

aspects of data input and output, addressing and controlling
functions, thus streamlining the data storage and retrieval
process. Lastly, the digital interface plays a crucial role in
facilitating communication between the memory and external
devices, enabling seamless data transfer and control command
execution.
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Peripheral Circuits

Memory Array

Lo
ca

l R
ow

 D
ec

od
er

s 
&

 
W

L 
D

riv
er

s

Sense 
Amplifier 

[0]

Local Column Decoders & 
SL/BL switch matrix

Sense 
Amplifier 

[N]

Digital Interface

1T-1MTJ 
STT-MRAM

G
lo

b
al

 R
o

w
 D

ec
o

d
er

Sub-array [0]

Sub-array [1]

Sub-array [N]

Global Row Buffer

STT-MRAM Cells

FIGURE 3: Illustration of STT-MRAM in-memory computing architecture hierarchy. An STT-MRAM bank consists of
several subarrays, a global new decoder, and a global row decoder. Each subarray contains of STT-MRAM cells, local
row decoder, WL drivers, peripheral circuits (consisting of local column decoder, SL/BL switch matrix, SAs, etc.)

b: Retention Time in STT-MRAM
In general, the retention time in non-volatile memories refers
to the data-retaining capability of their bit cell regardless of
the presence of a power supply.
The motivation for reducing retention time in the STT-

MRAM cache is to strike a balance between power consump-
tion and performance. By decreasing how long data is stored
before naturally fading, designers can optimize the cache for
lower energy use and faster access. This approach is beneficial
in scenarios where energy efficiency is crucial, like mobile
devices. While it may risk data loss in some cases, it enables
more aggressive power-saving strategies and better aligns with
specific power-performance trade-offs.
In STT-MRAM, this retention time depends on the MTJ

cell’s thermal stability factor. Increasing the thermal stability
factor correlates with extended data retention within the bit-
cell. For example, with a∆ value of 60, it can retain the bit-cell
content for 10 years [37], [38], [39], [41], [42], [43]. This∆
value can be modeled using:

∆ =
V .Hk .Ms

2.KB.T
(2)

where V is the volume of the free layer, Ms is the satura-
tion magnetization, KB is the Boltzmann constant, T is the

temperature in kelvin and Hk is the effective field anisotropy.
The ∆ can be adjusted either by changing the MTJ cell size
during fabrication or by adjusting the Ms and Hk values at the
material level during the stack development.
An MTJ cell with a high∆ value requires high switching

latency and energy. This is because the height of the thermal
barrier is greater for a high∆ value, requiring more current for
a longer duration to perform the switching. Its relation with Ic
can be modeled using the following equation [44]:

Ic =
4.e.KB.T

h
.
α

η
.∆.(1 +

4.π.Meff

2.Hk
) (3)

where h is Planks constant,α is the Landau-Lifshitz- Gilbert
(LLG) damping constant, which plays an important role in the
spin dynamics of ferromagnetic systems [45], η is the STT-
MRAM efficiency parameter and 4π. Meff is the effective
demagnetization field.

2) Challenges with STT-MRAM
With a low∆ value, the STT-MRAMwrite latency and energy
can be significantly reduced. However, reducing the∆ value
increases the retention failure rates and the possibility of read
disturbance and write errors. These are challenges with STT-
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MRAM design that might have significant implications for
the design of STT-MRAM-based IMC architectures.

a: Retention Failure
The retention failures in STT-MRAM occur due to the inherent
thermal fluctuation of the MTJ cell, which can lead to a
change in its magnetic orientation. This can occur regardless
of whether or not memory access is performed. The retention
failure probability (PRF) for a given time period (t) can be
calculated according to [37], [38], [39]:

PRF = 1− exp(
− t

τ.exp(∆)
) (4)

where τ is a constant equal to 1ns. According to the above
equation, a relatively high∆ can significantly improve relia-
bility.

b: Read Decision Failure
During a read operation in STT-MRAM, the stored bit value is
determined by comparing the reference current with the bit-cell
current. Therefore, there must be a reasonable gap between
high- and low-resistance state currents. The read decision
failure occurs when the read circuitry cannot determine the
logic value of the bit-cell. This type of failure is often mitigated
by keeping a higher margin between currents of two resistive
states [46]. This is known as the TMR ratio, as described in
section II-A1a

c: Read Disturbance
Since both read and write currents share the same path in
the STT-MRAM bit-cell, the read current can accidentally
switch the bit-cell content during the read operation time. The
probability of read disturbance (PRD) is strongly dependent on
∆ according to [38], [39]:

PRD = 1− exp(
− tr

τ.exp(∆).(1−
Ir
Ic
)

) (5)

In this equation, ∆ has an exponential influence on the
probability of the read disturbance, such that a small reduction
in ∆, for example, significantly increases the read disturb
probability.

d: Write Error
The write operation in STT-MRAM typically occurs due to the
stochastic switching nature of the bit-cells due to the inherent
randomness associated with the STT phenomenon. In other
words, during a write operation in STT-MRAM, the final state
or value written to a memory cell is not entirely deterministic
or fixed. Instead, it can vary to some extent due to various
factors, including inherent physical properties, environmental
conditions, and manufacturing variations. This stochastic
nature of write operations implies that even when the same data
is written to a memory cell multiple times, the exact outcome
may not be consistent, leading to variations or uncertainty in

the stored data. To address this, error correction and mitigation
techniques are often employed to ensure data reliability despite
the stochastic behavior. One of the techniques involves using
a smaller∆ value, which can accelerate the switching of the
MTJ cell due to the reduction in Ic value. Consequently, the
required switch time of the MTJ reduces for the same target
Write Error Rate (WER) [47], [48].

B. BACKGROUND ON DOMAIN-SPECIFIC ARCHITECTURES

1) Overview Of Domain-Specific Architectures

Moore’s Law has been the main driving force behind in-
novations in computer architecture over the last 5 decades
[49]. Today, it is generally believed that Moore’s Law has
primarily ended (or is finishing) [50], [51], and designers must
explore alternative architectures with low overhead, such as
Domain-Specific Architectures (DSAs). DSAs represent an
emerging paradigm of architectures that optimize data flow for
applications in a target domain through hardware acceleration
while providing programming flexibility [52], [53]. Examples
of recent domains for which DSAs can be highly beneficial
include machine learning, artificial intelligence, signal/image
processing, data encryption, etc. As such, much research
effort is being placed on designing DSAs for these application
domains.
In general, DSAs encompass any computing architecture

that provides the following:

• Specialized processors to boost energy efficiency by
handling common domain-specific tasks in dedicated
hardware. For example, a hardware module designed
for Fast Fourier Transform (FFT) speeds up these oper-
ations, while systolic matrix multiplication processors
enhance AI and machine learning tasks. Google’s Tensor
Processing Unit (TPU) is a prime example, optimized
for machine learning training and inference tasks, incor-
porating hardware, system configurations, and software
frameworks to boost speed [54].

• Flexibility to enable adaptability to a wide range of appli-
cations, from machine learning to other tasks, although
possibly less efficiently. For instance, DSAs designed for
machine learning should handle various computations
in models like Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs). In addition,
they should be capable of executing other neural network
inference operations that cannot be easily implemented
using specialized hardware. An example is a flexible and
efficient deep learning processor (iFPNA) that contains
a controller for data arrangement and 16 neuron slices
for deep neural network computing operations such as
multiply-and-accumulate (MAC), non-linear activation,
element-wise operations, etc. [55].

• Heterogeneous processing elements to cater to contrast-
ing application requirements such as low power, high
performance, energy efficiency, and programmability.

6 VOLUME 11, 2023



2) Hardware Components of Domain-Specific Architectures
Hardware components of Domain-Specific Architectures in-
clude the following: fixed-function accelerators, specialized
processors and domain-specific accelerators, general-purpose
processors, and on-chip interconnects.

• Fixed Function Accelerators, specialized for specific
tasks, maximize energy efficiency when targeting spe-
cialized kernels [56]. While excelling in performance
and energy, they lose efficiency when generalized for
multiple computations. For instance, in autonomous
driving [57], they significantly accelerate deep neural
network inference and image feature extraction, resulting
in a 93x latency improvement. In image processing [58],
they achieve up to a 133x speedup in operations like
matrix computations, feature detection, and tracking.

• Domain-Specific Accelerators (DS-Acc) perform a group
of related functions, enabling extensive design reuse.
Examples include Darwin for bioinformatics [59] and
Spatial [60]. DS-Accs are customized by incorporating
domain knowledge to align hardware designs with do-
main kernels, offering tailored processing for specific
applications [61], [53].

• General-purpose processors, used within Domain-
Specific Architectures (DSAs), offer versatility beyond
specific domain applications and specialized accelerators
[62]. They possess diverse capabilities, including arith-
metic logic units (ALUs) for math and logic operations,
data-holding registers, control units for execution, clocks
for synchronization, and cache memory for performance.
They also handle Input/Output (I/O) with external devices.
Some processors feature extras like virtual memory
and security functions. These attributes make General-
Purpose Processors adaptable for various computing
needs.

• On-Chip Interconnect: One significant challenge with
DSAs is that DSAs experience significant data move-
ment between different processing elements (PEs). This
data movement can account for up to 40% of the total
execution time [63]. PEs are fundamental components
in computing systems found in specialized accelerators
responsible for executing instructions, performing calcu-
lations and carrying out tasks such as arithmetic and logic
operations, data movement, and control flow operation.
Therefore, it is extremely important that the DSA features
efficient on-chip communication hardware, such that data
is moved in a highly energy-efficient manner [64], [65].

III. STT-MRAM IMC HIERARCHY LEVEL
While much prior IMC research emphasizes memory as an
accelerator with kernels running on in-memory processing
units, real-world applications often require combining the
processor with in-memory computing for efficient execution.
This introduces extra data movement across the cache hierar-
chy and potential issues with address translation exceeding
translation lookaside buffer (TLB) capacity. Previous solutions
suggested using compute caches or Processing-in-Cache (PiC)

with SRAM as caches. However, SRAM caches are power-
and space-intensive, and adding processing units can be
impractical, particularly in resource-limited systems [66].

Gajaria et al.’s study [67] investigates the trade-offs associ-
ated with STT-MRAM IMC across different levels of the mem-
ory hierarchy, including main memory and cache hierarchy.
They specifically focus on PiC (Processing in Cache) using
STT-MRAM caches with relaxed retention characteristics and
PiM (Processing in Memory) for non-volatile STT-MRAM
main memory. Their research encompasses eight distinct
workloads categorized into three groups: CPU-dependent,
CPU-dependent with high data reuse, and CPU-dependent
with low data reuse.

The PiC architecture involves cache blocks, each com-
prising a retention counter, a tag, and data storage. These
caches are organized into matrices and subarrays, with each
subarray housing sense amplifiers for word lines (WLs) and
computational logic circuits.
The takeaway points from this study and results are sum-

marized below:
• STT-MRAM offers an excellent opportunity for energy-
and area-efficient PiC while providing latency benefits
similar to those of SRAM

• The study shows that the executing workloads’ charac-
teristics impact the choice of PiC or PiM. In their study,
STT-MRAM PiC outperforms PiM latency optimization
in CPU-dependent workloads with low instruction-level
parallelism (ILP).

• The study shows that the STT-MRAM-based PiC offers
much promise and warrants additional studies for effec-
tive implementation in emerging resource-constrained
systems.

IV. DOMAIN-SPECIFIC IN-MEMORY COMPUTING USING
STT-MRAM
In this section, we review some recently proposed implemen-
tations of STT-MRAM in-memory computing from the per-
spective of domain-specific architectures. Table 1 summarizes
some of the cell architectures used in the surveyed articles,
along with some representative references. To make the survey
tractable, we focus on three domains wheremost of the existing
work has been done. The domains are: machine learning
(ML) (including different kinds of models), image or signal
processing, and data encryption. Despite the limited range of
domains in which STT-MRAM in-memory computing has
been implemented so far, our survey shows that insights from
these domains can be leveraged in a wider variety of domains.

A. MACHINE LEARNING
Machine learning [83] is increasingly popular for analyzing
vast datasets. High-performance computing is needed to
handle the complex math behind ML. IMC architectures are
favored for ML due to their parallelism and data proximity.
They reduce data transfers between memory and processor,
boosting ML performance and efficiency. This benefits vari-
ous ML areas like Binary Convolutional Networks (BCNN),
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TABLE 1: Summary of STT-RAM Cell Design Architectures

Domain Applications References STT-RAM Type MTJ Type MTJ Diameter TMR Logic Operation

Machine Learning

BNN

Yu Pan et al.
[68]

1T-2M
( 1 small,

1 large MTJ)

Multi-level
Cell (MLC)

60 nm
(large MTJ)

40 nm
(small MTJ)

170% Modified Sensing Circuit

Resh et al.
[69]

3T-1M
(memory/logic)
(1T-1M) x 2
(a more
efficient
alternative
to 3T-1M)

Interface
Perpendicular

Modern P
(45 nm)

Future P
(10 nm)

Modern
(133%)

Future
(500%)

Bit-line sensing
Inside memory array

(no use of SA
or external logic)

Cai et al.
[70] 4T-2M

Interface
Perpendicular 40 nm 150%

CSA =>XNOR operation
VSA =>XAC operation

CNN

Cai et al.
[71] (1T-1M) x 3

Interface
Perpendicular 40 nm 50% - 150% Current Sense Amp

Angizi et al.
[72] (1T-1M) x 3

Interface
Perpendicular 65 nm 171.20%

Reconfigurable
Sensing

Amplifier (RSA)
Kim et al.

[73] 1T-1M
Interface

Perpendicular - - Bit-line sensing

Kim et al.
[74] 1T-1M

Interface
Perpendicular - - Bit-line sensing

SNN

Cilasun et al.
[75]

1T-1M
(STT-CRAM)

2T-1M
(SHE-CRAM)

- - - Bit-line sensing

Kang et al.
[76] 1T-1M - - 150%

Pre-charge
Before Summing

Amplifier
Nguyen et al.

[77] 2T-2M In-Plane 60nm x 60nm 100% Bit-line sensing

Agrawa et al.
[78] 1T-1M - - - Voltage Sense Amp

Image
Processing

Image
Processing

Angizi et al.
[79] 1T-1M In-Plane - - Voltage Sense Amp

He et al.
[80] 1T-1M In-Plane (65x 65 x 2)nm 171.20% Modified Sense Amp

Data
Encryption Encryption

Parveen et al.
[81] 1T-1M

Interface
Perpendicular (65x65x2)nm 171.20% SA & 5T DWM

Angizi et al.
[72] (1T-1M) x 3

Interface
Perpendicular (65x65x2)nm 171.20%

Reconfigurable
sensing amplifier

Cilasun et al.
[82]

(2T-1M) x 3
SHE-CRAM

Interface
Perpendicular - - Bit-line sensing

Convolutional Neural Networks (CNN), and Spiking Neural
Networks (SNN) using DS-IMC architectures.

1) Binary Neural Network (BNN)
Binary neural networks (BNN) [84] are neural networks that
use binary weights and activations instead of floating-point
numbers. This allows BNNs to use less memory and compute
power, making them well-suited for deployment on resource-
constrained devices such as mobile phones or Internet of
Things (IoT) devices. Although utilizing binary weights and
activations considerably reduces memory size and accesses,
resulting in faster and more efficient inference [85], this is
usually at the cost of a significant reduction in prediction
accuracy.
Pan et al. [68] propose an MLC-STT-CIM accelerator for

Binary Convolutional Neural Networks (BCNN) to reduce
power consumption. Unlike other designs that store two
addends separately [86], [87], this approach stores two bits in
one cell and performs logic, and add operations between them

in a single cell. While standard STT-MRAM stores one bit per
cell, MLC-STT-MRAM stores two bits per cell, allowing it to
store more data in the same space but making it more complex
and slower.
The MLC-STT-MRAM cell structure includes small and

large MTJs for information storage. The MLC-STT-CIM
structure consists of an array ofMLC-STT-MRAM, amodified
sense circuit (MSC), and amode controller, enabling logic, full-
add, and memory modes. In memory mode, bits are read and
written. In logic mode, various logic operations are realized.
In full-add mode, sum and carryout are computed using XOR
and AND operations.
The BCNN accelerator involves image and kernel banks,

an auxiliary process unit, a global controller, and the MLC-
STT-CIM. Input tensors are stored in image and kernel banks,
and the MLC-STT-CIM handles convolutional operations,
significantly reducing communication energy by eliminating
read and write operations during convolution calculations.
This design offers power-efficient BCNN computations,
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making it a promising approach for AI applications [68].
Resch et al. [69] present PIMBALL, an adaptive BNN

accelerator rooted in Processing In Memory (PIM) technology.
PIMBALL uses computational RAM (CRAM) like spintronic
PIM [88] but adds a transistor for efficient BNN operations.
The CRAM design employs a 2T-1M architecture, combining
memory and logic operations within the array. PIMBALL
offers two array configurations: custom 1T-1M and 3T-1M.
The 1T-1M option, more efficient than the 3T-1M, reduces
transistors, maintaining array density. PIMBALL’s PIM sub-
strate handles key BNN components within the arrays. It excels
in energy efficiency, offering high throughput with low power
consumption. Tile sizes of 1024 x 1024 and 2048 x 2048 were
evaluated, considering ideal and estimated peripheral circuitry.
The research introduces memory cell and array designs for
spintronic PIM, facilitating BNN processing, IoT binary neural
networks, biomedical image analysis, and efficient inference
through hardware acceleration, pruning, and quantization.
Cai et al. [70] introduce an approach for BNN in-memory

computing using reconfigured foundry-supported bit-cells.
They devise a digital in-MRAM method with a designer-
friendly bit-cell array (BCA) configuration, transforming the
standard 1T-1M cell into a pseudo-2T-1M structure by adding
an extra transistor. This results in a 4T-2M structure that
encodes synaptic weights as "+1" and "-1". The 4T-2M-based
BCA enables one-step convolutions with in-memory XNOR
operations, specifically designed for 3x3 convolution kernels.
They also optimize the voltage sense amplifier (VSA) for
BNN operations and introduce a dedicated bit-cell for XNOR-
accumulation (XAC). With this energy-efficient system, recog-
nition latency is improved by 21%, and energy consumption
during operations is reduced by 30% compared to conventional
XAC convolution on theMNIST dataset using a 16 nm FinFET
process and MTJ compact model.

Pham et al. [89] present an STT-MRAM in-memory archi-
tecture tailored for Binary Neural Networks (BNNs) with a
single-access Multiply-Accumulate (MAC) operation. This
design allows unrestricted accumulation across rows, maxi-
mizing array utilization and enhancing BNN model scalability.
Inputs pass through bitlines, and row-wise accumulation of
products between inputs and weights occurs via source lines,
enabling simultaneous activation of multiple rows. The archi-
tecture employs a 2T-2MTJ bitcell, binarizing both weights
and neuron activations as +1 or -1, facilitating unrestricted
accumulation and efficient use of memory array, allowing
larger BNNmodels within a given memory capacity. Instead of
power-intensive bitline current sensing, the select line voltage
is used for BNN vector multiplication. The source line voltage
is expressed using Norton theorem. Circuit enhancements,
including time-based sensing (TBS) and boosting, are intro-
duced in the periphery to improve energy, speed, and area
robustness, ultimately enhancing BNN computation accuracy.

2) Convolutional Neural Networks (CNN)
CNN [90] is a type of deep learning model that uses convo-
lutional layers that automatically and adaptively learn spatial

hierarchies of features from input data. Over the years, there
has been much research on improving the efficiency and per-
formance of CNNs in both software and hardware. One such
optimization involves leveraging STT-MRAM IMC for CNN
applications to leverage the unique features of STT-MRAM to
enable high-performance and low-overhead machine learning.
This section reviews the state-of-the-art designs that leverage
STT-MRAM IMC for CNNs.

Cai et al. [71] suggest a sparse approach for unreliable STT-
MRAM in CNNs. Due to high failure rates in STT-MRAM,
they propose a patch bank concept and an optimized flow for
MTJ device circuits using sparsity. They employ cross-sensing
to enhance STT-MRAM sensing reliability, dividing it into
normal and patch banks. All 3x3 bit cells are read correctly
within the access time in normal banks. In patch banks, marked
bit cells and their neighbors are considered weak, reducing
stored weights during sparse processing. The goal is to boost
STT-MRAM performance and reliability.
The sparse strategy involves several steps to tackle weak

bits and sensing delays in STT-MRAM. Initially, they obtain
a pre-trained CNN model for target functions and detect
weak bits, marking patch banks based on constraints like high
sensing delays. To align these designs, they integrate errors
from patch banks as regularization during the retraining of
the CNN model. After N retraining epochs, the CNN model
mirrors STT-MRAM’s sparse pattern, accommodating error
bits during training. This mitigates sensing errors in STT-
MRAM, ensuring accurate data retrieval from each bit cell
and improving model performance. These steps effectively
reduce the impact of STT-MRAM sensing errors, enabling a
high-performing model.
Angizi et al. [72] present MRIMA, an MRAM-based in-

memory accelerator for efficient IMC. MRIMA repurposes
STT-MRAM arrays into highly parallel units serving as both
non-volatile memory and in-memory logic. It avoids complex
logic integration, using bitline computing techniques for
instant Boolean logic execution within a memory array in
one clock cycle, sidestepping the multicycle logic problem
seen in modern PIM platforms. MRIMA’s structure includes
multiple banks, each with memory matrices (mats) that share
I/O and buffer within a chip. These mats contain processing-
in-memory (PIM) subarrays, serving as the primary site for
computational operations.
The authors demonstrate that MRIMA can enhance the

speed of binary-weight CNNs (BWNNs) and low bit-width
CNNs through its inherent in-memory bit-wise adder and
convolver. To perform CNN operations, the kernels must
undergo quantization before being mapped into the parallel
computational subarrays for feature extraction usingMRIMA’s
computation methods. The resulting feature map is then
activated, generating the output feature maps. There are a
few observations with this design:

• Grouping and transporting the pre-processed data into the
same bank may lead to additional power consumption.

• Caching the post-processed data before utilizing it in
the subsequent procedure can save valuable time in data
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retrieval.
• Ensuring the precision of the reference current/voltage

is crucial to guarantee the accuracy of the results, which
can be a challenging task.

• The scalability of MRIMA to realize complex logic
functions may be limited.

Kim et al. [73] propose BiMDiM, a bi-directional MRAM
in-memory computing system that optimizes memory cell size
during CNN operations. It reuses memory cells for interme-
diate sums and carries and uses a re-scheduling technique to
reduce inefficient half-additions. Simulated on a 28nm CMOS
process, BiMDiM achieves up to 53% better area efficiency
than standard architectures.
BiMDiM consists of a weight storage array and four

computing arrays (CAs) with 1T-1R STT-MRAM cells and
logic operation circuits. Two CAs generate partial products,
while the other two accumulate results. Current Lines (CLs)
interconnect all arrays to facilitate parallel processing within
memory rows, and transmission gates separate CLs within
each section.
Unlike prior designs, such as [91], BiMDiM dramatically

reduces computing array capacity requirements, improving
overall area efficiency by optimizing resource utilization.

Kim et al. [74] present an energy-efficient PIM design that
distributes computation between memory arrays and periph-
eral circuits, reducing data transfer during MAC operations.
This design divides the memory into "groups" where partial
sum operations happen simultaneously, followed by sequential
accumulation. Complex accumulations involving extensive
data transfer are handled by peripheral circuits. They also
suggest further reducing energy consumption by using the
"zero-skipping technique" called SnaPEA [92]. Simulations
demonstrate a 50.4% energy reduction with the distributed
accumulation scheme, plus an extra 8.2% reduction from
SnaPEA integration.

3) Spiking Neural Networks (SNN)
Spiking neural networks (SNNs) aim to closely mimic how
biological neurons work. They use spikes to process informa-
tion, capturing temporal aspects well. This makes them ideal
for studying brain-inspired computing [93] and enabling brain-
like information processing, offering energy efficiency and
suitability for neuromorphic hardware [94], [95]. Still, there
are challenges in SNNs relevant to PIM designs, which re-
searchers are tackling. Key challenges involve handling spike-
based data complexity, devising efficient training methods
due to non-differentiable spikes, designing scalable network
architectures, and implementing specialized hardware for real-
time spike-based computations.

Despite these challenges, solutions are emerging to leverage
IMC for more efficient SNN processing. For instance, Cilasun
et al. [75] propose a highly efficient SNN architecture using
spintronic Computational RAM (CRAM) [96]. They employ
non-volatile in-memory accelerators at the node level for
parallel logic operations within memory, focusing on energy
efficiency. Their communication-centric SNN accelerator

minimizes data transfer overheads and adopts a scalable
array connectivity. Through design exploration, they assess
the accelerator’s sensitivity to technology parameters and
highlight energy consumption reductions compared to recent
ASIC implementations.

The article introduces CRAM [96], a memory design
capable of in-memory logic operations. CRAM has two
variants: Spin Torque Transfer (STT) and Spin-Hall Effect
(SHE). Both use a three-cell structure in a column, with
even and odd bitlines (BLE/O) for reading and writing on
MTJs. BLE/O determines input and output MTJs for logic
operations, while logic lines (LL) link input and output cells for
Boolean computation.Wordlines (WL) select rows formemory
and logic ops. CRAM’s unique advantage is its capacity for
column-level and array-level parallelism, reducing the need
for data transfer outside the array during logic processing.
The authors described how the Leaky-integrate-and-fire

(LIF) neuron model could be implemented with SNN. In the
LIF model, neurons have two main traits: leakage and firing.
Leakage replicates the gradual loss of electrical charge in
biological neurons, achieved by subtracting small values from
the neuron’s membrane potential over time. Firing happens
when the membrane potential surpasses a threshold, causing
the neuron to spike and transmit this signal to downstream
neurons.
To implement this LIF model, the authors outlined the

CRAM scheme in stages:

• Initialization: Setup involving parameters, constants, and
data structures like lookup tables and local delays before
processing.

• Dataflow: When pre-synaptic neuron spike data is re-
ceived, it undergoes complex computations. This includes
writing spike data into memory, followed by "AND"
operations, summation, rounding, weight multiplication,
and cascaded additions. These computations lead to
the synaptic response current and membrane potential
calculation.

• Routing and Connectivity: They used a Generalized De
Bruijn Graph (GDBG) as the Network on Chip (NoC)
architecture, connecting CRAM arrays. This topology
choice minimizes data communication overheads within
the SNN array.

Moreover, the authors employed Pairwise Spike-Timing-
Dependent Plasticity (STDP) in their SNN setup. STDP is
pivotal in SNNs, mirroring how synaptic connections evolve
over time in biological neurons due to spike timing. It is a
learning rule that models synaptic plasticity in SNNs. The
core concept is that the timing relationship between pre-
synaptic and post-synaptic spikes dictates whether the synaptic
strength strengthens or weakens. Consistently, the connection
strengthens if a pre-synaptic spike precedes a post-synaptic
one. Conversely, the connection weakens if the pre-synaptic
spike consistently lags behind the post-synaptic spike. This
spike-timing dependence empowers SNNs to adapt and adjust
their synaptic connections based on spike timing, aiding
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pattern recognition and temporal information encoding in the
input data.
To implement STDP, the proposed CRAM scheme begins

with initialization, where various parameters and constants are
set based on the STDP equation. Following this, the engine
processes spike distribution over time in the dataflow phase.
Depending on whether it’s pre-synaptic or post-synaptic,
the operation occurs either to the left or right, with input
representing spikes and output representing weights. The
STDP equation is then applied to complete the process in
a transposed layout.
Kang et al. [76] propose an STT-MRAM architecture

design aimed at reducing area overhead and operation delay
while optimizing peripheral circuits. In large synapse crossbar
arrays (512x512) where multiple Multiply-and-Accumulate
(MAC) operations run in parallel, there is a challenge of
increased delay when reading the bit-cell voltage, negatively
impacting overall performance. To overcome this issue, the
authors suggest an optimized peripheral circuit design that
incorporates the pre-charge technique.
The proposed design involves the addition of a simple

PMOS transistor to each bitline (BL). This transistor charges
both the selected and unselected bitlines to VDD during
read operations, enabling faster driving of the selected bitline
voltage when the read operations begin. By implementing this
design, the authors achieve an 82% reduction in read voltage
development delay, significantly improving read operation
performance.
Nguyen et al. [77] present an approach called Binary

Spiking Neural Network (BSNN) based on STT-MRAM.
The BSNN incorporates residual learning using a surrogate
gradient. In this framework, presynaptic spikes are fed to mem-
ory units through differential bitlines (BLs), while binarized
weights are stored in a subarray of STT-MRAM. By utilizing
the BLs for common inputs, vector-to-matrix multiplication
can be performed in a single memory sensing phase, enabling
high parallelism with low power consumption and minimal
latency.

The authors introduce the concept of a dynamic threshold to
simplify the implementation of synapses and neuron circuitry.
This adjustable threshold facilitates the integration of the non-
linear batch normalization (BN) function into the integrate-
and-fire (IF) neuron circuit. The incorporation of the BN
function not only significantly enhances performance but also
enables high regularity in circuit layouts.

Agrawal et al. [78] introduce SPARE, a design using ROM-
embedded RAM tech to speed up SNNs. SPARE is a many-
core architecture with a 2D PE array, global memory, and a
central control unit. Each PE handles synapse and neuron tasks
needed in various SNNs, and SNN layers are divided across
PEs. Computation in SPARE happens in time steps, with only
neuron data moving between PEs and global memory, while
synapse data is read locally from the PE’s RAM. This approach
greatly cuts down data transfers compared to von Neumann
systems.

The study explores twomemory structures: R-SRAM and R-
MRAM, both integrating read-only memory (ROM). R-SRAM
modifies bit cells, adding an extra Word Line (WL), enabling
operation in both RAM and ROM modes. Conversely, R-
MRAM merges ROM with STT-MRAM, using an additional
Bit Line (BL) for ROMdata.While supporting RAMandROM
modes, R-MRAM prohibits simultaneous access. Performance
tests reveal R-MRAM’s superiority, particularly in Spiking
Neural Networks for image classification, showing 1.75 times
lower energy consumption than standard STT-MRAM arrays.
This study underscores the advantages of integrating ROM into
RAM-based in-memory hardware, exemplified in the SPARE
project, advancing efficient cognitive computing.

B. IMAGE/SIGNAL PROCESSING
Image and signal processing are vital in various domains but
face challenges. One is the need for efficient algorithms to
handle large data volumes in real-time. This means developing
parallel algorithms, hardware accelerators, and distributed
processing frameworks. Another challenge is dealing with low-
quality data, often noisy or corrupted. Advanced algorithms
like noise reduction and signal filtering are essential. Efficient
computation is crucial for low-overhead image processing.
This section explores solutions to these challenges using STT-
MRAM-based DS-IMC architectures.
Angizi et al. in [79] introduced PISA, a Processing-In-

Sensor Accelerator. PISA is designed for real-time image
processing in AI devices, emphasizing flexibility, energy
efficiency, and high performance. PISA uses compute-pixels
with non-volatile weight storage at the sensor side, enabling
coarse-grained convolution operations within BWNNs. This
significantly reduces power consumption during data conver-
sion and transmission. PISA also includes a bit-wise near-
sensor processing-in-DRAM computing unit for efficiently
handling the remaining network layers. When an object is
detected, PISA switches to a conventional sensing mode, using
the near-sensor processing unit for image capture and fine-
grained convolutions.

The authors introduce the Compute-Pixel (CP) and compute-
add-ons for integrated sensing and processing. CP includes a
pixel with three transistors and a photodiode. Compute add-ons
have three transistors, two as deep triode region current sources
and a 2:1 multiplexer controlled by an STT-MRAM device for
storing binary weight data. PISA accelerates BWNN layers
without off-chip feature map transmission, optimizingmemory
units into multiple banks with computational sub-arrays and
local row buffers (LRBs). The array shares a digital processing
unit (DPU) for quantization, pre-processing, linear batch
normalization, and activation post-processing. Addressing
reliability and latency, PISA incorporates a reconfigurable
sense amplifier (SA) within the computational sub-array,
enabling efficient (N)AND2 logic function implementation
within a single cycle, leveraging DRAM cell charge-sharing.

He et al. [80] present a design for STT-MRAM arrays that
serve as non-volatile memory while also enabling reconfig-
urable logic operations within the memory itself, eliminating
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the requirement for additional logic circuits. The output of the
computation can be directly read from the memory cell using
a modified peripheral circuit. This in-memory computation
capability allows for localized data processing, followed by
transferring the processed data to a primary processing unit like
a CPU or GPU for more intricate and accurate computations.
This approach significantly reduces power consumption by
8X, minimizes the need for long-distance communication, and
enables extensive parallelism within the memory. The authors
illustrate the effectiveness of their in-memory pre-processing
approach through the implementation of an edge extraction
algorithm.

C. DATA ENCRYPTION
Data encryption is crucial for protecting sensitive information,
but applying it to STT-MRAM In-Memory Computing (IMC)
poses challenges. Maintaining confidentiality is a top concern.
Since encryption happens within memory, robust encryption
algorithms and access controls are needed to prevent unautho-
rized access. Efficient key management is another challenge.
This includes secure key storage, retrieval, protection, and
key generation, distribution, and lifecycle management. The
unique characteristics of STT-MRAM technology make these
tasks complex. This section explores solutions for these chal-
lenges in STT-MRAM-based DS-IMC architectures, focusing
on how they address confidentiality and key management
concerns.
Parveen et al. [81] introduced the Highly Flexible In-

Memory (HieIM) platform using STT-MRAM, operating in
memory and computing modes with the 1T-1MTJ structure. In
the 5T Magnetic Domain Wall (DMW) device, computation
occurs in three stages: reset, compute, and sense. While
efficient, this design takes 4 cycles, making it relatively
slower. HieIM is assessed in two applications: in-memory data
encryption with AES and in-memory bulk bit-wise Boolean
vector logic operations. The latter offers energy savings and
speed improvements but is destructive. For data encryption,
HieIM consumes 51.5% less energy than CMOS-ASIC and
68.9% less than CMOL, a hybrid CMOS-nano device with
unique properties [97]. HieIM also occupies 3.5x less area than
DW-AES, requiring fewer cycles. However, data corruption
risk exists in racetrack devices due to non-uniform domain
wall velocities and substantial heating in larger devices.

Angizi et al. [72] evaluated their proposed MRIMA archi-
tecture using both a CNN accelerator and a data encryption
accelerator (see Section IV-A2). In the evaluation as a data
encryption accelerator, MRIMA demonstrates superior per-
formance as an in-memory encryption engine that utilizes the
Advanced Encryption Standard (AES) algorithm to encrypt
data as it is written to the MRIMA architecture. AES typically
applies four consecutive transformations to encrypt input data:
SubBytes, ShiftRows, MixColumns, and AddRoundKey.

These transformations are mapped to the MRIMA architec-
ture as follows: In the SubBytes stage, each byte of the state
matrix undergoes a look-up table (LUT)-based transformation
within the MRIMA subarrays, utilizing consecutive read/write

operations. In the ShiftRows stage, the state matrix under-
goes a cyclical shift operation with a specific offset. In the
MixColumns and AddRoundKey stages, parallel in-memory
XOR2 operations are performed, along with implementing the
Fast Row Copy (FRC) mechanism in memory mode.

V. SIMULATORS, TOOLS, AND EXPERIMENTAL
APPROACHES USED WITH STT-MRAM IMC
Given the nascence of STT-MRAM, simulation and emulation
tools play a significant role in the design of STT-MRAM IMC
systems and have important implications for the quality of
generated designs. These tools enable designers to explore,
analyze, and optimize various aspects of system design, perfor-
mance, power consumption, reliability, and integration. They
provide a virtual environment for evaluating and refining STT-
MRAM IMC systems, enabling the exploration of designs that
are currently unrealized in practice, thereby contributing to
the advancement of this promising technology.

This section reviews various state-of-the-art tools and sim-
ulators specifically utilized for in-memory computing using
STT-MRAM. We will examine tools used at different archi-
tectural levels, including circuit level (or bit-cell level) and
system level. This overview will guide researchers on the most
appropriate tools for their investigations and facilitate practical
research on STT-MRAM-based in-memory computing for
different varieties of domains.

A. CIRCUIT-LEVEL TOOLS
As discussed in Section II-A1b, when changing the retention
time of non-volatile memories, such as STT-MRAM, the
thermal stability factor of the MTJ cell is usually adjusted
based on Equation 2. To achieve the customization of the STT-
MRAM, we have the flexibility of adjusting the volume of the
free layer or the saturation magnetization depending on the
application or domain. Here are some of the circuit-level tools
utilized in the studied articles:

• Cadence Spectre: Cadence Spectre [98] is an Electronic
Design Automation (EDA) environment that integrates
various applications and tools into a unified framework,
enabling support for all IC design and verification stages.
This tool has been widely used for simulating CMOS and
MTJ models. For instance, Angizi et al. [72] utilized this
tool to simulate the 45 nm NCSU PDK library of their 1T-
1R STT-MRAM device. Cai et al. [70] employed this tool
to simulate their 16 nm FinFet and MTJ model. Parveen
et al. and He et al. [81], [80] employed this tool, utilizing
the 45 nm NCSU PDK as the CMOS library in their
respective studies. Finally, Angizi et al. [79] used this
tool to implement PISA with peripheral circuits using
TSMC 65 nm-GP, achieving the desired performance
parameters.

• SPICE Monte Carlo Simulations: SPICE Monte Carlo
simulation is used in electronic circuit design to account
for variations and uncertainties in component values
and model parameters. It is a statistical analysis method
that allows engineers to evaluate the performance and
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TABLE 2: Different STT-RAM In-Memory Design Architectures

Domain Applications References Array Size Computation Operation Simulated? Tools Used

Machine Learning

BNN

Yu Pan et al.
[68]

Simulated using
45 nm CMOS

Cadence Virtuoso
CACTI, NVSim

Resh et al.
[69]

128KB =>
1024 x 1024
512KB =>
2048 x 2048

XNOR: 4 steps
(3 temp values)

Addition: 9n steps
(using NAND)

Subtraction: 5n+1 steps
(and 5n temp bits)

Batch Normalization:
Multiply and add
transformation

- In-house simulator

Cai et al.
[70] 128 x 128 BCA

XNOR: WL input x
In MRAM weight

Simulated using
16 nm FinFet

process
Cadence Virtuoso

CNN

Cai et al.
[71] 3x3 bit cells

Simulated using
28 nm CMOS,

40 nm MTJ model
Cadence Virtuoso

Angizi et al.
[72]

512 x 256
bit-cells/sub-array
16 sub-arrays/mat,
2 x 2 mats/bank,
4 x 4 banks/group,
4 groups, 512 MB

In-memory bit-wise
Adder

In-memory bitwise
convolver:

Logic AND bitcount,
and bitshift
operations

Simulated using
45 nm NCSU PDK

Cadence Spectre/
Verilog-A
NVSim,

Design Compiler

Kim et al.
[73] NAND and Full Addition

Simulated using
28 nm CMOS Candence Virtuoso

Kim et al.
[74]

3 x 3 x64 kernel size
MAC

MAC operation using
NAND and Full Addition
(with using distributed and
Zero-skipping algorithm)

Simulated using
28 nm CMOS -

SNN

Cilasun et al.
[75] 1024x512 cells

LIF model: Convolution,
Multiplication, Addition
Comparison, PRNG

- NVSim

Kang et al.
[76] 512x512 cells - - -

Nguyen et al.
[77]

32 x 288 cells =>
32 channels of
3 x 3 kernel size

MAC operation
Simulated using
65 nm CMOS -

Agrawa et al.
[78]

SNN computations:
synapse model,

Neuron model block,
plasticity model block

Simulated using
45 nm CMOS

Verilog,
Synopsy Design

Compiler,
CACTI, NVSim

Image
Processing

Image
Processing

Angizi et al.
[79]

1024x256 cells
4x4/bank

16x16 banks
MAC operation

Verilog A,
Cadence Spectre,

PyTourch

He et al.
[80] -

Binary Image:
black and white color
is detected and sent to

MSA.
Grayscale Image:

In-memory
OR operation
is performed

Simulated using
45 nm NCSU PDK

NVSim,
In-house

developed C++

Data
Encryption Encryption

Parveen et al.
[81]

4x4 banks,
2x2mats/bank
1024x512

sub-array/Mat

Consecutive transformations:
SubBytes, Shiftrows,

MixColumns
AddRoundKey

-

In-house C++ code,
NVSim,

Gem5, McPAT,
Synopsys Design

Compiler

Angizi et al.
[72]

4x4 matrix
(state matrix)

Consecutive transformations:
SubBytes (LUT read/write),
Shiftrows (Shift operation),
MixColumns (XOR LUT)
AddRoundKey (XOR)

-

Cadence Spectre/
Verilog-A,
NVSim,

Design Compiler

Cilasun et al.
[82]

32 Processing Units
1PU =>

4x(512x512 CA)
+ 692x(64x64 PAs)
Memory accelerator

= >9.5MB

- -
RAM Simulator,

NVSim
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robustness of a circuit by running multiple simulations
with randomized parameter values. By running a large
number of Monte Carlo simulations, typically ranging
from hundreds to thousands or more, statistical measures
such as mean values, standard deviations, and probabil-
ity distributions can be obtained for circuit responses
such as voltage, current, timing, and other performance
metrics. These statistical results provide insights into the
robustness and reliability of the circuit under real-world
operating conditions.
Angizi et al. [72] utilized this simulation technique to
verify their design using the 45nm NCSU PDK library.
Similarly, in [79] the authors utilized this technique to
simulate PISA’s circuit-level variations at 300K temper-
ature using 10,000 runs. Gajaria et al. [67] conducted
Monte Carlo simulations using 10,000 samples with
varying STT-MRAM cell resistance values to study the
impacts of process variations.

• Verilog-A: Verilog-A [99], [100] is a hardware descrip-
tion language commonly used to model and simulate ana-
log and mixed-signal systems. Regarding STT-MRAM,
Verilog-A can be utilized to model the behavior and
characteristics of STT-MRAM devices at a higher level
of abstraction.
Angizi et al. [72] utilized a Verilog-A model of 1T-1R
STT-MRAM device to co-simulate with the interface
CMOS circuits in Cadence Spectre using a 45 nm NCSU
PDK library and SPICE to verify the proposed design and
acquired the performance of their CNN design. Angizi
et al. [79] utilized a Verilog-A model of NVM elements
to co-simulate with CMOS circuits in Cadence Spectre
and SPICE to evaluate their PISA design.

• Cadence Virtuoso: Cadence Virtuoso is a popular Elec-
tronic Design Automation (EDA) tool suite used for
designing and verifying integrated circuits. It provides
a comprehensive set of tools and features that can be
utilized for STT-MRAM design. Cadence Virtuoso is
typically used for the entire STT-MRAM design flow,
including schematic design, layout design, device char-
acterization, simulation, and physical verification. It pro-
vides a comprehensive platform for designing, analyzing,
and optimizing STT-MRAM circuits, enabling efficient
and reliable STT-MRAM designs.
Yu Pan et al. [68] utilized this tool to evaluate the current
and voltage parameters using 45nm CMOS technology
in Cadence Virtuoso with their MLC-STT-CIM design
in performing a full-add operation of their design. Cai et
al. [70] utilized this tool to simulate their 16 nm FinFet
process and MTJ compact models. Cai et al. [71] utilized
the Spectre simulator in Cadence Virtuoso front-end to
simulate the 28 nm CMOS and 40 nm MTJ compact
model of their design. Kim et al. [73] employed this tool
mainly for area estimation of the layout design of the
memory cell to perform λ-based design rule to simulate
their 28 nm CMOS design.

• Synopsys Design Compiler: Like Cadence Virtuoso, Syn-

opsys Design Compiler is a widely used synthesis tool in
the field of EDA. It is commonly employed in the design
and optimization of digital integrated circuits, including
STT-MRAM. It enables efficient translation of RTL
descriptions into gate-level netlists, technology mapping
to STT-MRAM library cells, timing optimization, power
optimization, area optimization, and analysis of the syn-
thesized design. The tool enhances the design process and
helps achieve optimal performance, power consumption,
and area utilization in STT-MRAM circuits.
During their design evaluation, Angizi et al. [72] utilized
this tool to synthesize their controllers and add-on circuits.
Agrawal et al. [78] employed this tool using an IBM
45nm technology library to estimate the power and
area consumption of their 1T-1M STT-MRAM design.
Parveen et al. [81] utilized this tool to evaluate their AES
in CMOSASIC to evaluate the performance of their 32nm
technology.

B. ARCHITECTURE/SYSTEM-LEVEL TOOLS
• Gem5: Gem5 [101], [102] is a popular simulation frame-
work widely used for architectural research and per-
formance evaluation of computer systems. It can be
used to simulate STT-MRAM in conjunction with other
components of the memory hierarchy. Gem5 can be
utilized with STT-MRAM for various purposes, including
file configuration, model integration, memory hierarchy
configuration, workload execution, performance analysis,
system-level experiments, and validation and verification.
Several works (e.g., [81], [72], [67]) have used gem5 to
model various portions of their STT-MRAM IMC de-
signs, including simulation of workload binaries, imple-
mentation of relaxed retention STT-MRAM, comparison
to SRAM, etc.

• McPAT (Microprocessor Performance, Power, and Area)
[103] is a well-known tool for modeling architectural
power and performance. Although McPAT does not
directly model memory technologies like STT-MRAM,
it’s often used alongside STT-MRAMmodels to estimate
the power and performance of systems that include STT-
MRAM as a memory technology. The precision of these
estimates relies on the accuracy of the STT-MRAM
models and assumptions. Thus, reliable STT-MRAM
models are crucial to obtaining meaningful power and
performance projections for STT-MRAM-based systems.
Previous studies (e.g., [81], [67]) have employed McPAT,
often in conjunction with other simulators like gem5, to
gauge system-level power and energy consumption.

• CACTI: CACTI [104] is a widely-used tool that pro-
vides a framework for estimating key metrics such as
access latency, power consumption, area, and leakage
power for different memory architectures and technology
nodes. It considers various design parameters, including
cache size, associativity, block size, and technology-
specific parameters, to provide detailed performance
and power estimates. The tool utilizes analytical models
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and technology-specific parameters to predict memory
performance and power consumption at different levels of
the memory hierarchy, ranging from individual cells and
bitlines to cache arrays and multi-level caches. Agrawal
et al. [78] used this tool to model the memory unit’s
energy and power consumption using 45nm technology
node. Angizi et al. [72] utilized this tool to estimate the
performance of eDRAM and SRAM used to compare
their MRIMA design. Pan et al. [68] utilized this tool to
estimate the performance of their design, while Angizi et
al. [79] used it to model timing, energy, and area of their
IMC designs.

• NVSim: NVSim [105] is a simulation framework specifi-
cally designed for non-volatile memory (NVM) technolo-
gies, including STT-MRAM. NVSim allows researchers
and designers to model and evaluate the performance,
energy consumption, and other characteristics of STT-
MRAM-based memory systems. NVSim can be used
with STT-MRAM in many ways, which include sys-
tem configuration, STT-MRAM modeling, power and
performance analysis, sensitivity analysis, design space
exploration, etc. Cilasun et al. [82] employed NVSim
to estimate peripheral time and energy overhead from
the SA and row decoders. Parveen et al. [81], He, et al.
[80], Pan et al. [68], Agrawal et al. [78], and several
other works have used NVSim to verify the system level
performance as it relates to latency, dynamic energy,
leakage power, and area of their designs.

VI. CHALLENGES WITH DS-IMC USING STT-MRAM
Creating an efficient, low-power, cutting-edge DS-IMC utiliz-
ing STT-MRAM presents numerous challenges. We provide
a compilation of general design guidelines for in-memory
computing with STT-MRAMs, gleaned from our extensive
research, and suggestions for research directions to address ex-
isting knowledge gaps. These guidelinesmay vary according to
specific technology nodes, design constraints, and implemen-
tation considerations but offer a starting point when embarking
on STT-MRAM-based in-memory computing system design.

A. DESIGN GUIDELINES
1) Memory Mapping
Efficient memory mapping is crucial to exploit the advantages
of STT-MRAM in IMC accelerators. Careful consideration
should be given to mapping the relevant data structures
and computations to STT-MRAM arrays to minimize data
movement and maximize data locality. Mapping techniques
such as data partitioning, data replication, and intelligent
data placement can be employed to optimize memory access
patterns and minimize energy and latency overheads. For
example, Angizi et al. [72] investigated the utilization of data
partitioning and intelligent data placement techniques in their
MRIMA design. They achieved this by mapping either raw or
pre-processed data to specific computational subarrays within
the mats. This approach aimed to maximize data locality and
minimize data movement. On the other hand, Resch et al. [69]

employed a data duplication technique in their PIMBALL
design to enable efficient computation of BNN.

2) Data Organization
The organization of data within STT-MRAM arrays can sig-
nificantly impact the performance of IMC accelerators. Proper
data organization techniques, such as data compression, data
encoding, and data grouping, should be employed to reduce
memory footprints, improve data access efficiency, and exploit
the parallelism offered by STT-MRAM devices. For instance,
Kim et al. [73] and Resch et al. [69] proposed a memory array
design that incorporates the Multiply-Accumulate (MAC)
operation. They achieved this by partitioning the memory
array into multiple sub-computing arrays, which are utilized
for various operations, such as adding partial products and
accumulating results. This approach significantly enhances the
data access efficiency in their respective designs. A significant
challenge in bit-line computation is ensuring that data are
aligned within the same sub-array and share the same bit-
line to enable computation. Compiler enhancements could be
developed to address this issue. For instance, Parveen et al. [81]
introduced an architecture aimed at resolving this alignment
problem, but it comes at the cost of not being able to utilize
parallelism.

3) Parallelism and Pipelining
STT-MRAM IMC accelerators can benefit from exploiting
parallelism at various levels. Instruction-level parallelism, data-
level parallelism, and task-level parallelism should be consid-
ered to enable efficient and simultaneous execution of multiple
operations. Pipelining techniques can also be employed to
overlap computation and memory access stages, improving
overall throughput. Resch et al. [69] implemented pipelining in
their CNN computations by utilizing a 9-stage pipeline. They
employed multiple memory arrays to simultaneously perform
computations at each layer for different input images. Agrawal
et al. [78] investigated the use of an inter-layer pipelining
scheme in their SPARE design. This approach allowed them
to execute their 2-dimensional PE array, mitigating potential
performance issues effectively.

4) Address Translation and Mapping
Efficient address translation and mapping techniques are es-
sential when using STT-MRAM in IMC accelerators. Address
translation schemes, such as address remapping, virtual-to-
physical address translation, and caching mechanisms, should
be considered to reduce the overhead of memory address
translation and improve overall performance. Angizi et al.
[72] introduced a caching mechanism in their design by
incorporating a local row buffer (LRB) and digital processing
unit (DPU) between two adjacent computational subarrays.
During the first half-cycle, data read from the STT-MRAM
cell is stored in the LRB, known as the first-row copy (FRC).
In the second half-cycle, this stored data is written back to the
destination row, improving overall design performance.
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5) Power/Energy Management
STT-MRAM devices can consume significant power, espe-
cially during write operations. Power management techniques,
such as voltage scaling, power gating, and clock gating, should
be employed to minimize power consumption without compro-
mising performance. Based on workload characteristics and
power-performance trade-offs, dynamic power management
policies can be implemented to optimize power and energy
usage in IMC accelerators. Cai et al. [70] conducted voltage
scaling simulations, specifically focusing on the 1-bit XNOR
operation. They determined the threshold voltage to be 0.6V
and achieved a significant reduction of 54% in energy con-
sumption. Gajaria et al. [67] achieved significant write energy
saving by using reduced retention STT-MRAM in their design.

6) Error Correction and Fault Tolerance
STT-MRAM devices are susceptible to various types of errors,
including write disturbance, read disturbance, and process
variations. Error correction codes (ECC) and fault tolerance
mechanisms, such as redundancy and error detection and
correction techniques, should be implemented to ensure data
integrity, reliability, and resilience in the presence of errors. For
example, Resch et al. [69] addressedwrite disturbance issues in
their PIMBALL design by increasing the switching current (Ic)
by 1.5x, thereby improving the write current. In another study,
Gajaria et al. [67] tackled the effects of process variation in
their processing-in-cache and processing-in-memory designs.
They accomplished this by incorporating multiple retention
times through variations in the STT-MRAM parameters, such
as the free layer thickness and anisotropy constant. To assess
the impact of these variations, they conducted Monte Carlo
simulations using 10,000 samples with varying STT-MRAM
cell resistance values, employing SPICE as the simulation
tool.

7) Integration and Interface
Designing an STT-MRAM-based IMC accelerator requires
careful integration with the overall system architecture. In-
terfaces, protocols, and communication mechanisms should
be designed to seamlessly connect the accelerator with the
CPU, memory hierarchy, and other system components. Com-
patibility with existing bus protocols, memory coherence
schemes, and interconnect architectures should be ensured.
Cilasun et al. [75] proposed the use of a generalized De
Bruijn graph (GDBG) topology to connect their CRAM arrays
efficiently. This topology was designed to mitigate issues
such as congestion and packet drops between each SNN layer.
Angizi et al. [72] established a direct connection between their
MRIMA hardware and the memory bus using the PCI-Express
lane. They also introduced a virtual machine and instruction
set architecture (ISA) to facilitate parallel thread execution.
Basic instruction sets or commands were generated and written
to predefined memory-mapped address ranges defined in the
memory type range registers (MTRRs).

8) Verification and Testing

Rigorous verification and testing methodologies should be
employed to validate the functionality, performance, and
reliability of the STT-MRAM-based IMC accelerator. Verifica-
tion techniques, including simulation, emulation, and formal
methods, should be utilized to ensure correct operation and
adherence to design specifications. Angizi et al. [72] con-
ducted comprehensive verification and testing of their design
by developing a device-to-architecture evaluation framework.
They began by modeling the STT-MRAM bit cell at the device
level and performed circuit-level simulations using various
CMOS circuit simulation tools (refer to Section V and Table
2) to validate the functionality, performance, and reliability of
the STT-MRAM cell design. Similarly, Pan et al. [68] adopted
a similar verification approach for their MLC-STT-CIM cell.
They modeled the cell and conducted circuit-level simulations
using the simulation tools described in Section V and Table 2
to verify the functionality, performance, and reliability of the
MLC-STT-CIM cell design.

B. CHALLENGES AND OPPORTUNITIES FOR FUTURE
RESEARCH

1) Domain Representation

The critical first step in designing a DS-IMC’s processing
element (PE) is to analyze applications and categorize them
into distinct target domains. This process involves extracting
structural information or computational kernels from these ap-
plications of interest [106], [107]. Operations or computations
that frequently occur or that are computationally expensive
can be potential targets for specialized implementation, as the
benefits derived from streamlining these repeated operations
contribute to overall system efficiency.
By mapping out an application’s flow graph, we can accu-

rately detail the control and data flow dependencies, enabling
the DS-IMC to harness any inherent parallelism and optimize
performance [108]. Within this graph, nodes represent kernels,
edges reflect the dependency between different kernels, and
the weight assigned to the edges indicates the data volume
communicated between two kernels [109], [110].
The rapid evolution of applications and domains in to-

day’s technology landscape makes manual analysis of these
applications practically unfeasible. This is particularly true
in rapidly evolving and high-impact areas such as machine
learning, computer vision and image processing algorithms
in autonomous driving applications, wireless and radar appli-
cations in communication and surveillance, etc. [111], [112],
[113], [110]. Consequently, there is a compelling need for
frameworks that can automatically determine the application
domain, as well as extract kernels and data flow graphs
[110]. This information about kernels and flow graphs assists
designers in deciding the number and types of PEs required
by the DS-IMC, or even assessing whether the DS-IMC itself
can manage most of the necessary processing tasks.
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2) Hardware Architecture and Design
Designing an energy-efficient hardware architecture for DSC-
IMC using STT-MRAM presents a unique set of challenges, as
this technology is relatively novel and complex. The hardware
components of such architecture encompass fixed-function
accelerators, specialized processors or DSAs or PEs, General-
Purpose Processors, and on-chip interconnect, as discussed in
Section II-B2.
There are challenges with STT-MRAM design in general

that might have significant implications for the design of
STT-MRAM-based IMC architectures. These challenges are
described in II-A2. Furthermore, there are certain challenges
when it comes to designing a novel compute unit architecture
using STT-MRAM. One such challenge is understanding how
different cell array architectures perform logic operations. For
instance, the CRAM architecture [91], [88], [75] uses 2T-1M
cells for computation. This process involves connecting three
MTJ devices to the logic line, setting the output to "0" or
"1", and applying the appropriate bias voltage to the MTJs’
bit select lines (BSLs), while the output MTJ is grounded
to implement "NAND" or "NOR" operations. This approach
reduces the need for some hardware components, such as sense
amplifiers and some logic gates, which might be necessary in
other designs like those described in [79], [81], [72].

Reducing communication overhead poses another challenge,
necessitating designs that enable logic operations across
multiple rows instead of the same row, as seen in the original
CRAM architecture [96]. Zabihi et al. proposed addressing
this challenge by incorporating switches between logic lines,
which, when turned on, would facilitate communication be-
tween MTJs in different rows and enhance computational
efficiency [91].

Peripheral circuitry design introduces additional challenges,
particularly in supporting in-memory computational tasks.
This involves integrating sense amplifiers for determining
logic operations [67], [86], [87] and bitline driver circuitry for
applying required voltages in both memory and logic modes
[91].
Furthermore, efficient implementation of complex compu-

tation units like a full adder (FA) poses a critical challenge,
alongside exploring optimization schemes to minimize over-
head. Wang et al. [96] implemented a NAND-based logic for
an FA with 9 stages, while Zabihi et al. [91], [88] introduced
a more efficient FA using majority logic and implemented
multiplication operations using Wallace/Dadda trees. These
challenges collectively shape the landscape of STT-MRAM-
based IMC architectures, demanding innovative solutions for
optimal performance and functionality.

3) Resource Management in DS-IMC
To harness the potential of DS-IMC, efficient utilization
of available PEs for task execution is crucial[114], [115].
Resource management techniques for DS-IMC can be broadly
categorized into static (or design time) and dynamic (or
runtime) approaches. Static algorithms leverage design time
information to manage resources, offering optimal solutions

unconstrained by computation and latency. However, they
lack access to runtime information, making them inefficient
in certain scenarios. As DS-IMCs often support multiple si-
multaneous, runtime resource management becomes essential,
demanding effective dynamic approaches.

DS-IMCs face resource management challenges. Evaluating
diverse PEs for varied applications requires assessing multiple
execution alternatives for optimal solutions. Managing re-
sources must address the unique characteristics of concurrently
running applications, ensuring they meet computing require-
ments, performance goals, deadlines, and power constraints.
Applications like signal processing or autonomous driving,
dealing with repetitive operations on streaming data frames,
add complexity when incoming frames overlap with ongoing
tasks, further complicating resource management.

Developing novel resource management techniques heavily
relies on application types and hardware components chosen.
Hence, domain representation and hardware design outputs
become critical inputs to study task scheduling techniques and
voltage-frequency scaling policies, aiding resource manage-
ment in DS-IMC.

4) Software Development
Designing and programming DS-IMC architectures present
significant challenges, as the goal is to achieve optimal
performance and energy efficiency while abstracting platform-
specific complexities for end-users. To address these chal-
lenges and maximize DS-IMC potential, the following con-
siderations should be made when creating the software infras-
tructure:

• Utilizing Domain-Specific Languages (DSLs) is cru-
cial for optimized code in specific application do-
mains, enhancing platform performance and portability
[116]. DSL-based compilers simplify code using domain-
specific abstractions, improving accessibility for pro-
grammers [117]. Hyper, for instance, leverages LLVM for
dynamic translation to machine code, reducing recursive
function calls and enhancing data retention in registers
for improved code and data locality [118].

• Addressing Programming Challenges: Programming DS-
IMC architectures can be complex due to memory hi-
erarchy, data movement, hardware heterogeneity, and
identifying parallelism in applications and hardware
[119], [120]. Frameworks like HPVM and those pre-
sented in [115] compile applications into dataflow graphs,
leveraging inherent task- and data-level parallelism in
applications and hardware to optimize energy efficiency
and computation costs.

• Ensuring End-User Compatibility: PEs in DS-IMCs
should expose applications programming interfaces
(APIs) that allow existing applications to execute with
minimal modifications [121]. Runtime frameworks play
a crucial role, using application source code and state-
of-the-art resource management techniques [122]. These
frameworks bridge hardware components, manage re-
sources, and utilize domain representation techniques in

VOLUME 11, 2023 17



DS-IMCs. During application execution, they identify
domain-specific kernels, allocate them to PEs, and exe-
cute them on energy-efficient hardware. Integration of
compiler, kernel library, and profiler aspects through soft-
ware runtime frameworks further improves performance
and user productivity.

• Utilizing Compilers for bit-line computing data align-
ment: Compilers play a crucial role in optimizing data
alignment for bit-line computing using STT-MRAM.
They achieve this by reorganizing memory layouts, per-
forming loop transformations, enabling vectorization
and parallelization, managing the memory hierarchy
efficiently, providing data alignment directives, automat-
ically transforming data structures, and generating target-
specific optimizations. These compiler techniques are
essential for ensuring that data required for bit-line oper-
ations are stored contiguously and share the same bit-line
within STT-MRAM, enhancing data locality, reducing
realignment overhead, and ultimately maximizing the
benefits of STT-MRAM in energy-efficient and high-
performance computing applications.

• A unique Instruction Set Architecture (ISA) is designed
for STT-MRAM control, offering specific instructions
for reading, writing, erasing, and overall control. It
includes memory addresses, control signals, and various
addressing modes. Microcode or firmware translates
these instructions into low-level signals for the processor,
enhancing memory management and data processing
through streamlined interaction with STT-MRAM.

VII. CONCLUSION
The rapid growth of big data and the increasing demand for
high-performance computing have driven the exploration of
novel computing architectures. In-memory computing archi-
tectures, which capitalize on the high-density and low-latency
characteristics of modern memory technologies, have emerged
as promising solutions for domain-specific computing ap-
plications. Among these architectures, STT-MRAM stands
out due to its non-volatility, high endurance, and low power
consumption. This survey paper has provided a comprehensive
overview of the current state of the art in STT-MRAM-
based in-memory computing architectures for domain-specific
computing. We have addressed the challenges, opportunities,
and trade-offs associated with these architectures, shedding
light on their potential for future development.
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